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"The first gulp from the glass of natural sciences will turn you into an atheist, but at the
bottom of the glass, God is waiting for you."

Heisenberg





SUMMARY

This PhD thesis explores advancements in resource recovery from wastewater. Re-
source recovery from wastewater has gained significant attention in the last decades
as besides water treatment. A variety of biological treatment technologies may, next to
clean water, produce valuable by-products like biogas, microbial fertilizers, bio-plastic
feedstock, and animal feed ingredients. More recently Purple Phototrophic Bacteria
(PPB) raceway reactors have come to the limelight due to their waste-to-resource
potential and low operational costs, especially as secondary treatment processes
that enhance treatment efficiency, while recovering nutrients and organics, including
nitrogen, phosphorous, and carbon. A key advantage of PPB cultivation is the high
efficiency with which these microorganisms utilize volatile fatty acids (VFAs), a key
intermediate in the anaerobic degradation of organic residues, as a carbon source.
VFAs accumulation inside anaerobic digesters (ADs) results from the inhibition of
the methane-producing methanogenesis. In anaerobic fermentation, the operational
conditions can be deliberately steered towards inhibition of methanogenesis and thus
VFA accumulation, and in malfunctioning ADs, VFA accumulates as a consequence of
inadequate operational practices. The complexity of choosing the operational strategy
lies in the fact that the operation of both AD and PPB raceway reactors is characterized
by complicated responses and time-lags in the desired output objectives. We thus focus
on optimizing PPB cultivation in raceway reactors, particularly when integrated with
ADs that may otherwise produce incomplete byproducts, and on advancing resource re-
covery to assess whether AD can reliably serve its primary function in biogas production.

In this perspective, three parallel approaches are investigated: mechanistic modeling,
hybrid system identification, and adaptive predictive control. These approaches ad-
dress the challenges of bioprocess variability, operational fluctuations, limited operator
availability, measuring and monitoring constraints, and the need for high-efficiency
treatments. More specifically, mechanistic modeling provides detailed insights into
microbial interactions and process dynamics, allowing for an enhanced understanding
of complex bioprocesses. This increased insight supports improved design, operational
strategies, scaling, and most importantly, control system design. However, these
models are often too complex for real-time applications, such as data reconciliation
and predictive modeling, due to excess details and measurement constraints. Hybrid
system identification is, therefore, investigated to yield low-order models suited for
the aforementioned applications, stepping beyond conventional methods. Simplified
statistical models, derived from hybrid system identification, allow for practical data
reconciliation and assimilation. Lastly, process-oriented control architectures are
investigated based on model predictive control (MPC). While the MPC approach is
a proven control method, this PhD research unlocks its full potential by developing
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VIII SUMMARY

a hierarchical, process-oriented-designed adaptive MPC framework. This adaptive
framework tailors control actions dynamically, addressing variability and maximizing
process performance. Together, these approaches form a robust foundation for resource
recovery systems that balance understanding, predictability, and operational control in
three different research directions.

Based on the above motivations, this PhD thesis contributes to mechanistic model-
ing, hybrid system identification, and adaptive predictive control of PPB raceway re-
actors and ADs. First, we propose a mechanistic model for dynamical PPB selection
in raceway reactors, introducing an empirical growth constant to capture distinct PPB
growth pathways. For ADs, we extend the anaerobic digestion model no.1 (ADM1) with
temperature-inhibition functions, based on the Cardinal model, to account for micro-
bial activity under varying meteorological conditions. Both models enhance our under-
standing of microbial interactions and the impacts of potential disturbances. Second,
to shed light on the state-of-the-art in hybrid system identification, a systematic survey
is conducted, and we develop an online two-stage outer-bounded ellipsoid algorithm
for identifying Switched Box-Jenkins systems. This approach has shown its capability
of creating low-order, data-driven models for accurate approximation of the complex
mechanistic models for data reconciliation and assimilation, and forecasting purposes.
Lastly, the first-ever MPC control system integrated with a supervisory layer is devel-
oped for PPB growth in raceway reactors, which tackles model mismatches and distur-
bances, while optimizing performance. This hierarchical control architecture concept is
also designed in a process-oriented manner for ADs under varying meteorological con-
ditions to stabilize and enhance biogas production by adjusting feeding flow rate. Each
of these parallel research directions is thoroughly investigated and discussed in the two
case studies and shows the success in advancing resource recovery from wastewater in
these three different intended aspects.
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1.1. INTRODUCTION

Wastewater-based resource recovery is a biological process to not only recycle
wastewater but also to use it to produce raw materials (Puyol et al. 2017b).
Wastewater treatment processes contribute to environmental sustainability by
decreasing the amount of waste and by reducing the consumption of raw materials.
They also play a role in renewable resources to address both energy demands
to moderate the overuse of fossil fuels, and the production of high value-added
products instead of removal and disposal. Despite wastewater treatment and resource
recovery processes showing a high capacity for those aforementioned aspects in
economically-rich societies, many under-developing societies face contamination of
freshwater resources and shortage of nutrients, and energy resources due to the
rapid growth of the human population (Ceron-Chafla and Lindeboom 2023). This
has led to increased research into technological innovations in wastewater treatment
and resource recovery plants. To address the aforementioned increases in research
and development of biological Wastewater Resource Recovery Technologies (WRRTs),
two broad fields of study can be taken into account: bioprocess engineering, and
bioprocess control (Dochain 2013).

Bioprocess engineering, which can also be formulated as advancing the best
available technology (BAT), includes either developing or adapting the best identified
available technology for specific environmental and biological conditions to enhance
the process productivity. In other words, “BAT” refers to the best way of either
treating wastewater or resource recovery, i.e. design and optimal operation in
the context of bioprocess engineering. In the SARASWATI 2.0 project, 10 different
piloted technologies have been developed and tested across India from a bioprocess
engineering point of view to identify and advance the “BAT”. This project was a
follow-up to the 1st version, as many of the piloted plants in the 1st version of
SARASWATI could not be considered “BAT” in terms of treatment efficiency and costs
(Starkl et al. 2018). Moreover, low efficiency of treatment plants was also reported
due to unskilled operations (Chatterjee et al. 2016). In other words, different levels
of operator capacity and supervision can lead to operational failures and drastically
disturb process performance. Therefore, besides the exploration of new technologies
within the bioprocess engineering context, bioprocess control should also be taken
into account.

Bioprocess control, which can also be formulated as automation and control,
includes developing or adapting methods of monitoring and control to enhance the
process productivity and to improve the process robustness. This also becomes
particularly critical to consider, when transferring technologies from lab-scale to
pilot- and full-scale. Seasonal variations, unexpected operational malfunctions, and
environmental and biological fluctuations are examples of factors that can perturb
process operations. If preventive or corrective actions are not taken by an operator,
the process performance may deteriorate considerably or even fail. Therefore, the
process can be integrated with a “smart” and “automatic” control system that detects
operator faults and potential fluctuations and optimizes plant operation without
operator interference. This is also considered in SARASWATI 2.0. The bioprocess control
problem, as the main scope of the research in this thesis (as shown in Figure 1.1), has
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two key aspects: modeling and control. Therefore, the aim of investigating modeling
and control for biological wastewater treatment technologies is to demonstrate that
bioprocess engineering and bioprocess control are complementary to one another,
and by integrating an “automatic” control system, a biological treatment plant can
be turned into a “BAT”. To validate this hypothesis, the technology of Pilot 5 of
SARASWATI 2.0 was selected, which will be explained in the next section. Thus, this
thesis is dedicated to exploring this resource recovery technology of Pilot 5 from the
aforementioned two aspects in the context of bioprocess control.

Figure 1.1: The two sides of a biological wastewater treatment process problem, i.e.
bioprocess engineering and bioprocess control, and the scope of this
thesis.

1.2. RESOURCE RECOVERY FROM WASTEWATER
Various types of anaerobic digestion plants were proposed and tested in the 1st
version of SARASWATI to produce biogas as a valuable recovered resource from urban
wastewater that can be used as biofuel. However, as mentioned earlier, the results
showed that process efficiency was lowest in those plants not due to malfunction,
but because of a lack of experts for process supervision (Chatterjee et al. 2016).
Malfunction in anaerobic digestion typically results in inefficient conversion of
influent organic matter into biogas, leaving some soluble organic acids in the effluent
(Bornhöft et al. 2013). This malfunction is not only due to faulty design and unskilled
operators but also fluctuating operational conditions such as variations in incoming
influent composition and seasonal meteorological changes. To demonstrate how a
“smart” control system can transform a technology into a “BAT”, we will discuss the
management of biogas production in anaerobic digestion using smart feed control
under varying meteorological conditions as a separate case study for wastewater
resource recovery. The simplified schematization of an anaerobic digester is shown
in Figure 1.2.
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Figure 1.2: Schematization of an anaerobic digester.

Nevertheless, conditions under which the anaerobic digesters are not working
properly could be turned into an advantage if their output can be used to produce
high value products like VFAs (Kleerebezem et al. 2015). The VFAs produced
can serve as a feed for a photobioreactor to cultivate PPB. One of the primary
reasons to use PPB is their capability to achieve simultaneous nutrient and COD
recovery from wastewater (Hülsen et al. 2018). PPB are commonly applied as a
secondary wastewater treatment to recover nutrients and to assimilate carbon for
high-efficiency treatment. High-value products derived from PPB include microbial
fertilizers, bio-stimulants, animal feed ingredients, and bio-plastics feedstock (Alloul
et al. 2023). Microbial selectivity and growth are better controlled in a closed
anaerobic photobioreactor, but considering scale-up capacity, a raceway-pond reactor
offers a cost-friendly alternative in terms of construction and operation (Alloul et al.
2021). Therefore, integration of VFA-based anaerobic digestion with a raceway-pond
photobioreactor for PPB production is a candidate of “BAT” in SARASWATI 2.0. The
simplified schematization of a PPB raceway-pond reactor is depicted in Figure 1.3.
This technology is relatively new and still under research and development, from
both bioprocess engineering and bioprocess control standpoints. In this PhD thesis,
we will focus on the bioprocess control aspects for these two aforementioned resource
recovery from wastewater, namely anaerobic digestion for biogas production and a
raceway reactor for PPB growth, and develop modeling and control approaches for
them.

Figure 1.3: Schematization of a PPB raceway-pond reactor.
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1.3. HOW TO MODEL AND CONTROL?
Modeling a biological wastewater resource recovery process is a primary means
for process design, scale-up implementation, optimal operation determination, and
process control (Solon et al. 2019). Dynamical models provide an insightful
understanding of biological wastewater resource recovery processes as a virtual
benchmark to interpret input-output relationships for decision-making in the context
of process optimization, monitoring, and control. Depending on the main purpose
of modeling, we can either use mechanistic (first-principles) modeling as “detailed
mathematical modeling for simulation and understanding” or use statistical modeling
as “structural mathematical modeling for monitoring and control” (Jeppsson 1996).

Mechanistic (first-principles) models, also known as white-box models, are
dynamical models in the form of ordinary differential equations (and partial
differential equations). These describe the time-wise evolution of a bioprocess
based on biological and physicochemical interactions among components. Input-
output relationships are usually modeled on the basis of a mass balance using
different reaction metabolisms. Because of the various types of components in
a bioprocess, the metabolic interactions among them, and the different phases
of biological and physicochemical interactions, mechanistic models are usually
complex, nonlinear, and stiff. Therefore, these models are suitable models for
“simulation, process understanding, and optimal decision-making operation”, but,
they are complex and computationally expensive for “identification and model-based
control” (Donoso-Bravo et al. 2011; Yoshida et al. 2019).

On the other hand, with the increase of digital twins and model-based control,
other alternatives for modeling biological wastewater resource recovery processes
should also be considered. Structural models, such as statistical input-output models
and state-space models, provide a meaningful framework for data assimilation
and reconciliation, identification and prediction, and model-based control. These
models are also known as gray-box models and have been used to represent
bioprocesses (Capodaglio et al. 1991). As mentioned, bioprocesses are inherently
complex, and representing these processes with overly simplistic models would not
be realistic. Because of the capabilities of adaptive and hybrid models to capture
highly nonlinear dynamics, they can be considered as appropriate candidates to
model these bioprocesses for “identification and model-based control”. Therefore,
these types of models along the mechanistic modeling approach are studied in this
PhD thesis.

The other face of bioprocess control is designing and configuring an automatic
control system for a biological wastewater resource recovery process. So far, by
modeling it, we can provide a framework for understanding, analysis, identification,
and control. Moving forward, a control system should be developed that
enhances the productivity and performance of the process. Despite the increase
in industrialization and the increasing importance of automatic control, managing
biological processes is challenging. This complexity arises from the inherent
variability in the behavior of living organisms and the lack of reliable real-time
measurements and the lengthy procedure of off-line measurements (Dochain 2013).
Even though a wide range of attempts have been made to either develop or advance
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control strategies for biological wastewater resource recovery processes (Iratni and
Chang 2019), the primary question still being explored is: “How to configure a direct
control strategy to improve process performance and productivity?”. In other words,
most control strategies have been dedicated to managing environmental conditions
(e.g., pH, temperature, etc.) that regulate operational settings to favor optimal
operation, while approaches that directly steer biological interactions, such as feed
control, are more challenging, yet promising (Gaida et al. 2017).

Advancing the control strategies for biological wastewater resource recovery
processes requires the adoption of optimization-based control strategies, where
physical and performance objectives and constraints can be explicitly dealt with.
Given the nature of biological wastewater resource recovery processes, and the long
response time to changes (Anand et al. 2021), model predictive control (MPC) as
a well-established advanced control method, has been tested for decades in the
context of bioprocess control. (Chaib Draa et al. 2018; Craven et al. 2014; Muñoz
et al. 2009). The key point is adapting the MPC control for a specific process
and configuring a control system based on it to enhance process performance. In
other words, this PhD thesis investigates how the design of a biological wastewater
resource recovery process can be improved by integrating an adapted MPC control
system for that process. The critical control system configuration is how to use
bioprocess engineering knowledge and understanding, mostly through modeling, for
bioprocess control, which will be discussed in this PhD thesis. In summary, advancing
control strategies for biological wastewater resource recovery processes is more than
utilizing an advanced control technique. The design of a “direct” control method
and the configuration of the control system should also be taken into account.

1.4. RESEARCH THEMES AND STRUCTURE
As discussed above, the importance of modeling and control of a biological
wastewater resource recovery process is taken into consideration for the
aforementioned case studies in this PhD thesis. In other words, the central question
in this thesis is:

What tools and approaches can be employed to advance resource recovery from
wastewater, and how do these approaches contribute to achieving the desired
outcome for PPB raceway reactors and anaerobic digesters?

According to the elaborated bioprocess control problem, the main research scheme
has been divided into four subprojects as shown in Figure 1.4. As a primary
answer to this research question, three main domains have been chosen for detailed
explorations in this PhD thesis as listed below. A summary of the main contributions
of each chapter to PPB raceway reactors and anaerobic digesters, and to the intended
central research question along with highlighting the main gaps is also mentioned
below. The detailed literature reviews are provided in each chapter individually.

• Mechanistic modeling: modeling mechanistic behaviors of the WRRTs of this
study for the purpose of understanding and decision-making.
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• Hybrid system identification: Identifying low-order statistical models of
the WRRTs under consideration using system identification methods for the
purpose of prediction, and data assimilation and reconciliation.

• Adaptive predictive control: Developing an automatic control system based on
the adaptive MPC controller for the given WRRTs in order to enhance process
efficiency.

Figure 1.4: Step-by-step subprojects from modeling to control as a proposed overall
research scheme for designing an advanced control system for a
bioprocess.

Although modeling and control of anaerobic digestion have been studied
extensively from various aspects (Batstone et al. 2002; Nguyen et al. 2015), the
technology of the PPB raceway reactor is relatively new (Capson-Tojo et al. 2020)
and requires further investigation. To provide a virtual benchmark for simulations
and system dynamics analysis, mechanistic models are well-known candidates. The
Anaerobic Digestion Model no. 1 (ADM1) (Batstone et al. 2002; Mo et al. 2023) is
a well-established first-principles model describing the anaerobic digestion process
in four stages. This model has been utilized in various contexts, such as model
development (Flores-Alsina et al. 2016), model simplification (Weinrich and Nelles
2021), experimental design and interpretation (Donoso-Bravo et al. 2011), and control
design (Ahmed and Rodríguez 2020). However, as mentioned, inoperative Anaerobic
Digestion (AD) processes may result from the lack of an appropriate control
system that addresses various environmental perturbations. One of the susceptible
disturbances is meteorological fluctuation influencing operating temperature. To
investigate this effect, a temporal temperature extension is introduced in the
ADM1 model, and a feed MPC control framework is developed not only to
handle varying operating temperatures but also to address biogas management by
integrating a self-consumption heating system. The model extension and biogas
management through a control system configuration are discussed in Chapter 6.
Therefore, the main contributions of this chapter are the development of a temporal
temperature-based ADM1 model and the design of an adaptive model predictive
control system for feed rate adjustment to mitigate temperature fluctuations caused
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by meteorological variations. These advancements demonstrate improvements in
biogas production and treatment efficiency for anaerobic digestion.

Chapter 2 presents a novel mechanistic model for the growth of PPB in raceway
reactors. While PPB behavior has been mechanistically modeled by Puyol et al.
(2017a) and further extended by Capson-Tojo et al. (2023), the Purple Bacteria
Model (PBM) has been exclusively developed for PPB cultivation in raceway-pond
reactors. Microbial selection dynamics have also been mechanistically defined
using an empirical parallel metabolic growth constant. This model serves further
dynamics analysis and the required supervisory knowledge for the control system
configuration. Thus, in Chapter 5, a control system based on MPC control
is developed to manage microbial competition and environmental perturbations
and to enhance process performance by proposing a supervisory layer based on
quantity-driven and quality-driven operational scenarios. The developed control
strategy has been evaluated through simulation studies using the PBM. Therefore,
the main contributions of these two chapters are the development of a model for
PPB dynamics that considers various parallel growth pathways and the design of an
adaptive model predictive control system to mitigate operational disturbances and
to enhance the performance of the raceway reactor for PPB cultivation.

Although conventional system identification approaches have been well-studied
for various applications, including biological wastewater resource recovery processes,
this PhD thesis explores the novel idea of hybrid system identification methods for
them under modeling for prediction. In other words, hybrid systems represented
as either piece-wise affine systems or switched linear systems can capture the
high nonlinearity of process dynamics in a few linear subsystems with a simplified
structure. These systems can be used not only for model-based control but also for
prediction, data reconciliation, and digital twins. Therefore, Chapter 3 provides an
overview of proposed approaches in the literature through a systematic survey. Then,
based on the state-of-the-art and properties of bioprocesses, a novel identification
approach for switched Box-Jenkins models, considered to be the most complex form
of input-output models that incorporate disturbances into modeling and that can be
simplified for simpler forms of models, is developed in Chapter 4. The proposed
method are also evaluated for approximating mechanistic models, namely the ADM1
and PBM models. According to the developed method, complex bioprocesses such
as ADs and PPB raceway reactors can be accurately approximated using a low-order
model. This simplification facilitates forecasting purposes, as certain detailed
dynamics are relaxed, making the model more computationally efficient while still
capturing the essential behavior of the system.

The overall aim of this thesis is developing modeling methods and advancing
control strategies for the given case studies. Therefore, a general research plan
is proposed, as shown in Figure 1.4, utilizing this framework and associated
subprojects for the considered case studies. The main contribution of this thesis
can be summarized as advancing resource recovery from wastewater in PPB raceway
reactors and anaerobic digestions by exploring (i) mechanistic modeling to enhance
understanding of process behaviors, (ii) predictive modeling to approximate complex
models for data assimilation and reconciliation, and (iii) a hierarchical adaptive



predictive control system to improve efficiency under varying conditions. Given the
aforementioned research directions and the contributions of each chapter, this PhD
thesis has a paper-based organization. The structure of the chapters is shown in
Figure 1.5. Chapters 2-6 are based on peer-reviewed publications. Each chapter aims
to discuss the knowledge gaps and corresponding contributions. Finally, Chapter 7
summarizes the findings and discusses the reliability of the proposed research, along
with potential future research directions.

Figure 1.5: Chapter outline of the thesis and thematic organization of chapters
from modeling to control of the PPB raceway reactor and of anaerobic
digestion.
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2
PURPLE BACTERIA MODEL

Purple phototrophic bacteria (PPB) show an under-explored potential for resource
recovery from wastewater. Raceway reactors offer a more affordable full-scale solution
on wastewater and enable useful additional aerobic processes. Current mathematical
models of PPB systems provide useful mechanistic insights, but do not represent
the full metabolic versatility of PPB and thus require further advancement to
simulate the process for technology development and control. In this study, a
new modeling approach for PPB that integrates the photoheterotrophic, and both
anaerobic and aerobic chemoheterotrophic metabolic pathways through an empirical
parallel metabolic growth constant was proposed. It aimed the modeling of microbial
selection dynamics in competition with aerobic and anaerobic microbial community
under different operational scenarios. A sensitivity analysis was carried out to identify
the most influential parameters within the model and calibrate them based on
experimental data. Process perturbation scenarios were simulated, which showed a
good performance of the model.

This chapter is an adapted version of a novel mechanistic modeling approach for microbial selection
dynamics: towards improved design and control of raceway reactors for purple bacteria, Abbas Alloul1,
Ali Moradvandi1, et al. (2023), Bioresource Technology.
1Equally contribution

13
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2.1. INTRODUCTION

Purple phototrophic bacteria (PPB) offer great potential to recover resources
from wastewater like organics and the nutrients nitrogen and phosphorus. The
phototrophically produced biomass have circular economy applications as microbial
fertilizer, biostimulant, animal feed ingredient, and bioplastics feedstock (Alloul et al.
2023; Capson-Tojo et al. 2020). PPB exhibit metabolic diversity and versatility,
capable of thriving on various energy sources (photo- and chemotrophy), electron
sources (organo- and lithotrophy), and carbon sources (auto- and heterotrophy).
(Imhoff 2006). As phototrophs, they have the unique ability to grow on infrared
light, are anoxygenic and proliferate swiftly in anaerobic mixed-culture systems fed
with volatile fatty acids (VFAs). For wastewater treatment and resource recovery, this
photoorganoheterotrophic mode is mostly studied (Capson-Tojo et al. 2020).

In research labs, membrane (photo)bioreactors, tubular photobioreactors, flat-plate
photobioreactors, as well as stirred-tank photobioreactors have been mainly used to
achieve high PPB selectivity (Alloul et al. 2021a; Capson-Tojo et al. 2020; Cerruti
et al. 2020; Hülsen et al. 2022). Successful selection of PPB has been mainly
obtained in closed configurations to maintain an anaerobic reactor environment.
However, the high capital expenditure of these systems may prevent implementation
at full scale (Acién et al. 2012; Alloul et al. 2021a). Open raceway reactors
reduced total investment and operational cost 5 to 10−fold, relative to closed
anaerobic photobioreactors (Alloul et al. 2021a). However, open raceway ponds are
exposed to passive oxygenation (217−226 mgO2L−1 h−1) through the combination
of the paddle wheel rotation used to circulate the wastewater and their high
atmospheric surface-to-volume ratio used to maximize light accessibility 5 m2 m−3).
The uncontrolled supply of dissolved oxygen in this system not only enables aerobic
conversions but also creates a competitive environment where PPB compete with
aerobic bacteria (AEB) for available organic substrates that may be contaminated by
external bacteria (Alloul et al. 2021a). Achieving high PPB selectivity is, therefore,
more challenging than in closed anaerobic systems. Nonetheless, changing the
operational conditions in terms of oxygen supply, light availability, sludge retention
time (SRT), and chemical oxygen demand (COD) loading successfully boosted the
PPB abundance from 14 % to 78 % in a 100−L raceway reactor operated on synthetic
wastewater (Alloul et al. 2021a).

Mechanistic simulation models are needed to improve the design and operation
of PPB processes, boost piloting activities, scale up implementations, and control
the processes. On a more fundamental basis, genome-scale metabolic models
have been developed to describe biohydrogen production in pure-culture systems
(Golomysova et al. 2010; Imam et al. 2011); however, they cannot be directly used
for environmental biotechnology applications. Puyol et al. (2017) have translated
the activated sludge model formalism to predict nutrient conversions driven by PPB,
which has been discussed by Henze et al. (2015). The Photo-anaerobic model (PAnM)
is limited to photo-anaerobic conditions and does not take microbial competition
with non-PPB guilds like aerobic and fermentative chemoorganoheterotrophs and
photolithoautotrophs into account. The extended version of PAnM (ePAnM) has
been proposed by (Capson-Tojo et al. 2023), which integrates eight different types
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of microorganisms, i.e. PPB, AEB, acidogenic and acetogenic fermentors, aerobic
predators, heterotrophic and autotrophic sulphate reducing bacteria, and microalgae
and takes diverse metabolic capabilities of PPB into account. Compared to PAnM,
PPB photoheterotrophic, aerobic and anaerobic uptake rates and yields have been
used to simulate PPB growth in batch and semi-continuous processes in the
ePAnM. As far as observed, the difference in maximum growth rate in relation
to PPBs metabolic versatility under various environmental conditions were not
explicitly addressed Capson-Tojo et al. (2023) and Puyol et al. (2017). While
the ePAnM is capable of adapting to various environmental conditions, it has
been suggested recalibrating specifically for the operation of open pond raceway
reactors (Capson-Tojo et al. 2023), which was investigated in this study. A detailed
comparisonamong the PAnM, the ePAnM, and the PBM models can be found in
Table 2.1. With the technological development of PPB raceway systems, a more
comprehensive model is necessary to simulate wastewater treatment along with
microbial selection to assess operational and control scenarios for raceway reactors
and also taking parallel metabolic growth into account. Such a model will allow
to better engineer, implement, and control raceway reactors by predicting process
conditions, variations, and perturbations that affect the PPB abundance and the
treatment performance.

In this study, a new mechanistic purple bacterial model (PBM) was constructed
that considers the most relevant metabolic growth modes that PPB and competing
microbes including aerobic and anaerobic heterotrophic bacteria within a raceway
reactor for the purpose of process simulation. This study introduced a novel
approach aimed at incorporating diverse growth pathways of PPB, considering their
simultaneous occurrence by hypothesizing a phenomenon observed in previous
research—namely, the coexistence of multiple growth pathways. Therefore, an
empirical parallel metabolic growth constant was defined to account for the
contribution of alternative pathways to PPB growth alongside the dominant pathway.
After model construction, a sensitivity analysis was conducted to identify the most
influential parameters and to assess the impact of parameter variations on the
model outputs. Calibration of the important factors was carried out through
iterative error minimization. Short- and long-term perturbations of incoming soluble
organic matters, volatile fatty acid (VFA), suspended solids and light variations were
simulated to their effects on PPB abundance and COD removal rate.

2.2. MATERIALS AND METHODS

2.2.1. MODEL DESCRIPTION

The PBM was constructed to simulate the wastewater treatment performance and
PPB selectivity in open raceway reactors for design and control purposes. The PBM
can be transferred to other reactor systems or used as add-on to existing models
such as the Activated Sludge Model (ASM), Anaerobic Digestion Model no.1 (ADMn1)
or algae-bacteria models e.g., the ALBA model (Batstone et al. 2002; Casagli et al.
2021; Henze et al. 2015), since the PBM is units compatible to the ASM and ADMn1
series of the International Water Association (IWA). The PBM consists of 15 state
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variables with 3 state variables associated with PPB community, and 16 processes
including 12 biological and 4 physical processes.

STATE VARIABLES, BALANCES, AND PROCESSES

In this section, the structure of the proposed PBM model is explained by describing
state variables, balances, and biological and physical processes. The PBM state
variables are summarized in Table 5.1, and biological and physical processes are
described in Table 2.3. Moreover, the PBM Peterson matrix is given in Table 2.4.

Table 2.2: State variables included in the PBM categorized in a particulate (X ) and
soluble (S) fraction. Microbial biomass in forms of purple phototrophic
bacteria (indexed by PB), aerobic bacteria (AEB) and anaerobic bacteria
(ANB). PPB can be grown photoheterotrophically (ph), aerobic chemo-
heterotrophically (aec), and anaerobic chemoheterotrophically (anc).

Symbol Description Unit
Microbial biomass
XPB ,ph Photoheterotropic grown PPB mgCODL−1

XPB ,aec Aerobic chemoheterotropic grown PPB mgCODL−1

XPB ,anc Anaerobic chemoheterotropic grown PPB mgCODL−1

X AEB Aerobic bacteria mgCODL−1

X AN B Anaerobic bacteria mgCODL−1

Substrates and products
XS Slowly biodegradable organic matter mgCODL−1

X I Inert particulate organic matter mgCODL−1

SS Readily biodegradable organic matter mgCODL−1

SV F A Volatile fatty acids mgCODL−1

S I Inert soluble organic matter mgCODL−1

SH2 Soluble hydrogen mgCODL−1

S IC Total inorganic carbon mmolHCO−
3 L−1

S I N Total inorganic nitrogen mgNL−1

S I P Total inorganic phosphorus mgPL−1

SO2 Dissolved oxygen mgO2L−1

(i) Microbial community: The microbial biomass were divided in three main
categories, namely purple phototrophic bacteria (PPB), aerobic bacteria (AEB) and
anaerobic bacteria (ANB), reflecting the main microbial groups thriving in a raceway
reactor covered with a selective infrared cover operated on COD-rich wastewater
(Alloul et al. 2021a). The PPB-based bacteria were also divided into three subgroups
consisted of photoheterotropic grown PPB (XPB ,ph), aerobic chemoheterotropic
grown PPB (XPB ,aec ), and anaerobic chemoheterotropic grown PPB (XPB ,anc ).

(ii) Substrates and products: The incoming COD consists of both particulate and
soluble matters. Readily biodegradable COD was divided in a non-volatile fatty
acid (SS ) and C2-C6 volatile fatty acid (SV F A) fractions. The growth kinetics and
biochemical pathways for both substrates are different (Batstone et al. 2002; Puyol
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et al. 2017). VFAs and other dissolved organics follow a different uptake pattern, and
lead to different selections (Cerruti et al. 2023). Furthermore, subdividing soluble
solids based on individual VFA might also be reasonable because VFAs induce
different maximal specific growth rates, yet might increase complexity, thereby,
making the model impractical for wastewater treatment applications. As nutrients,
only inorganic nitrogen (S I N ) and phosphorus (S I P ) were included, since organic
fractions can be hydrolyzed in the preceding fermentation as suggested by Alloul
et al. (2021a) for operational functionality of raceway reactors in producing PPB.

Since raceway systems are open reactors, the concentration of dissolved oxygen
(SO2 ) plays an important role, especially since AEB can outcompete PPB. The effect
of the paddle wheel on the mass transfer of dissolved oxygen in the liquid phase was
also taken into account for modeling. To close carbon, electron and mass balances,
the production of carbon dioxide (SCO2 ) and hydrogen (SH2 ), which can come from
non-VFA and VFAs, were included in the model.

The mentioned biochemical and physical processes take place in the raceway
reactor. The lab-scale and even pilot-scale raceway reactors can be modelled as a
single continuous-flow stirred tank (CSTR) due to their reduced dimensions and the
high water circulation flow. Sequencing batch with cycles of filling the reactor with
influent once a day and turning on the paddle wheel to promote gas transfer during
the day, and stopping the paddle wheel to slow down the reactions and settle the
biomass during nights prior to purging the excess sludge, is assumed as a modeling
of the reactor regime to simulate the real situation in physical models in labs. The
model can also be used either for other reactor measures by changing volume (V )
and surface area (A) in the model implementation or for other reactor geometry
systems such as tubular or flat plate photobioreactors with some modifications to
consider biofilm formation. Raceway reactors typically have a liquid depth of 20 cm
and a surface-to-volume ratio of 5 m2 m−3 (Norsker et al. 2011).
(iii) Balances and system dynamics equations: The reactor volume may be varied
during filling and extracting phases, especially if they are not done at the same time.
Its variability, therefore, can be written as a following differential equation:

dV

d t
=Qinflow(t )−Qoutflow(t ), (2.1)

where, V , Qinflow, Qoutflow denote the reactor volume and the input and output
flow rates, respectively. Therefore, the mass balances of the soluble materials can be
written as follows:

dV Si

d t
= Sinput

i Qinflow(t )−Si Qoutflow(t )+∑
viρi , (2.2)

where vi , ρi denote the reactor volume and the input and output flow rates,
the initial volume, the stoichiometric coefficient, and the process rate of the
corresponding conversion, respectively, in which the subscript i denotes component
name.

The mass balances for the particulate materials can be written in a similar way
as follows, while integrating a factor related to hydraulic (HRT) and sludge (SRT)
retention times to model the effect of the paddle wheel activation, the effluent
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extraction, and the water recirculation if needed. This factor was defined as the
HRT/SRT ratio ( fH/S ) to consider the fraction of removed particles. The HRT/SRT
ratio provides insights into the performance and stability of the reactor, which
should be optimized. The mass balance equation for particulate materials becomes
the following, considering transport and conversion terms:

dV Xi

d t
= X input

i Qinflow(t )−Xi (Qoutflow(t )+ ( fH/S −1)
dV

d t
)+∑

viρi . (2.3)

In addition, the mass balance equation of oxygen was modified to take the effect
of oxygen dissolution into account when the paddle wheel is working. A switching
function associated with the on/off conditions of the paddle wheel was, therefore,
integrated to consider oxygen promotion.

(iv) Gas-liquid transfers: These systems are open to air and agitated with a paddle
wheel. Gas-liquid mass transfer of four components, was, therefore, included in
the model, namely: oxygen dissolution from the air through paddle wheel rotation;
carbon dioxide dissolution from the air or produced through biological processes;
hydrogen dissolution from the air or produced through biological processes; and
ammonia origination from the incoming wastewater. The mass transfer kinetics for
all gases was described through volumetric mass transfer rate and the gas saturation
concentration through Henry’s law.

(v) Inhibitory factors: As for the activated sludge model and anaerobic digestion
model, kinetics expressions are multiplicative and based on Monod type functions
to describe limitations of organics, ammonium, phosphate, light, and oxygen.
In comparison with the PAnM (Puyol et al. 2017) and the ePAnM (Capson-Tojo
et al. 2023), since, the PBB community was not considered as a single cell in
the PBM, light inhibitory factor is differentiated between photoheterotrophy and
chemoheterotrophy. Moreover, different oxygen inhibitions were taken into account
for PBB photoheterotrophy and chemoheterotrophy as well as aerobic and anaerobic
microbial communities. Competitive inhibition function between VFAs and other
soluble organics was also included into the PBM as PBB growth competition has
been reported by (Cerruti et al. 2020).

PPB AND ITS COMPETITION

(i) Metabolic versatility of PPB: Six biological processes were assigned to PPB,
namely: two photoheterotropic growths on soluble organics and VFAs, respectively;
two aerobic chemoheterotrophic growths on soluble organics and VFAs, respectively;
one anaerobic chemoheterotrophic growth on soluble organics; and biomass
decay into biodegradable materials and inerts while releasing inorganic nitrogen,
phosphorus and carbon. The PPB biomass therefore comprises grow metabolisms
by photoheterotrophy (XPB ,ph), aerobic chemoheterotrophy (XPB ,aec ), and anaerobic
chemoheterotrophy (XPB ,anc ). This subdivision reflects the different types of
metabolisms that PPB conduct in a raceway reactor subjected to varying
environmental conditions, e.g., availability of light, oxygen, fermentable organics,
etc. (Alloul et al. 2021a). The model was written to account for the ability
of PPB to grow on different substrates (electron donors and carbon sources) or
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energy sources (light or chemical redox reactions) in parallel and to hypothesize a
combined metabolic-mechanistic understanding to the most opportune metabolism.
The parallel metabolic growth of PPB was implemented in the model by introducing
a novel factor and inhibition-type functions with light and oxygen to control
photoheterotrophy and chemoheterotrophies, respectively. Therefore, besides the
light and oxygen inhibition functions, a parallel metabolic growth constant (MS )
between the three PPB biomass types was included, so that biomass is grown
phototrophically and chemotrophically in parallel during shifting between days and
nights. This factor plays a pivotal role in accounting for the contribution of
alternative pathways to PPB growth alongside the dominant pathway. This novel
factor is the main difference between the PBM proposed and the PAnM and ePAnM
developed by (Capson-Tojo et al. 2023; Puyol et al. 2017) and can be written as
follows:

fph = XPB ,ph +MS (XPB ,aec +XPB ,anc ) (2.4a)

faec = XPB ,aec +MS (XPB ,ph +XPB ,anc ) (2.4b)

fanc = XPB ,anc +MS (XPB ,ph +XPB ,aec ) (2.4c)

where fph , faec , and fanc represent state variables with regard to photoheterotrophic,
aerobic chemoheterotrophic, and anaerobic chemoheterotrophic growths, respec-
tively. This constant means that biomass grown photoheterotrophically is able to
use chemoheterotrophic conversion and vice versa, which have been experimentally
observed by Alloul et al. (2021b) and Cerruti et al. (2023). PPB are known to
divide their metabolic growth pathways over photo- and chemotrophy. An MS

of zero implies that PPB biomass grown photoheterotrophically cannot switch to
chemoheterotrophy and is, therefore, completely independent of chemoheterotrophy.
Without the inclusion and proper calibration of this constant, the model is not able
to accurately predict the production of PPB.

(ii) Microbial competitors: Microbial processes that compete with PPB metabolisms
in the raceway biomass are mainly aerobic chemoheterotrophy by AEB and anaerobic
chemoheterotrophy by ANB. Nitrifiers, methanogens, denitrifiers and sulfate reducing
bacteria were not implemented in the model since not prevalent in open raceway
reactors (Alloul et al. 2021a). It should be highlighted that the model structure can
be adapted with additional processes (such as described in ASM and ADM) by users,
depending on the local conditions to be investigated.

2.2.2. MODEL ANALYSIS

In this section, the methodology employed to analyze the PBM is described.
Sensitivity analysis was carried out to first identify the influential parameters of the
model, then calibrate these impactful model parameters using data from controlled
experiments. The robustness of the model was assessed by simulating the model
under different operational scenarios.
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SENSITIVITY ANALYSIS

After model construction, a local sensitivity analysis was conducted to assess the
impact of each parameter on the PBM. The PBM contains various parameters,
ranging from physical to kinetic parameters, in which physical parameters and yields
have been broadly researched and validated. Total kinetic parameters including
maximal specific growth rates (µm), substrate affinities (KS ), inhibition constants
(K I ), and specific decay rate (bm) associated with microbial community are covered
in the sensitivity analysis, which a part of them is directly linked to PPB.

As baseline, kinetic parameters were obtained from previous researches. The
maximal specific and decay rates were given from the activated sludge model (Henze
et al. 2015), the ADM1 (Batstone et al. 2002), the PAnM (Puyol et al. 2017), and
the substrate affinities from Capson-Tojo et al. (2021) and Katsuda et al. (2000).
Newly-defined parameters, such as PPB oxygen affinities, were chosen based on the
experiments (Alloul et al. 2021a), trial and error, as well as the expert knowledge.
Therefore, to measure the impact of parameters on the model output, sensitivity
functions were computed one-at-the-time (OAT). Each parameter was uniformly
perturbed ten times (the sensitivity coefficient) higher and lower of the default values
(Manhaeghe et al. 2020). The duration time of each simulation was set to 50 days
to ensure reaching the steady-state condition. The relative abundance of PPB, COD
removal rate (mgCODL−1 d−1), biomass productivity (mgCODL−1 d−1) and biomass
yield (mgCODbiomass mg−1 CODremoved) were selected as outputs because of their
feasibility to measure for the experiments. The mean of the model output for the last
five days (when the process reaches steady-state) for each iteration was calculated,
and to be able to compare the sensitivity functions, the absolute sensitivity should
be converted into relative sensitivity by dividing the output results by the baseline
(default values). Therefore, the outcome can be compared between parameters and
outputs. The wastewater composition for the sensitivity analysis was considered
based on the synthetic medium proposed by Alloul et al. (2021a).

OVERVIEW OF THE EXPERIMENTS

Based on operational strategies to selectively produce PPB raceway reactors discussed
by Alloul et al. (2021a), three scenarios were selected as (i) 24 h stirring at a
surface-to-volume ratio of 5 m2 m−3 with a 12 h light and 12 h dark regime (scenario
1), (ii) 12 h stirring during the light period at a surface-to-volume ratio of 5 m2 m−3

with a 12 h light and 12 h dark regime (scenario 2), (iii) 24 h stirring at a
surface-to-volume ratio of 10 m2 m−3 with a 12 h light and 12 h dark regime (scenario
3).

These three controlled experiment were conducted in a 100−L pilot scale raceway
reactor with a mixed PPB culture dominated by Rhodobacter capsulatus and a
Rhodopseudomonas (Alloul et al. 2021a). The reactor has been operated for 40
days on synthetic wastewater at a temperature of 28 ◦C and illuminated artificially
with halogen lamps (50 Wm−2). The raceway had a depth of 10−20 cm and a
surface-to-volume ratio of 5−10 m2 m−3. A VFAs solution was used as substrate
composed by acetate, propionate and butyrate in a ratio of 1/1/1 gCODL−1.
All experiments started with a volatile suspended solid (VSS) concentration of
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0.02 gVSSL−1. The initial and final total COD and soluble COD were measured
in order to analyze the COD removal, final biomass and yield of the reactions.
Moreover, optical density at 660 nm (OD660) was measured to extrapolate growth.
The ratio between absorbance (A660) and TSS was also taken from (Cerruti et al.
2020). The focus was on measuring PPB abundance, which aligns with practical
feasibility.

CALIBRATION AND VALIDATION

A relevant range for each of selected parameters was selected based on expert
knowledge and sensitivity analysis to be calibrated. All possible combinations of the
five parameters were then computed for the three mentioned operational strategies.
The mean of the last five simulated days when the process reaches steady-state was,
then, calculated for each iteration of every individual outputs, i.e. relative abundance
of PPB, COD removal rate, biomass productivity and biomass yield. Therefore, the
relative error (er el ) was calculated as the absolute difference between the simulation
and the experiment divided by the experimental value, given as follows:

er el =
|ysimulation − yexperiment|

yexperiment
, (2.5)

where, ysimulation and yexperiment denote each of the mentioned outputs from the
simulation and experiment, respectively. This was achieved by implementing a
nested loop structure using the “for" programming construct to identify a parameters’
combination that exhibited the lowest relative error for each model output, while
also demonstrating a consistent trend across the three strategies. This procedure
leaded to find the calibrated parameters, while assessing the model performance
with the relative error as summarized in Table 4.

PERTURBED SCENARIO ASSESSMENT

The calibrated model can be used to improve the design and operation of PPB-based
reactors. In pilot and full-scale systems, for example, process and environmental
perturbation can influence the stability of the PPB community and wastewater
treatment performance. Four short-term perturbations, likely to occur in a full-scale
PPB system, were simulated to assess the effect of the perturbations on the model,
namely as: (i) incoming VFA concentration (250, 500, and 3000 mgCODL−1d−1), (ii)
incoming soluble organic matters (0, 100, and 3000 mgCODL−1d−1), (iii) incoming
suspended solids (0, 250, 1000 mgCODL−1d−1), and (iv) the light intensity (14, 54,
108 Wm−2). The simulation was run for 25 days at a 12 h light and 12 h dark
condition and stirring regime of 12 h on and 12 h off to reach steady-state and the
perturbations were, then, implemented.

2.3. RESULTS AND DISCUSSION
The lab-scale and even pilot-scale raceway reactors can be modelled as a single
continuous-flow stirred tank (CSTR) due to their reduced dimensions and the high
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water circulation flow. Sequencing batch with cycles of filling the reactor with
influent once a day and turning on the paddle wheel to promote gas transfer during
the day, and stopping the paddle wheel to slow down the reactions and settle
the biomass during nights prior to purging the excess sludge, was assumed as a
modeling of the reactor regime to simulate the real situation in physical models in
labs.

The average light intensity in the bioreactor was determined based on Lambert-
Beer’s Law, which was formulated in the form of an inhibition function to
differentiate light illumination between day and night. Light attenuation (Solimeno
et al. 2017) was also taken into account in function of the biomass concentration to
formulate a close-to-real-world condition for light intensity. The model is capable
of simulating the process under real-world conditions by incorporating historical
solar irradiation data as well as other operational scenarios with artificial lighting,
as light intensity serves as an input parameter for the model’s implementation. In
the following, the results are presented in three distinct sections: sensitivity analysis
(Table 2.5), calibration and validation (Table 2.6), and perturbed scenario assessment
(Figure 2.1).

2.3.1. SENSITIVITY ANALYSIS

The sensitivity analysis revealed the influential parameters for further calibration.
Maximal specific growth rates (µm), specific decay rates (bm) and kinetic parameters
related to oxygen as well as light constants had the greatest impact on the PPB
abundance. Substrate half-saturation constants (KS ) such as the soluble organic
for phototrophic and chemotrophic growth of PPB and VFA for chemotrophic and
aerobic heterotrophic growth of PPB did not show any or only a very low impact
(close to zero). Similar results have been also reported by Biase et al. (2021), for a
high-rate moving bed biofilm reactor model, which showed that the aerobic decay
rate and maximal specific growth rate of AEB had a 5−12 times stronger impact on
the model compared to substrate half-saturation constants.

The effect of parameter variation on the model output was only impactful in a
specific range, typically between 050−545 times the baseline values. Furthermore,
the sensitivity analysis showed that the relative PPB abundance was more sensitive
to parameter variations compared to the other model outputs. This is because of
splitting PBB community and differentiating among light and oxygen inhibitions to
build a model more accurate in terms of predicting PPB abundance. This also
reflected the challenge to construct a model, which predicts relative PPB abundances.

The most impactful parameter is the maximal specific growth rate of aerobic
chemoheterotrophic AEB (µm,SS,AEB ), which directly affects the microbial community
distribution and COD removal rates. Managing passive oxygen entry into a raceway
reactor, especially during nighttime through paddle wheel control, can boost PPB
abundance significantly.

Additionally, the maximal specific aerobic chemoheterotrophic growth rate of
PPB on VFA (µm,V F A,PB ,aec ) is essential for PPB to compete with AEB under dark
aerobic conditions. Parameters related to oxygen, such as the oxygen half-saturation
constants (KS,O2,PB and KS,O2,AEB ) and oxygen inhibitory constant for phototrophic
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growth of PPB (K I ,O2,PB ), also have a substantial impact, particularly in low dissolved
oxygen raceway systems.

Furthermore, light-related parameters, including the light half-saturation constant
of PPB (KS,E ) and the light inhibitory constant for chemotrophic growth of PPB
(K I ,E ), play a critical role. These parameters determine the balance between aerobic
chemoheterotrophy and phototrophy in response to varying light intensities. A
summary of sensitivity analysis is provided in Table 2.5.

Overall, the sensitivity analysis uncovered the impactful parameters of the PBM.
Specifically the parameters KS,O2,PB , K I ,O2,PB , KS,E , K I ,E and MS are thus far
unreported or only limited-studied, yet have a strong impact on the model.
Therefore, the calibration of these five parameters and comparison of the simulated
output with experimental data of a raceway reactor were presented in the following.

2.3.2. CALIBRATION AND VALIDATION

According to the sensitivity analysis, five impactful PPB-related parameters were
identified that have not been described in literature and not yet calibrated
for a raceway reactor, namely the oxygen half-saturation constant for aerobic
chemoheterotrophic growth of PPB (KS,O2,PB ), oxygen inhibitory constant for
phototrophic growth of PPB (K I ,O2,PB ), light half-saturation constant of PPB (KS,E ),
light inhibitory constant for chemotrophic growth of PPB (K I ,E ) and the parallel
metabolic growth factor (MS ) that is newly introduced to the model. K I ,O2,PB ,
K I ,E , and MS have not been reported in literature, yet are crucial for the proper
functioning of the model based on their impact on the PPB abundance and COD
removal.

Model calibration combined with data of the three controlled experiments
explained in “overview of experiments" section, resulted in a value for KS,O2,PB ,
K I ,O2,PB , KS,E , K I ,E and MS of 0.05 mgO2L−1, 5 mgO2L−1, 4 Wm−2, 135 Wm−2, and
028, respectively. Overall, the simulated and experimental outputs are in good
agreement and show a similar trend over the three operational strategies, based
on the summarized results in Table 2.6. In terms of relative error, the model has
predicted the third scenario of the experiments, i.e. the half-day light and half-day
dark condition along with constantly stirring, more accurately than the other two.
In terms of COD output accuracy, relative errors of COD removal rate, biomass
productivity, and PPB abundance are in an acceptable range.

Two oxygen-PPB-related parameters were calibrated, namely the oxygen half-
saturation constant for aerobic chemoheterotrophic growth of PPB (KS,O2,PB ) and
oxygen inhibitory constant for phototrophic growth of PPB (K I ,O2,PB ). The oxygen
half-saturation constant was calibrated to 0.05 mgO2L−1, which is aligned with the
oxygen half-saturation constant for AEB in the activated sludge model (Henze et al.
2015). The second oxygen-PPB-related parameter, i.e. K I ,O2,PB , is responsible for the
direct oxygen suppression of the photoheterotrophic growth. A value of 5 mgO2L−1

is assigned to the parameter after calibration. Calibrating the oxygen inhibitory
constant through a dedicated experimental setup at different oxygen concentrations
is challenging. PPB are able to grow both photo- and chemoheterotrophically.
Increasing the dissolved oxygen concentration even results in an enhancement of
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the growth rate due to additional chemoheterotrophic conversion, e.g. 10 % increase
in maximal specific growth rate subject to increase in oxygen transfer from 72 to
336 mgO2L−1 (Alloul et al. 2021a). It should be highlighted that next to dissolved
oxygen concentration, the oxygen transfer rate is also a key factor steering the
microbial community in a raceway reactor. Together with the oxygen uptake rate, it
influences the actual dissolved Oxygen concentration in the system.

Two light-related parameters, i.e. KS,E and K I ,E were also calibrated. The
calibrated value of K I ,E is 4 Wm−2, in the range (i.e. 4.58±7.40 Wm−2) reported by
Capson-Tojo et al. (2022). In comparison with other work and their experiments
such as Capson-Tojo et al. (2022) and Katsuda et al. (2000), it can be concluded
that different wavelengths and inoculum result in other type of pigment responsible
for light capturing, which might also affect the effective the light half-saturation
constant. The second calibrated light-related parameter of the model inhibits the
(an)aerobic chemoheterotrophic growth of PPB. Along with K I ,O2,PB , it enables the
PPB community to allocate their metabolic growth pathway between photo- and
chemoheterotrophy.

The parallel metabolic growth factor (MS ) as the final parameter considered for
calibration, allows PPB to account different metabolisms in parallel. The final
calibrated value was assigned to 028. This suggests that the PPB growth in a raceway
reactor is probably not governed by independent subpopulations, however individual
PPB cells may switch between metabolism. The experiments done by Alloul et al.
(2021b) showed that the PPB species Rhodobacter capsulatus, Rb. sphaeroides,
Rhodopseudomonas palustris and Rhodospirillum rubrum are able to switch from
photoheterotrophy to aerobic chemoheterotrophy and from photoheterotrophy to
photoautotrophy, which supports the idea of integrating the metabolic constant to
the PBM.

2.3.3. PERTURBED SCENARIO ASSESSMENT

The effect of process and environmental perturbations, which are likely-to-occur
in pilot- and full-scale raceway systems, was assessed with respect to the stability
of the PPB community. Four different perturbation scenarios, as described, were
simulated and the results were depicted in Figure 2.1. The fluctuations observed in
the curves represent daily variations in PPB abundance. PPB are produced through
both photoheterotrophic and aerobic and anaerobic chemoheterotrophic processes.
In the context of an open reactor, the contribution of anaerobic chemoheterotrophic
growth to PPB abundance is minimal. Instead, the primary metabolic pathway
for PPB growth is through photoheterotrophy. This growth steadily increases when
exposed to solar radiation and decreases in the absence of light, that causes daily
fluctuation in PPB abundance.

The wastewater composition can change throughout the day. The effect of
influent VFA variability (500−3000 mgCODL−1) was, therefore, assessed on the model
performance. This scenario is depicted in Figure 1 (A) showing that the PPB
abundance is immediately affected when the incoming VFA concentration drops from
3000 to 500 mgCODL−1. When organic carbon is limited in the reactor, dissolved
oxygen can freely increase up to 3 mgO2L−1. This oxygen increase eventually
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inhibits the phototrophic growth of PPB. Lowering the HRT and, thus, increasing
the volumetric loading rate can be a contingency measure, yet the raceway reactor
is typically designed for a certain range in flow rate. Increasing the SRT is a better
solution as it increases the retention of PPB in the system, thereby, lowering the
impact of oxygen inhibition. The increase in oxygen still occurs, yet PPB is less
heavily affected. A faster contingency strategy would be decreasing paddle wheel
rotation or even stopping it completely. An oxygen sensor with paddle wheel speed
control can help to steer the oxygen transfer to the system to cope with changes in
loading rates during operation.

The second perturbation considered the effect of soluble organic matters (non-VFA
matters) in the incoming wastewater (0−3000 mgCODL−1) as depicted in Figure 1
(B). For PPB systems, several articles recommended to preferment the wastewater,
thereby, separating acidogenic fermentation and PPB biomass production (Alloul
et al. 2021a, 2018; Cerruti et al. 2023). This would result in lower competition
with acidogenic fermentative microorganisms and provides more accessible organic
carbon in the form of VFA for PPB to grow. PPB are also able to ferment, yet their
maximal specific anaerobic chemoheterotrophic growth rate is lower compared to
non-PPB, i.e. 03 vs 0.6 d−1 (Alloul et al. 2021a). For instance, PPB cannot compete
with acidogenic fermenters on sucrose-rich synthetic wastewater (Cerruti et al.
2023). The perturbations reconfirmed these experimental observations as shown in
Figure 1(B), in which a drop in relative PPB abundance from 30 % to 11 % when the
wastewater composition changes from 100 % VFA to 100 % non-VFA.

The third perturbation simulated variations in influent suspended solids. These
organics can cause higher turbidity of the water and, thereby, lower the light
availability for phototrophs and less PPB abundance as depicted in Figure 1 (C).
Suspended solids concentrations as low as 250 mgCODL−1 drops the PPB abundance
from 26 % to 18 %. Suspended solids concentrations of 1000 mgCODL−1 resulted in a
complete collapse of the PPB community. In this case, stopping the feed and operate
the reactor in semi-continuous mode until full recovery achieved again would be a
solution. The results also showed that a good solid/liquid separation is crucial to
prevent suspended material from entering the raceway reactor.

Light intensity was the last studied perturbation. The results again showed
a serious disruption on the PPB community, as depicted in Figure 1 (D). As
expected, variations of light intensity had an important impact on the stability of the
phototrophic community; when the light intensity decreases from 108 to 14 Wm−2

for 10 days, the final PPB abundance decreases from 27 % to 7 %.

The effect of SRT and HRT on the PPB abundance and the treatment performance
is also crucial, particularly SRT that can cope with sudden perturbations that may
destabilize the reactor performance as a contingency measure. The extension of the
SRT would minimize the effect of TSS in influent to increase the PPB abundance,
while increasing the COD removal efficiency. For an incoming concentration of
3000 mgCODL−1, an SRT between 3−4 d can be chosen to minimally reach a COD
removal efficiency of 60 %, considering HRT between 3−4 d. Higher COD removal
efficiencies up to 100 % are achievable for SRT and HRT, with less HRT compared to
SRT. The related figure to the effect of SRT and HRT on the PPB abundance and the
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Figure 2.1: Effects of the perturbation scenarios on relative PPB abundance based
on variations on (A) influent VFA (250, 500, and 3000 mg COD L−1), (B)
influent soluble organic (non-VFA) (0, 100, and 3000 mg COD L−1), (C)
influent suspended solid (0, 250, and 1000 mg COD L−1), and (D) light
(14, 54, and 108 Wm−2). The perturbation was applied on day 25.

treatment performance can be seen in Figure 2.2.

2.3.4. MODEL IMPLICATIONS AND FURTHER DEVELOPMENT

To reduce the multiscale complexity of the PBM, simplifications on metabolisms that
PPB can adopt in nature were made. For instance, photolithoautotrophic growth by
PPB on carbon dioxide as a carbon source and dihydrogen or iron II as electron
donors, and N2−fixation by PPB were not included. These latter metabolisms are
less likely to occur in the raceway reactor. However, depending on local conditions
to be studied, the PBM structure can be adapted. Species or strain specific metabolic
traits of PPB such as denitrification, and autotrophic uptake of hydrogen were also
not adopted in the model for the sake of simplicity and the type of raceway reactor.

For further modeling improvement, other PPB metabolisms and microbial
community can be included, considering losing simplicity for simulation application
to increasing accuracy for detailed biological analysis. The integration of temperature
dependency and dynamic pH of the biological and other physical processes can also
be added depending on an operational condition under consideration, since the
temperature and pH were considered to be fixed in the PBM.

This model is primarily focused on offering a mechanistic framework within the
realm of modeling to elucidate a specific observation derived from previously reported
experimental studies. Since PBM is a new mechanistic model for PPB community in
terms of metabolic-mechanistic understanding, the transfer of biotechnology from a
proof-of-concept to practical application requires a proof-of-feasibility. Calibrating
and verifying the model under various conditions and configurations would enable
expanding its applicability and accuracy by designing some dedicated experiments
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Figure 2.2: Effects of various HRT and SRT on PPB abundance and COD removal
efficiency.

for different metabolisms. Additionally, kinetic parameters can also be experimentally
estimated using different substrates and light ranges, considering a dominant
metabolic growth pathway alongside different simultaneous potential growth ways,
in which more experiments should be carried out to evaluate these options as a
future research.

2.4. CONCLUSIONS
In this chapter, a new mechanistic model to describe the mechanisms of microbial
selection, competition and conversions in an open raceway reactor was proposed.
The model integrates three different metabolisms of PPB, and competing aerobic
and anaerobic organisms. Integration of parallel metabolic growth was modeled. The
model was shown to be able to accurately predict changes in the PPB abundance and
COD removal rates with the relative errors 19.5 % and 12 %, respectively. The outputs
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of the simulated perturbation scenarios were shown to capture both theoretical
understanding and experimental observations.
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3
SURVEY ON HYBRID SYSTEM

IDENTIFICATION

Dynamical systems and processes that either exhibit non-smooth behaviours (e.g.
through logic control or natural phenomena) or work in different modes of operation
are usually represented using hybrid systems models, i.e. mathematical models that
combine continuous dynamics with discrete-event dynamics. Identification of a hybrid
system includes finding switching patterns and identification of model parameters
to obtain a data-driven model. This survey provides a systematic review of models
(how to parameterize the system) and methods (how to identify unknown parameters)
proposed for hybrid system identification with an exposition of recent advances and
developments, and further research directions.

This chapter is an adapted version of models and methods for hybrid system identification: a
systematic survey, Ali Moradvandi, et al. (2023), IFAC-PapersOnLine.
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3.1. INTRODUCTION

Intertwined continuous and discrete behaviors can be represented as hybrid
dynamical, which can either model systems with non-smooth behaviors or
approximate systems with nonlinearities. The discrete behavior can be represented
as a switching pattern (mode) using a finite number of values as countable state
variables that orchestrates over corresponding continuous subsystems (submodels).
Hybrid system identification is a twofold problem: 1) estimating the parameters
of submodels and 2) determining the switching patterns. While estimation of
parameters of the model is the objective in classical system identification, hybrid
system identification also requires the estimation of switching patterns. In other
words, the hybrid system identification problem, where the switching mechanisms
are known, reduces to the conventional system identification.

The first step is the determination of the modeling structure, i.e. model
parameterization. The structure of submodels and switching mechanisms can be
parameterized based on: 1) identifying what model structure is well-fitted to capture
the dynamical behavior of the system, and 2) whether the main purpose of system
identification is prediction or model-based control. These decisions delineate the
arena of hybrid system identification and once a parameterization has been chosen,
a methodology can be chosen to solve the identification problem.

Parameterized submodels can be classified into three main groups: input-output
(Piga et al. 2020b), state space (Du et al. 2021b), and probabilistic models (Breschi
et al. 2019). The input-output model complexity ranges from Auto-Regressive
exogenous (ARX) models (Du et al. 2018) to the more complex Box-Jenkins (BJ)
models (Piga et al. 2020b) and nonlinear models (Bianchi et al. 2020b). Complexity
in the structure of a parameterized model to include dynamical noises and
disturbances, and delay is a trend in recent years. State-space models, which are
a more control-oriented model structure, have been widely discussed for linear
(Sefidmazgi et al. 2016), affine (Du et al. 2021b) or nonlinear (Du et al. 2021a)
representations. Furthermore, hybrid model representations in a probabilistic setting
have recently drawn attention, since they can describe parametric uncertainties and
external disturbances, and the number of parameters can be adapted as more data
is collected (Piga et al. 2020a).

Similarly, the switching mechanism can be represented differently, depending on
the system dynamics, switching behaviors, and purpose of modeling. Switching
logics can be generally classified in three groups: polyhedral partitions (linearly or
affinely partitioned) (Breschi et al. 2016b), random switching (Liu et al. 2021), and
event-driven (deterministic (Basiri et al. 2018)). For hybrid system identification, the
switching logic is mostly modelled either randomly (state-independent) or piecewise
affinely (state-dependent). In the first part of this survey, a systematic discussion
on parameterization of hybrid systems will be made, and various classes of hybrid
systems for identification will be reviewed.

As a second aspect, besides system description, new recently-developed
identification methods are reviewed and categorized into four groups. Taking
into account the groups discussed in the previous survey by Garulli et al. (2012),
most identification approaches fit in the so-called optimization-based framework.
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Clustering-based (Du et al. 2020) and probabilistic (Chen et al. 2020a,b) methods are
the other identification methods that are widely discussed in recent publications.
The other methods that cannot be covered by the aforementioned classes are
algebraic, bounded-error-based, continuous-time, and neural network approaches.
An innovative trend is either combination or generalization of the approaches (Liu
et al. 2022; Piga et al. 2020b; Tang and Dong 2020) for either dealing with new forms
of parameterization or improving efficiency of computational burden and accuracy of
the methods. The theory and mathematics of various well-established hybrid system
identification methods have been discussed by Lauer and Bloch (2018), which was
an inspiration for systematically modifying and expanding the categorization in this
survey in comparison with Garulli et al. (2012) and Lauer and Bloch (2018). Moreover,
discussing the probabilistic parametrization and the associated likelihood-based
methods are two additions to the aforementioned reviews. Furthermore, the detailed
specification of switching patterns, specifically piecewise affine is reviewed in both
the sections on parameterization and solution method of this survey.

The chapter is organized as follows. Models of hybrid systems are presented in
Section 3.2. We discuss input-output models (Section 3.2.1), state-space models
(Section 3.2.2, switching mechanisms (Section 3.2.3), and probabilistic models
(Section 3.2.4), and a comparison in Section 3.2.5. A review of methods is given
in Section 3.3. This section consists of optimization-based methods (Section 3.3.1,
clustering-based methods (Section 3.3.2), likelihood-based methods (Section 3.3.3),
other methods (Section 3.3.4), and a comparison of important papers (Section 3.3.5).
In the last section, conclusions are drawn to show current and future research
directions.

3.2. MODELS OF HYBRID SYSTEMS: PARAMETERIZATION

3.2.1. INPUT-OUTPUT MODELS

A quite wide spectrum of hybrid systems can be represented in input-output (I/O)
form as

yk = fqk (xk )+εk , (3.1)

where xk ∈ Rnx is the regressor or input, yk ∈ Rny is the output, and εk ∈ Rny is a
noise vector, in which k denotes the index (e.g. time step) of the sequence, and
qk ∈ {1, ..., N } is the switching signal that determines which vector field, fqk , is active
at time step k. The vector field fqk can be either linear or nonlinear. In case of linear
functionality of hybrid systems, the vector field can be represented by fi (xk ) = xT

k θi ,
in which qk = i (i -th mode).

The Switched Auto-Regressive eXogenous (SARX) model is the simplest and
widely-used parameterization of hybrid systems for the identification problem. SARX
models are a combination of several different ARX models defined as submodels.
Discrete-time Single-Input Single-Output (SISO) SARX dynamical system can be
expressed as

yk = xT
k θqk +εk , (3.2)

where xk = [yk−1, ..., yk−na ,uk−1, ...,uk−nb
]T ∈Rna+nb is the regressor, in which na and
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nb are the orders of the system, and yk and uk are the output and input at time
step k, respectively. qk ∈S = {1, ..., N } denotes the active mode at time step k and
θi = [ai 1, ..., ai na ,bi 1, ...,bi nb ,ci ]T ∈ Rna+nb+1 represents the parameter vector for the
i -th mode, in which i ∈S .

Jump Box-Jenkins (JBJ) models have a more general and flexible structure for
representing hybrid systems in comparison with the mentioned auto-regressive (AR)
models, since they include both the moving average and auto-regressive terms to
model dynamics of disturbances and noises. For this class of systems, the output
is noise-corrupted, while the noise term is a dynamical noise. The noise-corrupted
output, yk , can be written with respect to the noise-free output, ŷk , and the noise
term, vk as follows:

yk = ŷk +εk , (3.3)

where the noise-free output, ŷk , is modelled based on the input uk as follows:

ŷk =G(q−1,θi )uk , (3.4)

and noise term, vk , is written as follows:

εk = H(q−1,θi )vk , (3.5)

where G(q−1,θi ) and H(q−1,θi ) are the linear filters in which θi denotes the i -th
mode at time step k. These linear filters are rational functions of the time shift
operator q−1 (i.e. q−d xk = xk−d for d ∈Z) as written below

G(q−1,θi ) = B(q−1,θi )

A(q−1,θi )
= bi 1q−1 + ...+bi nb q−nb

1+ai 1q−1 + ...+ai na q−na
, (3.6a)

H(q−1,θi ) = C (q−1,θi )

D(q−1,θi )
= 1+ ci 1q−1 + ...+ ci nc q−nc

1+di 1q−1 + ...+di nd q−nd
, (3.6b)

where na , nb , nc , and nd are the orders of the system. The parameters vector that
should be identified for the i -th submodel in a compact form is as follows:

θi = [ai 1, ..., ai na ,bi 1, ...,bi nb ,ci 1, ...,ci nc ,di 1, ...,di nd ]T . (3.7)

Substituting (3.6a) and (3.6b) into (3.4) and (3.5) results in

ŷk = (1− A(q−1,θi ))ŷk +B(q−1,θi )uk = xT
k1θi 1, (3.8a)

εk = (1−C (q−1,θi ))εk +D(q−1,θi )vk = xT
k2θi 2 + vk , (3.8b)

where xk1 and xk2 are the regressor vector defined as follows:

xk1 = [−ŷk−1, ...,−ŷk−na ,uk−1, ...,uk−nb
]T ∈Rna+nb , (3.9a)

xk2 = [−εk−1, ...,−εk−nc , vk−1, ..., vk−nd
]T ∈Rnc+nd , (3.9b)

xk = [xT
k1, xT

k2]T ∈Rna+nb+nc+nd , (3.9c)
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and the parameters vector can be expressed as

θi 1 = [ai 1, ..., ai na ,bi 1, ...,bi nb ]T ∈Rna+nb , (3.10a)

θi 2 = [ci 1, ...,ci nc ,di 1, ...,di nd ]T ∈Rnc+nd , (3.10b)

θi = [θT
i 1,θT

i 2]T ∈Rna+nb+nc+nd , (3.10c)

Therefore, according to (3.3), the model can be parameterized for the identification
problem considering (3.2) as follows:

yk = xT
k1θi 1 +xT

k2θi 2 + vk

= xT
k θi + vk .

(3.11)

According to the definitions of G(q−1,θi ), H(q−1,θi ), A(q−1,θi ), B(q−1,θi ),
C (q−1,θi ), and D(q−1,θi ) in (3.6a) and (3.6b), other classes of hybrid systems can
also be defined. The switched Finite Impulse Response (SFIR) model is the simpler
than SARX. The switched Auto-Regressive Moving-Average with eXogenous input
(SARMAX) model is a well-structured model representing hybrid systems subject to
disturbances. The switched Output-Error (SOE) model is a suitable hybrid model
structure for systems subject to output measurement noise. The Error-in-Variable
SARX (EIV-SARX) model is a class of hybrid systems, where input measurements are
also corrupted with noise. Moreover, time-delayed models have drawn attention,
since several real-world applications are subject to delays. The parameterization of
the these submodels are presented in Table 3.1.

Table 3.1: Switching input-output linear models.

Name G(q−1,θi ) H(q−1,θi ) Reference
SFIR B(q−1,θi ) 1 Liu et al. (2021)

SOE B(q−1,θi )
A(q−1,θi )

1 Goudjil et al. (2017b)

SARX B(q−1,θi )
A(q−1,θi )

1
A(q−1,θi )

Du et al. (2018)

Delay-SARX B(q−1−τi ,θi )
A(q−1,θi )

1
A(q−1,θi )

Chen et al. (2017)

EIV-SARX B(q−1,θi )
A(q−1,θi )

1
A(q−1,θi )

Ozbay et al. (2019)

SARMAX B(q−1,θi )
A(q−1,θi )

C (q−1,θi )
A(q−1,θi )

Hojjatinia et al. (2020)

SBJ B(q−1,θi )
A(q−1,θi )

C (q−1,θi )
D(q−1,θi )

Piga et al. (2020b)

Besides the switching linear I/O systems, identification of switched nonlinear I/O
systems has also been addressed in the literature. The switched nonlinear ARX
(SNARX) model is a type of switched I/O nonlinear system that is represented by a
finite set of nonlinear maps of ARX model. Considering (3.1), the nonlinear map, i.e.
fqk , can be expressed as either polynomial expansion of all monomials of xk up to a
given order or any other (nonlinear) basis function as follows:

fqk (xk ) =
n∑

j=1
ϑi jϕ j (xk ), (3.12)
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where ϕ j (xk ), j = 1, . . . ,n, is a nonlinear regressor, and ϑi ∈Rn is the parameter vector
of the i -th submodel. The vector field, fqk , can also be expressed by a Takagi-Sugeno
(TS) model or a Neural Network (NN). TS models and NNs, however, are not
nonlinear in principle and the nonlinearities come from membership and activation
functions in TS models and NNs, respectively. Considering weighted Gaussian
membership function and element-wise sigmoid with hyperbolic tangent activation
functions, TS-SARX and NN-SARX are nonlinear models. The block-oriented model is
represented by Wiener and Hammerstein structure, that consists of a Hammerstein
block and a Wiener block in series with a linear block in between. The switched
nonlinear system in this form is formulated based on SARX as a middle linear block.
These input-output nonlinear switching models are summarized in Table 3.2.

Table 3.2: Switching input-output nonlinear models.

Name Basis Nonlinearity Reference
SNARX SARX basis function Bianchi et al. (2020b)
TS-SARX SARX membership function Wagner and Kroll (2014)
NN-SARX SARX activation function Brusaferri et al. (2020)

WH-SARX SARX Wiener, Hammerstein
Wang et al. (2019)
Zhang et al. (2016)

3.2.2. STATE-SPACE MODELS

Switched State-Space (SS) models provide a more meaningful representation for
physical applications in comparison with switched I/O models. Moreover, most
control approaches and dynamical analysis rely on SS models as simple and compact
form for theoretical developments. A general form of hybrid model in SS structure is
described by {

xk+1 = Fqk (xk ,uk )+wk

yk =Gqk (xk ,uk )+ vk
(3.13)

where xk ∈ Rn , uk ∈ Rp , and yk ∈ Rl are the continuous state, input and output of
the system, respectively, wk ∈ Rn and vk ∈ Rl are noise terms, qk ∈ {1, ..., N } is the
switching signal that determines which vector fields, Fqk and Gqk , are active at time
step k. The vector fields, Fq :Rn+p →Rn and Gq :Rn+p →Rl can be either linear (and
affine) or nonlinear.

Linearization of nonlinear form of (3.13) around operating points yields affine
models. “Affine" systems can be represented in “linear" forms (i.e. without affine
or bias constant), if the equilibrium points are known. The more accurate the
approximation of a complex system, the higher the number of submodels required,
which hinders the identification problem due to the increasing number of modes.
Switched nonlinear systems in SS form can also be rewritten as a linear combination
of the basis functions. SS forms represent a more informative model for a system in
comparison with input-output models. Table 3.3 provides an overview of state-space
models.
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Table 3.3: Switching state-space models.

Name type of Fi type of Gi Reference
Switched affine input-to-state affine - Du et al. (2021b)
Switched linear state-space linear linear Sefidmazgi et al. (2016)
Switched affine state-space affine linear Rui et al. (2016)
Switched nonlinear input-to-state basis function - Du et al. (2021a)

3.2.3. SWITCHING MECHANISMS

It is also worth to discuss switching mechanisms to review one of the important
model group, i.e. piecewise affine models. Switching behavior is determined
by the switching mechanism. The switching signal is defined as discrete state,
i.e. qk ∈ S = {1, ..., N } that determines which submodel is active at time step
k. There are a variety of switching mechanisms: exogenous, deterministic,
state-driven, event-driven, time-driven, and completely random. In terms of hybrid
system identification, according to what has been discussed in the literature, the
switching mechanism can be considered as either continuous-state-dependent or
-independent. The behaviour of an application (i.e. the source of switching)
determines the mechanism of the switching signal.

The PieceWise Affine (PWA) model is a class of hybrid systems where in the discrete
state depends on the continuous state. The simple and flexible structure as well as
the universal properties of PWA model for approximation of any nonlinear functions
with any accuracy has drawn researchers’ attention to develop identification methods
based on this model. In principle, the switching space in PWA model is partitioned
into some regions based on the continuous states. According to (3.2), the mode of
qk for the i -th active mode is written based on the regressor vector, xk , belonging to
i -th set, χχχi , of a polyhedral partition {χχχi }i∈S of the regressor space χχχ as

qk = i ⇐⇒ xk ∈χχχi . (3.14)

In other words, a PWA function, f :χχχ→ Rnb , approximates a nonlinear function
with sufficient number of modes defined by a set of polyhedra, χχχi . The
partition region χχχi , can be defined based on linear classifiers as follows, which is
commonly-used formulation for the partition domain. The bounded polyhedron χχχi ,
can be represented by a hyperplane matrix H i ∈ Rnpi ×(nx+1), in which npi is the
number of hyperplanes of the corresponding partition:

χχχi = {x ∈Rnx : H i

[
x
1

]
≤ 0} (3.15)

A few types of model have been used for hybrid systems with polyhedral partition
as switching mechanism, which is given in Table 3.4. Voronoi-type partition
(seeds generators), scheduling-variable space (Linear Parameter Varying (LPV)),
time-partitioned region, , and input-to-state form of partition are the models of the
switching mechanism. Therefore, different classes of hybrid systems such as PWFIR,
PWARX (Breschi and Mejari 2020)), PWAOE (Mejari et al. 2020b)), PWA LPV-ARX
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(Mejari et al. 2018)), PWNL (Mazzoleni et al. 2021)), and state-space PWA (Rui et al.
2016)) models can be derived according to the switching pattern parameterization.

Besides the deterministic representation of PWA partitions, the random probability
distribution can be represented over the discrete state model as a switching
signal using the Dirichlet process. Moreover, for the state-independent domain,
Markov switching is the other class of switching mechanism widely used. The
orderly-switching pattern, in the form of a Markovian jump model, determines the
switching between the submodels independent of the past (except the immediate
one) information. The modes of a hybrid system can also be expressed as an
event-based model, then the model is so-called event-driven. In this way, hybrid
systems can mathematically model the physical “environment”. The summary of
mode-switching models is given in Table 3.4.

Table 3.4: Mode-switching models.
Switching mechanism Model Reference

Polyhedral
partition

Linear classifier Regressor-vector dependent Breschi et al. (2016b)
Center generator Voroini-type Bako and Yahya (2019)
Scheduling-variable space Soft function Mejari et al. (2020c)
Batch time-based Time-partitioned Xu et al. (2018)
State-space State-input-vector dependent Du et al. (2021b)
Dirichlet Probabilistic Wågberg et al. (2015)

Random
Arbitrary Non-modelled Liu et al. (2021)
Markov Probabilistic Chen et al. (2020a)

Event-driven Inferred mathematical Basiri et al. (2018)

3.2.4. PROBABILISTIC MODELS

Probabilistic models (also so-called non-parametric model) are models that take a
probability distribution into account to describe the process. This kind of the model
representation, that can be expressed in various settings, is suited for the systems
with available priori physical knowledge. Generally, the distribution of the output in
the discrete-time form can be expressed as follows:

yk | (xk ,θIk ,σ2
Ik

, v Ik : Ik = i ) ∼D(θT
i xk ,σ2

i , vi ) (3.16)

where vi and σ2
i denote degree of freedom and the variance of the distribution,

respectively. Moreover, Ik is the Markov chain and D can be any form of distribution
like Gaussian distribution and t-distribution to represent the distribution of the
parameters (θIk ) based on given regressor vector (xk ). Other parameterization are
derived to include some features such as delays and missing data. Various classes of
hybrid systems that can be parameterized in this way range from SFIR and SARX to
PWARX.

Moreover, the stable spline kernel is a way of stochastic modeling of hybrid
systems via a Bayesian network. The stable spline kernel modeling can be used for
PWFIR and PWARX models. The distribution of the model in the form of linear
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stable spline kernel can be expressed as follows:

yk | ({θi }M
i=1,λ,α,σ2, {ωk }N

k=1) ∼N (Φkθk ,
1

σ−2 I ) (3.17)

where λ and α are the scalar factor and the stability parameter, respectively as the
stable spline hyperparameters, ωk denotes other hyperparameters associated with
the classification, Φk is the matrix with rows selected by the input regressor vector
with respect to the type of the input regressor chosen based on the type of the
model, and σ−2 and I are the noise precision and the identity matrix with the
appropriate dimension, respectively.

Furthermore, the submodels also can be formulated in the stochastic setting with
the deterministic derivations. In this way, the a priori prediction error, ϵk|k−1 and
the a posteriori prediction error, ϵk|k can be expressed as

ϵk|k−1 = Yk − Ŷk|k−1 (3.18a)

ϵk|k = Yk − Ŷk|k (3.18b)

where Yk ∈RN×1 is the collection of outputs for all submodels at time step k, Ŷk|k−1

and Ŷk|k are the a priori and the a posteriori estimations, respectively. The partitions
can also be represented deterministically. The representations of different model
structure in the literature based on the above discussion have been summarized in
Table 3.5.

Table 3.5: Representation of hybrid systems in probabilistic settings.

Model structure Representation feature Reference(s)
SFIR Missing measurement included Liu et al. (2021)

SARX

Hammerstein nonlinearity included Ma et al. (2019)
Delay included Chen et al. (2020b)
Based on t-distribution Fan et al. (2017)
Missing measurement included Chen et al. (2020a)
Error-based posteriori prediction Goudjil et al. (2016)

SOE Error-based posteriori prediction Goudjil et al. (2017a)
PWFIR Based on kernel hyperparameters Pillonetto (2016)

PWARX
Hierarchical Bayesian Wågberg et al. (2015)
Based on kernel hyperparameters Scampicchio and Pillonetto (2018)
Error-based posteriori prediction Yahya et al. (2020)

PWA Bayesian inference Piga et al. (2020a)
SBJ Posterior distribution Breschi et al. (2019)

3.2.5. APPLICATIONS OF MODELS

The advantage of the more complex models in terms of structure complexity like SBJ
and EIV-SARX models is the accuracy in prediction due to consideration of either
dynamical disturbances and noises or errors in the parameters.

Moreover, an advantage of switching patterns represented by polyhedron is
regressor-dependent switching that can project physical behaviors of the process
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such as different metabolic stages (Wang et al. 2020)), different operating modes
(Song et al. 2020)), and different phases of a batch process (Xu et al. 2018)). Various
forms of polyhedral partition may not have a specific advantage unless a specific
problem for classification is defined, e.g. Bako and Yahya (2019) in which the centers
of the partition map are intuitively interpreted as operating points. Arbitrary patterns
can also be used for a system that has no information on switching instants (Zhang
et al. 2018)).

In addition, for control-orientated purposes, state-space representation of the
submodels and the partition region (Du et al. 2021b)) has the advantage over others
because of its structure for observer and controller design.

For applications with no prior knowledge on their structures, non-parametric
models have an advantage because of probability distribution over parameters and
noises to probabilistic model uncertainties (Fan et al. 2017)). The range of complexity
in probabilistic structures is the same as input-output models (Breschi et al. 2019;
Liu et al. 2021)). Different advantages of model representation in probabilistic
settings are based on including system restrictions in practice, such as missing
measurement (Chen et al. 2020a)) and time delay (Chen et al. 2020b)). Probabilistic
models in stable spline kernel also have advantage as they mitigate the difficulty
of the model order selection based on defining hyperparameters (Scampicchio and
Pillonetto 2018)).

In case of existing time-varying relation between input and output measurements,
scheduling variable can be introduced to extend linear time-invariant models to
linear time-varying models (Mejari et al. 2020c)).

Nonlinear models have the ability of representing a nonlinear system with
fewer number of parameters in a wider range. Polynomial nonlinear models are
discussed by Bianchi et al. (2021) and non-parametric piecewise nonlinear models
are addressed by Mazzoleni et al. (2021). These kinds of hybrid systems are a new
trend in the field of system identification.

3.3. METHODS OF HYBRID SYSTEM IDENTIFICATION
The method used to solve the identification problem depends on the parameterization
used to model the hybrid system. Subsystem identification and switching rule
detection can be performed either separately, or jointly. Identification of hybrid
systems, therefore, needs classification of dataset into some clusters, and estimation
of the parameters of submodels for each cluster. The systematic classification of the
methods has been reviewed below.

3.3.1. OPTIMIZATION-BASED METHODS

The generic identification problem can be formulated in an optimization framework
as follows:

minimize
Xi ,k ,θi

∑
k

∑
i

Xi ,k (yk −xT
k θi )2, (3.19a)

s.t.
∑

i
Xi ,k = 1,∀k (3.19b)
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where yk is the actual system output, xk and θi are the regressor and parameter
vectors, respectively, which can be constructed based on the model parameterization
discussed in Section 3.2, and Xi ,k ∈ {0,1} denotes the submodel activation for all
time steps. The goal of the optimization problem is to minimize the error of the
identified output and actual output based on the available measurements i.e. the
measured outputs {yk }n

k=1, and the measured inputs, {uk }n
k=1, where n is the number

of measurement. It is, however, an NP-hard optimization problem, a reformulation
can be made for different classes of model parameterization to make the problem
computationally feasible.

Wang et al. (2019) have solved the optimization problem based on the least
squares criterion for switched Hammerstein ARX models with a long-horizon and a
different horizon iteration to detect the process rapid changes. Hu et al. (2015) have
proposed a reformulation of the cost function in order to identify the subsystem
parameters of a SARX model based on the least geometric mean squares algorithm,
which is followed by a neural network classifier to label the training data.

A sum-of-norm regularized convex optimization problem for SARX models has
been discussed by Hartmann et al. (2015), which is combined with Expectation-
Maximization (EM) approach to cluster preliminary estimates and formulate a
quadratic program to complete switching detection and parameter identification
procedure. The application of EM has been also used by Tang and Dong (2020)
as a first step of the two-step approach to solve a convex optimization problem
for simultaneous clustering and identification. The proposed approach has been
compared with a non-convex optimization algorithm proposed by Lauer (2013) and
a recently-developed general optimization-based approach addressed by Yuan et al.
(2019). Moreover, Xiujun et al. (2020) have developed a weighted multi-innovation
the least squares algorithm for Hammerstein SARX models, which is based on EM
approach for clustering.

An optimization problem has been formulated for a class of nonlinear switched
ARX (SNARX) models and solved in an iterative way by Bianchi et al. (2020b).
While the structure of the nonlinear model is characterized in a probability
setting, a randomized method is employed to address the formulated combinatorial
optimization. Since prior sample-mode assignment is required, Bianchi et al. (2021)
have addressed this problem based on a two-stage randomized approach in a general
framework with no a priori limit on the number of switching time instants by using
a cost function that alternates between parameter and mode identification. The
other heuristic approach for solving a typical heterogeneous optimization problem
efficiently is similar to the discussed two-stage iterative approaches for both SARX
and PWARX models proposed by Bianchi et al. (2020a).

Combining the prediction error method with a coordinate descent approach has
been taken into account to address the identification problem of SARMAX by
Breschi et al. (2018) in both batch and recursive ways. A close-to-optimal four-step
solution has been also proposed by Amaldi et al. (2016) for the mixed-integer linear
programming to fit a k-piecewise affine model with a piecewise linear separability
problem. Domain partitioning based on multi-category linear classification and
submodel fitting have been addressed simultaneously to guarantee solutions of the
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k-hyperplane clustering problem.
Paoletti et al. (2019) have formulated the identification problem of PWA models in

the framework of bi-level programming, in which data classification and partition
estimation are addressed in the upper level and subsystem parameters are identified
in the lower level based on a prediction error criterion. An optimization-based
method has been formulated by Breschi and Mejari (2020) for structure selection
and identification of PWARX models, using regularization-based shrinking strategies
within a coordinate-descent identification method to determine the parameters of
the submodels along with their structures.

If the partition of the PWA model is considered as a Voronoi type, the least
harmonic mean approach can be employed that has been discussed by Bako
and Yahya (2019). Moreover, identification of time-partitioned PWA-OE models
has been tackled by Xu et al. (2018) for batch processes in the framework of
optimization-based algorithms. Similarly, identification of PWA-OE models has been
also discussed by Mejari et al. (2020a), that a recursive bias-correction scheme to
correct the bias in the ordinary least square method has been presented. While
simultaneous clustering and parameter estimation are achieved within the first stage
by applying bias-corrected the least squares, partitioning the regressor space is
obtained via a convex optimization problem known as multi-category discrimination.

Recursive multiple least squares for simultaneous clustering and parameter
estimation has been proposed by Breschi et al. (2016b) for PWA models. A linear
multi-category discrimination algorithm has been considered via a Newton-like
approach and an averaged stochastic gradient descent for solving the unconstrained
optimization problem for batch and recursive ways. The proposed method has been
extended for LPV-ARX models with linear partitioning by Breschi et al. (2016a). The
convex optimization problem has been solved using a sparse estimation approach as
a likelihood-based methodology in stochastic framework by Mattsson et al. (2016).

Another two-stage optimization-based method has been discussed with an iterative
regularized moving-horizon approach by Naik et al. (2017) for PWARX models,
and Mejari et al. (2020c) for switched LPV-ARX models. Active modes and
the parameters of the submodels are optimally and recursively found by solving
small-size mixed-integer quadratic-programming problems and polyhedral partitions
are identified using linear multi-category discrimination.

A quite general jump model, which is PWA models with hidden Markov jumps,
has been formulated in an optimization-based framework by Bemporad et al. (2018)
and solved by alternating between minimizing a loss function of fitting submodel
parameters with a generalized k-means algorithm and minimizing a discrete objective
function for determining active modes.

3.3.2. CLUSTERING-BASED METHODS

Clustering aims to divide a dataset into different subsets based on how similar they
are to one another. This idea is very close to the hybrid system identification
problem. Papers of this section have contributions to clustering, even they are
combined with other methods.

A hierarchical clustering method based on the gap metric has been proposed by
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Table 3.6: Optimization-based approaches.
Method Switching mechanism Hybrid model Reference(s)
Different horizons least squares Arbitrary (slow switching) Hamm-SARX Wang et al. (2019)

Combinatorial optimization Arbitrary SNARX
Bianchi et al. (2020b)
Bianchi et al. (2021)

Constrained optimization Arbitrary SARX/PWARX Bianchi et al. (2020a)
Prediction error method Arbitrary/Markov SARMAX Breschi et al. (2018)
Discrete optimization Linear classifier PWA Amaldi et al. (2016)
Nested optimization Linear classifier PWA Paoletti et al. (2019)
Regularization-based optimization Linear classifier PWARX Breschi and Mejari (2020)
Least harmonic mean approach Center generator (Voronoi) PWA Bako and Yahya (2019)
Separable nonlinear least-squares Time-based PWA-OE Xu et al. (2018)
Bias-correction approach Linear classifier PWA-OE Mejari et al. (2020a)

Multiple least squares
Linear classifier PWA Breschi et al. (2016b)
Scheduling-variable space LPV-ARX Breschi et al. (2016a)

Sparse estimation approach Linear classifier PWARX Mattsson et al. (2016)

Regularized moving-horizon approach
Linear classifier PWARX Naik et al. (2017)
Scheduling-variable space LPV-ARX Mejari et al. (2020c)

Fitting algorithm
Regression models (PWA)

Bemporad et al. (2018)
Statistical models (Markov jump)

Sum-of-norm regularized optimization Arbitrary SARX Hartmann et al. (2015)
EM-based sparse method Linear classifier PWARX Tang and Dong (2020)
Weighted multi-innovation least squares Arbitrary Hamm-SARX Xiujun et al. (2020)

Wang et al. (2020). Similarly, simultaneous submodel and optimal operation region
partition estimation have been addressed based on output-error minimization in
order to improve accuracy by Song et al. (2020). In this approach, local models are
initially found with the least squares and clustering of local models and parameters
identification are done based on the initialization using the feature vectors and
weighted least squares, respectively.

Bounded-switching clustering has been discussed by Sefidmazgi et al. (2015) for
SARX systems and Sefidmazgi et al. (2016) for switched state-space systems to
convert the non-convex optimization problem into a binary integer programming
problem using an innovative clustering method. However, the problem still includes
optimization, by using bounded-switching technique, it has been easily formulated
and solved by least squares and subspace identification by Sefidmazgi et al. (2015)
and Sefidmazgi et al. (2016), respectively.

For PWA models, a semi-supervised clustering approach has been proposed by
Du et al. (2020) to obtain the number of submodels, the initial clustered dataset,
and the corresponding parameters of each submodels. The output of the clustering
stage is used for a modified self-training Support Vector Machine (SVM) algorithm
to identify the polyhedral partitions and the parameters of submodels. Moreover, a
self-adaptive clustering algorithm has been addressed by Sellami et al. (2016). The
sequential estimation procedure of the switching signal is based on an unsupervised
self-adaptive classification algorithm. The core of the proposed approach is clustering
based on three steps consisting of cluster creation, online cluster adaptation, and
cluster fusion. Hure and Vasak (2017) developed a clustering-based identification
algorithm for PWA models based on feature vectors and clustering them, in which
the k-mean++ algorithm is adapted for initialization. Feature vector transformation
is introduced to reduce and in some cases omit partitioning in some dimensions.

Li et al. (2016) have proposed a subspace clustering approach that removes
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the requirement on convex regions in the conventional k-mean clustering. A
block-diagonal matrix permutation algorithm is the proposed subspace algorithm
to reduce the computational complexity in handling arbitrarily shaped regions.
Another subspace clustering approach has been proposed by Li and Liu (2017),
who employ a spectral clustering algorithm with a relaxed-permutation structure.
The spectral clustering method has also been addressed by Zhang et al. (2018)
for EIV-SARX models. Based on the proposed method, data points are partitioned
into subsets and a manifold distance between the dynamics of each segment is
computed via a Riemannian distance-like function to assign segments to clusters,
and finally a common identification method is used to identify parameters of each
cluster. Another subspace clustering algorithm for identification of EIV-SARX models
has been presented by Ozbay et al. (2019), using sum-of-squares polynomial with
Christoffel’s functions to perform singular value decomposition independently of
the number of data points.A subspace clustering algorithm for state-space switched
systems has been proposed by Lopes et al. (2016). The hybrid Kalman filter as
an interacting multiple model algorithm is used for reclassification to assign the
original dataset to a specific mode and to refine model estimation at the end of the
procedure.

A prototype-shaped clustering-based algorithm has been proposed by Wagner and
Kroll (2014) for partitioning nonlinear Takagi-Sugeno systems. The identification
process includes fuzzy c-means and Gustafson-Kessel algorithms for clustering
and identification.Another application of fuzzy c-means clustering as an efficient
unsupervised partitioned technique has been discussed by Shah and Adhyaru (2014)
for PWARX models. The number of submodels is estimated by the proposed
fuzzy clustering approach and submodel parameters are identified by weighted least
squares approach based on a fuzzy distance weight matrix. Likewise, an incremental
c-regression approach has been addressed by Blazic and Skrjanc (2020) as an
online identification procedure. Furthermore, while PCA-guided k-Means clustering
approach is a conventional clustering approach in which clusters are derived in a
PCA-guided process, a fuzzy PCA-guided clustering technique has been proposed by
Khanmirza et al. (2016) as a modified robust clustering method.

Classification and clustering with evolutionary algorithms for estimating switching
patterns modeled by a Gaussian mixture before parameter identification with
weighted and extended least squares algorithms is one of the innovative methods
to address the identification problem of PWARX and PWARMAX models proposed
by Barbosa et al. (2019). Classical first-order algorithms such as mirror descent
algorithm or Nesterov’s optimal scheme can be employed to solve the reformulated
determination problem of the regions as a multi-class classification, which is
discussed by Jianwang and Ramirez-Mendoza (2020). In this work, parameter
estimation has been addressed via zonotope parameter identification.

A constrained clustering approach for time-partitioned PWARX model has been
developed by Liu et al. (2022). The clustering optimization problem has been
formulated by imposing the complete and non-overlapping partition constraints and
it has been efficiently solved by employing a greedy iterative approach.

For PWNL models, a semi-supervised clustering setting has been proposed by
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Mazzoleni et al. (2021), which is based on a data augmentation strategy to deal with
a situation when unsupervised data are not basically provided. This work is a pioneer
of piecewise nonlinear regression in the domain of hybrid system identification.

3.3.3. LIKELIHOOD-BASED METHODS

Likelihood-based methods are formulated based on the models represented in the
probabilistic form. Expectation-maximization is one of the well-and-widely-studied
algorithms, which not only can be used for clustering (as reviewed before), but also
for the maximum-likelihood estimation. The EM algorithm consists of two steps:
E-step and M-step. Considering the unknown parameter vector, Θ, defined based
on the model structure, and observed and unobserved dataset, Cobs and Cuno, the
E-step calculates the conditional expectation of the log-likelihood function (known
as Q-function) formulated as follows:

Q(Θ |Θold) = ECuno|(Cobs,Θold)
(
logP (Cuno,Cobs |Θold)

)
(3.20)

where Θold is the parameter set calculated in the previous iteration. Besides the
E-step, the M-step maximizes the Q-function with respect to parameter set written
as follows:

Θ= argmax
Θ

Q(Θ |Θold) (3.21)

Rui et al. (2016) have proposed a framework based on the EM algorithm to identify
the parameters of the model represented in PWA state-space form. A cumulative
distribution function is employed to compute the probability of each submodel
based on the measured samples at that time step, and then the latent discrete
state is estimated using a Kalman smoother for the computed submodel, and finally
parameters are identified based on the maximization of a surrogate function for the
likelihood. Fan et al. (2017) have addressed a robust identification problem of the
model parameterized by a hidden Markov ARX model using EM algorithm in which
student’s t-distribution is imposed to the noise model for more accurate estimation.
The extension from a batch to a recursive EM algorithm has been proposed by Chen
et al. (2020b) for delayed SARX models to identify the parameters of the submodels,
the Markov chain transition, and the time delays simultaneously.

Variational Bayesian (VB) method is another Bayesian optimization-based strategy
that is used to approximate high dimensional posterior distributions instead of
point-wise estimations of the parameters. The VB scheme is a more general approach
in comparison with the EM approach because of approximation of parameter
densities.

The identification problem of Markov-switching Hammerstein ARX models has
been addressed via the VB approach by Ma et al. (2019). Estimating the
unknown number of submodels and switching signals as well as approximating
the distributions of the unknown submodels parameters have been tackled for
SFIR models by Liu et al. (2021). Estimation of parameters distributions and
point-estimation of the transition probabilities of switched Markov ARX models and
construction of missing measurements have been discussed by Chen et al. (2020a)
under the VB framework. Similarly, a robust VB approach for SARX models with a
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Table 3.7: Clustering-based approaches.
Method Switching mechanism Hybrid model Reference(s)

Hierarchical clustering Scheduling-variable space PWARX
Song et al. (2020)
Wang et al. (2020)

Bounded-switching clustering Arbitrary
SARX Sefidmazgi et al. (2015)
Switched SS Sefidmazgi et al. (2016)

Semi-supervised clustering Linear classifier PWARX Du et al. (2020)
Unsupervised clustering Arbitrary SARX Sellami et al. (2016)
Enhanced k-means++ Center generator PWARX Hure and Vasak (2017)

Subspace clustring Arbitrary

bi-model PWL Li et al. (2016)
Switched affine Li and Liu (2017)

EIV-SARX
Zhang et al. (2018)
Ozbay et al. (2019)

Switched SS Lopes et al. (2016)

Fuzzy clustering
Linear classifier PWA Takagi-Sugeno Wagner and Kroll (2014)
Linear classifier PWARX Shah and Adhyaru (2014)

Fuzzy PCA-guided clustering Linear classifier PWARX Khanmirza et al. (2016)
Genetic-based clustering Linear classifier PWARX/PWARMAX Barbosa et al. (2019)
Multi-class classification Arbitrary PWARX Jianwang and Ramirez-Mendoza (2020)
Constrained K-means clustering Batch time-based PWARX Liu et al. (2022)
Greedy semi-supervised Linear classifier PWNL Mazzoleni et al. (2021)

combination of an adjusted-tail t-distribution to deal with contaminated data with
outliers has been proposed by Lu et al. (2016). Furthermore, the application of
a VB approach for Markov SARX models with slowly varying time delay has been
extended to identify the parameter distributions of submodels besides the transition
probability matrix and unknown delays by Chen and Liu (2019).

Kernel-based stable spline is another algorithm for non-parametric models in
Bayesian framework. The hybrid systems in the form of stable spline kernel can
be identified by optimizing marginal likelihood via a stochastic simulation scheme.
Pillonetto (2016) has proposed this approach for identification of hybrid systems.
The two-step kernel-based stable spline procedure consists of data classification
and distribution in the marginal likelihood optimization by exploiting the Bayesian
interpretation of regularization, and reconstruction of subsystems. While the
performance of the proposed method has been assessed through a Markov chain
Monet Carlo approach by Pillonetto (2016), the Gibbs sampling scheme has been
employed by Scampicchio and Pillonetto (2018). Scampicchio et al. (2018) have
also extended it for nonlinear hybrid systems, which is capable of automatic
discrimination among linear and nonlinear submodels.

In addition, non-parametric representation of hierarchical PWARX models in
the Bayesian framework with respect to Dirichlet clustering properties provides
probabilistic predictions with confidence intervals, which has been addressed
by Wågberg et al. (2015) within a Gibbs sampling process. Furthermore, two
Rao-Blackwillized sampling algorithms in batch and recursive manners for PWA
models represented in a Bayesian setting have been addressed by Piga et al. (2020a).
The parameters of regressor-space partition formulated based on marginal posterior
are approximated via Markov chain Monte Carlo sampling for offline learning and
particle filters for online learning in batch and recursive ways. The identification
problem of SBJ models has been tackled by Breschi et al. (2019) and Piga et al. (2020b)
using a maximum-a-posterior estimation approach. Embedding the prediction error
algorithm in the likelihood framework tailored by stochastic Markov chains within
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a coordinate ascent method enables the identification procedure to iteratively and
computationally effective (due to a suboptimal moving-horizon approach) alternate
between local parameter identification and mode sequence reconstruction.

Table 3.8: Likelihood-based approaches.
Method Switching mechanism Hybrid model Reference(s)

Expectation-Maximization
Linear classifier PWA-SS Rui et al. (2016)
Markov SARX Fan et al. (2017)
Markov Delay-SARX Chen et al. (2020b)

Variational Bayesian

Markov Hamm-SARX Ma et al. (2019)
Arbitrary SFIR Liu et al. (2021)
Markov SARX Chen et al. (2020a)
Markov Delay-SARX Chen and Liu (2019)

Kernel-based
stable spline

Linear classifier PWFIR/PWARX Pillonetto (2016)
Linear classifier PWFIR/PWARX Scampicchio and Pillonetto (2018)
Arbitrary Nonlinear dynamics Scampicchio et al. (2018)

Bayesian Dirichlet PWARX Wågberg et al. (2015)

Maximum-a-posterori
Linear classifier PWA Piga et al. (2020a)

Markov SBJ
Piga et al. (2020b)
Breschi et al. (2019)

3.3.4. OTHER METHODS

Algebraic methods: Recent trends show a combination of algebraic methods with
clustering (e.g. subspace clustering) and optimization-based algorithms. The set
membership identification problem has been addressed for SARX models with
prior information on the number of submodels by Ozay et al. (2015), using an
algebraic procedure and combining it with a polynomial function of the unknown
noise to recast the problem into constrained rank minimization form, which is a
convex optimization problem. Likewise, matrix rank minimization along with an
iterative partial matrix shrinkage algorithm has been presented by Konishi (2015)
for identification of SRAX models. Hojjatinia et al. (2020) have proposed a similar
approach but for cases with a very large number of samples affected by large levels
of noise for both SARX and SARMAX models. Similarly, a non-convex optimization
problem has been computational efficiently solved using an algebraic procedure
and a polynomial optimization approach with sparse reformulation of the problem
to jointly identify a kernel-based mapping and the corresponding continuous-state
evolution of Wiener SARX models by Zhang et al. (2016).

Furthermore, an iterative algebraic geometric approach has been proposed by
Nazari et al. (2016), which is built upon stochastic hybrid decoupling polynomial
construction and it is shown that the problem of the linear regression can be
transferred into stochastic hybrid decoupling polynomial. An algebraic procedure
by constructing Hankel-like matrices and performing singular value decomposition
of the Hankel matrices results in parameter estimates, which has been discussed by
Sarkar et al. (2019) for switched state-space models.

Outer Bounding Ellipsoid (OBE) methods: OBE type algorithms are set membership
real-time identification algorithms under assumption of unknown-but-bounded
noises or disturbances. The OBE algorithm has been presented for SARX models
by Goudjil et al. (2016) PWARX models by Yahya et al. (2020), and SOE models
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by Goudjil et al. (2017b).A two-step algorithm that proposed by Du et al. (2018)
for SRAX models is another method similar to OBE. . Data assignment is carried
out based on incorporating both the residual error and an upper bound of the
subsystem estimation error, which is followed by a randomized algorithm to update
simultaneously the parameters of the submodels.

Continuous-time identification methods: The literature reviewed above is for
hybrid systems represented in discretized form, while there can be found some
literature on continuous-time hybrid system identification methods. The concurrent
learning technique, which has been developed in a recursive manner for PWA state
space models by Kersting and Buss (2017), has been proposed to identify online
continuous-time system dynamics, using the recorded and current data concurrently
for adaption.

Due to necessity of state derivatives for the concurrent learning technique,
extended integral concurrent learning identifier has been presented by Du et al.
(2021a). The two-stage online identification of switched state space models consists
of recognition of the active modes based on the projection matrix inspired by a
recursive projection subspace method followed by an integral concurrent learning
technique for identification of the system dynamics. Likewise, using an integral
concurrent learning method for continuous-time PWA state space models has been
addressed by Du et al. (2021b). Polyhedral regions are estimated by solving an
optimization problem based on the parameter identification and mode recognition
steps. A continuous-time identification method has been proposed by Goudjil
et al. (2020) in which consistent submodel outputs are constructed based on
a sum of sinusoids as an appropriate input signal and then parameter vector
estimation is carried out by conventional continuous-time identification methods
under assumption of a given number of submodels. Furthermore, Keshvari-Khor
et al. (2018) have proposed an identification method for continuous-time switched
state space models. The advantage of this approach is detection of switching time
between two sampling instants even with low-rate sampled data.

Neural network (NN) methods: Due to the capability of NNs to represent nonlinear
systems in a simpler structure with precision in approximation, Yang et al. (2017)
have proposed a way to use and train NNs in modeling of nonlinear ARMA models in
the form of hybrid systems, which is called multiple NARMA-L2 model. In addition,
Brusaferri et al. (2020) have proposed Mixture of Expert (MoE) NN architecture that
can represent the feature of hybrid systems in a NN structure for one-step-ahead
identification of SARX models. MoE layer along with a gated recurrent units with
softmax output plays a role as neural switching machine, while feed-forward NNs
have been chosen as a structure to represent continuous dynamics. Moreover, a
method to decompose an NN into a PWA model by using weight pruning to reduce
the number of linear classifier has been discussed by Robinson (2021).

3.3.5. RESEARCH TRENDS IN METHODS

Recently, heuristic approaches combine different methods. For instance, Mejari et al.
(2020b) have discussed a recursive manner of the least squares method with bias
correction to deal with unknown noises based on the clustering method. However,
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this online method estimates the submodel parameters and the switching signal
as well as unknown noise variance with high accuracy, but clustering leads to
misclassification that should be dealt with. Wang et al. (2020) have also addressed
weighted least squares method, but with improvement on accuracy of clustering by
introducing gap metric to find similar measurement and minimize the number of
the submodels. Moreover, a combination of cluster-based algorithm and self-training
SVM algorithm has been proposed by Du et al. (2020). In this method, the clustering
outputs initialize the modified SVM algorithm that reduces the computational
complexity and increases the precision of partitioning. Furthermore, using algebraic
procedure as a starting point and combing it with a polynomial optimization is
another example of a heuristic combined method to address high dimensional
dataset affected by large level of noise by Hojjatinia et al. (2020).

Generalization is the other important trend. Using a maximum-a-posteriori
algorithm by Piga et al. (2020b) in a general way in terms of fitting SBJ models
with time varying coefficients and equivalent state space models is a pioneer, and
relaxation of user-dependent regularization of hyperparameters and the derivation
of confidence intervals are for further extension and generalization. Similarly, the
proposed method by Piga et al. (2020a) has been derived for PWA models, and it
can be extended for polynomial nonlinear models in this trend. The priority of these
papers is using a maximum-a-posteriori method that also obtains the distribution of
the model parameters and the predicted output.

Moreover, VB methods have drawn attention since they also provide the
distribution of the parameters and solve the optimization problem effectively. With
less generality but taking missing measurements and delays into account for two
simple model classes, i.e. SFIR and SARX, Liu et al. (2021) and Chen and Liu (2019)
have discussed the application of VB methods, which should be extended for other
types of hybrid systems to complete this chain of trends.

Table 3.9: Other approaches.
Method category Hybrid model Algorithm Reference(s)

Algebraic

SARX
Set membership Ozay et al. (2015)
Matrix rank minimization with partial matrix shrinkage Konishi (2015)
Geometric approach with stochastic hybrid decoupling polynomial Nazari et al. (2016)

SARX/SARMAX Veronese-map-embedded GPCA with polynomial optimization Hojjatinia et al. (2020)
Wiener SARX Kernel-based mapping with polynomial optimization Zhang et al. (2016)
Switched SS SVD based on Hankel-like matrices Sarkar et al. (2019)

OBE
SARX

Real-time set membership algorithm
based on unknown-but-bounded noises

Goudjil et al. (2016)
PWARX Yahya et al. (2020)
SOE Goudjil et al. (2017b)

Continuous-time

PWA-SS
Concurrent learning Kersting and Buss (2017)
Integral concurrent learning Du et al. (2021b)

Switched SS Integral concurrent learning Du et al. (2021a)
Continuous input-output Conventional continuous-time identification Goudjil et al. (2020)
Switched SS Conversion of discrete-time to continuous-time Keshvari-Khor et al. (2018)

NN
Multiple NARMA-L2 One-step-ahead Yang et al. (2017)
SARX Mixture of expert with softmax output Brusaferri et al. (2020)
PWA Neural network decomposition Robinson (2021)



3.4. CONCLUSIONS
As discussed, hybrid system identification is an active research field, and it can be
used for a wide range of real-world applications for modeling and control. In this
survey a systematic review on models and methods has been proposed to show
the state-of-the-art in hybrid system identification. Current and future research
directions include the following objectives to:

• increase and generalize model complexity in terms of parameterization and
find a method to solve its identification problem in a computationally efficient
way,

• extend the probabilistic model parameterization for other classes of hybrid
systems and find a solving algorithm for it,

• parameterize the switching domain in a nonlinear form,

• take practical problems such as delay and missing measurement into account
for other types of hybrid systems,

• solve the mis-classification problem with innovative clustering approaches, and

• explore nonlinear hybrid system identification to increase accuracy, while
decrease the number of modes for nonlinear processes with a wide range of
operation.

In summary, this survey has highlighted that the methodological focus has slightly
changed from the use of innovative optimization and novel clustering approaches
towards problem generalization, multi-method combination, and the use of novel
probabilistic methods. Moreover, other important issues related to hybrid system
identification such as experiment design and identifiability can be reviewed in future
research.



REFERENCES
Amaldi, E., S. Coniglio, and L. Taccari (2016).

“Discrete optimization methods to fit piecewise
affine models to data points”. In: Computers
and Operations Research 75, pp. 214–230.

Bako, L. and O. Yahya (2019). “Piecewise Affine
System identification: A least harmonic mean
approach”. In: 2019 IEEE 58th Conference on
Decision and Control.

Barbosa, B. H., L. A. Aguirre, and A. P. Braga
(2019). “Piecewise affine identification of a
hydraulic pumping system using evolutionary
computation”. In: IET Control Theory and
Applications 13.9, pp. 1394–1403.

Basiri, M. H., J. G. Thistle, and S. Fischmeis-
ter (2018). “A framework for inference and
identification of hybrid-system models: Mixed
event-/time-driven systems (METS)”. en. In:
IFAC-PapersOnLine 51.15, pp. 287–292.

Bemporad, A., V. Breschi, D. Piga, and S. P. Boyd
(2018). “Fitting jump models”. In: Automatica
96, pp. 11–21.

Bianchi, F., V. Breschi, D. Piga, and L. Piroddi
(2021). “Model structure selection for switched
NARX system identification: A randomized
approach”. In: Automatica 125, p. 109415.

Bianchi, F., A. Falsone, L. Piroddi, and M. Prandini
(2020a). “An alternating optimization method
for switched linear systems identification”. In:
IFAC-PapersOnLine 53.2, pp. 1071–1076.

Bianchi, F., M. Prandini, and L. Piroddi (2020b).
“A randomized two-stage iterative method for
switched nonlinear systems identification”. In:
Nonlinear Analysis: Hybrid Systems 35, p. 100818.

Blazic, S. and I. Skrjanc (2020). “Hybrid System
Identification by Incremental Fuzzy C-regression
Clustering”. In: 2020 IEEE International Confer-
ence on Fuzzy Systems.

Breschi, V., A. Bemporad, and D. Piga (2016a).
“Identification of hybrid and linear parameter
varying models via recursive piecewise affine re-
gression and discrimination”. In: 2016 European
Control Conference.

Breschi, V. and M. Mejari (2020). “Shrinkage Strate-
gies for Structure Selection and Identification of
Piecewise Affine Models”. In: 2020 59th IEEE
Conference on Decision and Control.

Breschi, V., D. Piga, and A. Bemporad (2016b).
“Piecewise affine regression via recursive multi-
ple least squares and multicategory discrimina-
tion”. In: Automatica 73, pp. 155–162.

— (2019). “Maximum-a-posteriori estimation of
jump Box-Jenkins models”. In: 2019 IEEE 58th
Conference on Decision and Control.

Breschi, V., A. Bemporad, D. Piga, and S. Boyd
(2018). “Prediction error methods in learning
jump ARMAX models”. In: 2018 IEEE Conference
on Decision and Control.

Brusaferri, A., M. Matteucci, P. Portolani, S. Spinelli,
and A. Vitali (2020). “Hybrid system identifi-
cation using a mixture of NARX experts with
LASSO-based feature selection”. In: 2020 7th
International Conference on Control, Decision
and Information Technologies.

Chen, X. and F. Liu (2019). “A Variational
Bayesian Approach for Identification of Time-
Delay Markov Jump Autoregressive Exogenous
Systems”. In: Circuits, Systems, and Signal
Processing 39.3, pp. 1265–1289.

Chen, X., S. Zhao, and F. Liu (2017). “Identification
of time-delay Markov jump autoregressive ex-
ogenous systems with expectation-maximization
algorithm”. In: International Journal of Adaptive
Control and Signal Processing 31.12, pp. 1920–
1933.

— (2020a). “Identification of jump Markov au-
toregressive exogenous systems with missing
measurements”. In: Journal of the Franklin
Institute 357.6, pp. 3498–3523.

— (2020b). “Online identification of time-delay
jump Markov autoregressive exogenous systems
with recursive expectation-maximization algo-
rithm”. In: International Journal of Adaptive
Control and Signal Processing 34.3, pp. 407–426.

Du, Y., F. Liu, J. Qiu, and M. Buss (2020). “A
Semi-Supervised Learning Approach for Identi-
fication of Piecewise Affine Systems”. In: IEEE
Transactions on Circuits and Systems I: Regular
Papers 67.10, pp. 3521–3532.

— (2021a). “A novel recursive approach for on-
line identification of continuous-time switched
nonlinear systems”. In: International Journal of
Robust and Nonlinear Control 31.15, pp. 7546–
7565.

— (2021b). “Online Identification of Piecewise
Affine Systems Using Integral Concurrent Learn-
ing”. In: IEEE Transactions on Circuits and
Systems I: Regular Papers 68.10, pp. 4324–4336.

Du, Z., L. Balzano, and N. Ozay (2018). “A
Robust Algorithm for Online Switched System
Identification”. In: IFAC-PapersOnLine 51.15,
pp. 293–298.

Fan, L., H. Kodamana, and B. Huang (2017).
“Robust Identification of Switching Markov
ARX Models Using EM Algorithm.” In: IFAC-
PapersOnLine 50.1, pp. 9772–9777.

Garulli, A., S. Paoletti, and A. Vicino (2012). “A
survey on switched and piecewise affine system

57



3

58 REFERENCES

identification”. In: IFAC Proceedings Volumes
45.16, pp. 344–355.

Goudjil, A., M. Pouliquen, E. Pigeon, and O. Gehan
(2016). “A real-time identification algorithm for
switched linear systems with bounded noise”.
In: 2016 European Control Conference.

— (2017a). “Identification algorithm for MIMO
switched output error model in presence of
bounded noise”. In: 2017 IEEE 56th Annual
Conference on Decision and Control.

Goudjil, A., M. Pouliquen, E. Pigeon, O. Gehan,
and T. Bonargent (2020). “Continuous-time
Identification for a class of Switched Linear
Systems”. In: 2020 European Control Conference.

Goudjil, A., M. Pouliquen, E. Pigeon, O. Gehan, and
B. Targui (2017b). “Recursive Output Error Iden-
tification Algorithm for Switched Linear systems
with Bounded Noise”. In: IFAC-PapersOnLine
50.1, pp. 14112–14117.

Hartmann, A., J. M. Lemos, R. S. Costa, J.
Xavier, and S. Vinga (2015). “Identification of
switched ARX models via convex optimization
and expectation maximization”. In: Journal of
Process Control 28, pp. 9–16.

Hojjatinia, S., C. M. Lagoa, and F. Dabbene (2020).
“Identification of switched autoregressive exoge-
nous systems from large noisy datasets”. In:
International Journal of Robust and Nonlinear
Control 30.15, pp. 5777–5801.

Hu, Q., Q. Fei, H. Ma, Q. Wu, and Q. Geng
(2015). “Identification for Switched Systems.” In:
IFAC-PapersOnLine 48.28, pp. 514–519.

Hure, N. and M. Vasak (2017). “Clustering-based
identification of MIMO piecewise affine sys-
tems”. In: 2017 21st International Conference on
Process Control.

Jianwang, H. and R. A. Ramirez-Mendoza (2020).
“Zonotope parameter identification for piece-
wise affine system”. In: Systems Science and
Control Engineering 8.1, pp. 232–240.

Kersting, S. and M. Buss (2017). “Recursive
estimation in piecewise affine systems using
parameter identifiers and concurrent learn-
ing”. In: International Journal of Control 92.6,
pp. 1264–1281.

Keshvari-Khor, H., A. Karimpour, and N.
Pariz (2018). “Identification of continuous-
time switched linear systems from low-rate
sampled data”. In: IET Control Theory and
Applications 12.14, pp. 1964–1973.

Khanmirza, E., M. Nazarahari, and A. Mousavi
(2016). “Identification of piecewise affine systems
based on fuzzy PCA-guided robust clustering
technique”. In: EURASIP Journal on Advances in
Signal Processing 2016.1.

Konishi, K. (2015). “Multiple low rank matrix
approach to switched autoregressive exogenous

system identification”. In: 2015 10th Asian
Control Conference.

Lauer, F. and G. Bloch (2018). “Hybrid system
identification: Theory and algorithms for learn-
ing switching models, vol. 478”. In: Cham,
Switzerland: Springer.

Lauer, F. (2013). “Estimating the probability of
success of a simple algorithm for switched
linear regression”. In: Nonlinear Analysis: Hybrid
Systems 8, pp. 31–47.

Li, L., W. Done, and Y. Ji (2016). “A subspace ap-
proach to the identification of MIMO piecewise
linear systems”. In: 2016 35th Chinese Control
Conference.

Li, L. and J. Liu (2017). “Subspace clustering on
parameter estimation of switched affine models”.
In: 2017 36th Chinese Control Conference.

Liu, J., Z. Xu, J. Zhao, and Z. Shao (2022).
“Identification of piecewise affine model for
batch processes based on constrained clustering
technique”. In: Chemical Engineering Research
and Design 181, pp. 278–286.

Liu, X., X. Yang, and M. Yu (2021). “Identification
of switched FIR systems with random missing
outputs: A variational Bayesian approach”. In:
Journal of the Franklin Institute 358.1, pp. 1136–
1151.

Lopes, R. V., J. Y. Ishihara, and G. A. Borges (2016).
“Identification of state-space switched linear
systems using clustering and hybrid filtering”.
In: Journal of the Brazilian Society of Mechanical
Sciences and Engineering 39.2, pp. 565–573.

Lu, Y., B. Huang, and S. Khatibisepehr (2016).
“A Variational Bayesian Approach to Robust
Identification of Switched ARX Models”. In: IEEE
Transactions on Cybernetics 46.12, pp. 3195–3208.

Ma, J., B. Huang, and F. Ding (2019). “Parameter
estimation of Markov-switching Hammerstein
systems using the variational Bayesian ap-
proach”. In: IET Control Theory and Applications
13.11, pp. 1646–1655.

Mattsson, P., D. Zachariah, and P. Stoica (2016).
“Recursive Identification Method for Piecewise
ARX Models: A Sparse Estimation Approach”. In:
IEEE Transactions on Signal Processing 64.19,
pp. 5082–5093.

Mazzoleni, M., V. Breschi, and S. Formentin
(2021). “Piecewise nonlinear regression with
data augmentation”. In: IFAC-PapersOnLine 54.7,
pp. 421–426.

Mejari, M., V. Breschi, V. V. Naik, and D. Piga
(2020a). “A Bias-Correction Approach for the
Identification of Piecewise Affine Output-Error
Models”. In: IFAC-PapersOnLine 53.2, pp. 1096–
1101.

Mejari, M., V. Breschi, and D. Piga (2020b). “Recur-
sive Bias-Correction Method for Identification of



REFERENCES

3

59

Piecewise Affine Output-Error Models”. In: IEEE
Control Systems Letters 4.4, pp. 970–975.

Mejari, M., V. V. Naik, D. Piga, and A. Bempo-
rad (2018). “Regularized Moving-Horizon PWA
Regression for LPV System Identification”. In:
IFAC-PapersOnLine 51.15, pp. 1092–1097.

— (2020c). “Identification of hybrid and linear
parameter-varying models via piecewise affine
regression using mixed integer programming”.
In: International Journal of Robust and Nonlinear
Control 30.15, pp. 5802–5819.

Naik, V. V., M. Mejari, D. Piga, and A. Bemporad
(2017). “Regularized moving-horizon piecewise
affine regression using mixed-integer quadratic
programming”. In: 2017 25th Mediterranean
Conference on Control and Automation.

Nazari, S., B. Rashidi, Q. Zhao, and B. Huang
(2016). “An Iterative Algebraic Geometric Ap-
proach for Identification of Switched ARX
Models with Noise”. In: Asian Journal of Control
18.5, pp. 1655–1667.

Ozay, N., C. Lagoa, and M. Sznaier (2015). “Set
membership identification of switched linear
systems with known number of subsystems”. In:
Automatica 51, pp. 180–191.

Ozbay, B., O. Camps, and M. Sznaier (2019).
“Efficient Identification of Error-in-Variables
Switched Systems via a Sum-of-Squares Polyno-
mial Based Subspace Clustering Method”. In:
2019 IEEE 58th Conference on Decision and
Control.

Paoletti, S., I. Savelli, A. Garulli, and A. Vicino
(2019). “A bilevel programming framework for
piecewise affine system identification”. In: 2019
IEEE 58th Conference on Decision and Control.

Piga, D., A. Bemporad, and A. Benavoli (2020a).
“Rao-Blackwellized sampling for batch and
recursive Bayesian inference of Piecewise Affine
models”. In: Automatica 117, p. 109002.

Piga, D., V. Breschi, and A. Bemporad (2020b).
“Estimation of jump Box-Jenkins models”. In:
Automatica 120, p. 109126.

Pillonetto, G. (2016). “A new kernel-based approach
to hybrid system identification”. In: Automatica
70, pp. 21–31.

Robinson, H. (2021). “Approximate Piecewise
Affine Decomposition of Neural Networks”. In:
IFAC-PapersOnLine 54.7, pp. 541–546.

Rui, R., T. Ardeshiri, and A. Bazanella (2016).
“Identification of piecewise affine state-space
models via expectation maximization”. In: 2016
IEEE Conference on Computer Aided Control
System Design.

Sarkar, T., A. Rakhlin, and M. Dahleh (2019). “Non-
parametric System identification of Stochastic
Switched Linear Systems”. In: 2019 IEEE 58th
Conference on Decision and Control.

Scampicchio, A., A. Giaretta, and G. Pillonetto
(2018). “Nonlinear Hybrid Systems Identifi-
cation using Kernel-Based Techniques”. In:
IFAC-PapersOnLine 51.15, pp. 269–274.

Scampicchio, A. and G. Pillonetto (2018). “A New
Model Selection Approach to Hybrid Kernel-
Based Estimation”. In: 2018 IEEE Conference on
Decision and Control.

Sefidmazgi, M. G., M. M. Kordmahalleh, A.
Homaifar, and A. Karimoddini (2015). “Switched
linear system identification based on bounded-
switching clustering”. In: 2015 American Control
Conference.

Sefidmazgi, M. G., M. M. Kordmahalleh, A. Homai-
far, A. Karimoddini, and E. Tunstel (2016). “A
bounded switching approach for identification
of switched MIMO systems”. In: 2016 IEEE
International Conference on Systems, Man, and
Cybernetics (SMC). IEEE.

Sellami, L., S. Zidi, and K. Abderrahim (2016).
“Identification of switched linear systems us-
ing self-adaptive SVR algorithm”. In: 2016
24th Mediterranean Conference on Control and
Automation.

Shah, A. K. and D. M. Adhyaru (2014). “Parameter
identification of PWARX models using fuzzy
distance weighted least squares method”. In:
Applied Soft Computing 25, pp. 174–183.

Song, C., J. Wang, X. Ma, and J. Zhao (2020).
“A PWA model identification method based
on optimal operating region partition with
the output-error minimization for nonlinear
systems”. In: Journal of Process Control 88,
pp. 1–9.

Tang, X. and Y. Dong (2020). “Expectation
maximization based sparse identification of
cyberphysical system”. In: International Journal
of Robust and Nonlinear Control 31.6, pp. 2044–
2060.

Wågberg, J., F. Lindsten, and T. B. Schön (2015).
“Bayesian nonparametric identification of piece-
wise affine ARX systems.” In: IFAC-PapersOnLine
48.28, pp. 709–714.

Wagner, M. and A. Kroll (2014). “A method to
identify hybrid systems with mixed piecewise
affine or nonlinear models of Takagi-Sugeno
type”. In: 2014 European Control Conference.

Wang, J., C. Song, J. Zhao, and Z. Xu (2020). “A
PWA model identification method for nonlinear
systems using hierarchical clustering based on
the gap metric”. In: Computers and Chemical
Engineering 138, p. 106838.

Wang, Z., H. An, and X. Luo (2019). “Switch detec-
tion and robust parameter estimation for slowly
switched Hammerstein systems”. In: Nonlinear
Analysis: Hybrid Systems 32, pp. 202–213.



3

60 REFERENCES

Xiujun, C., W. Hongwei, W. Lin, and X. Zhengqing
(2020). “Identification of switched nonlinear
systems based on EM algorithm”. In: 2020 39th
Chinese Control Conference.

Xu, Z., Y. Huang, J. Zhao, C. Song, and Z.
Shao (2018). “Time-Partitioned Piecewise Affine
Output Error Model for Batch Processes”. In:
Industrial and Engineering Chemistry Research
57.5, pp. 1560–1568.

Yahya, O., Z. Lassoued, and K. Abderrahim (2020).
“Identification of PWARX Model Based on
Outer Bounding Ellipsoid Algorithm”. In: 2020
20th International Conference on Sciences and
Techniques of Automatic Control and Computer
Engineering.

Yang, Y., C. Xiang, S. Gao, and T. H. Lee
(2017). “Data-driven identification and control

of nonlinear systems using multiple NARMA-L2
models”. In: International Journal of Robust and
Nonlinear Control 28.12, pp. 3806–3833.

Yuan, Y., X. Tang, W. Zhou, W. Pan, X. Li, H.-T.
Zhang, H. Ding, and J. Goncalves (2019). “Data
driven discovery of cyber physical systems”. In:
Nature Communications 10.1.

Zhang, X., Y. Cheng, Y. Wang, M. Sznaier, and
O. Camps (2016). “Identification of switched
Wiener systems based on local embedding”. In:
2016 IEEE 55th Conference on Decision and
Control.

Zhang, X., M. Sznaier, and O. Camps (2018). “Effi-
cient Identification of Error-in Variables Switched
Systems Based on Riemannian Distance-Like
Functions”. In: 2018 IEEE Conference on Decision
and Control.



4
SWITCHED BOX-JENKINS MODELS

FOR BIOPROCESSES

This chapter focuses on the development of linear Switched Box–Jenkins (SBJ) models
for approximating complex dynamical models of biological wastewater treatment
processes. We discuss the adaptation of these processes to the SBJ framework,
showing the model’s generality and flexibility as a class of switched systems that
can offer accurate predictions for complex and nonlinear dynamics. This approach
of modeling enables real-time data reconciliation from experiments and allows the
design of model-based control strategies previously inaccessible with conventional
complex wastewater treatment models. Through the extension of the Outer Bounding
Ellipsoids (OBEs) algorithm, the chapter introduces an online two-stage parameter
identification algorithm that effectively handles bounded disturbances for SBJ models.
Using the OBE method relaxes the stochastic assumptions on disturbances, which may
not be satisfied in practice, particularly for biological and environmental fluctuations.
The proposed decomposed OBE algorithm separately identifies the switching patterns
and parameters of linear submodels, conducting parameter identification in two
distinct phases for input/output and disturbance/output submodels. The efficacy of
this approach is shown via simulation results validated against both ADM1 and PBM,
demonstrating the proposed algorithm’s capability to accurately predict outputs from
different bio-process models.

This chapter is an adapted version of an identification algorithm of switched Box-Jenkins systems in
the presence of bounded disturbances: An approach for approximating complex biological wastewater
treatment models, Ali Moradvandi, et al. (2024), Journal of Water Process Engineering.
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4.1. INTRODUCTION

Hybrid (switched) dynamical systems capture interconnected continuous and discrete
behaviors, serving to model processes with non-smooth behaviors or to approximate
systems with high-order nonlinearities. Biological treatment processes are described
by interconnected and competing bio- and physico-chemical reactions for substrate
consumption and growth of different trophic groups within a microbial community,
resulting in nonlinear model behaviors. This type of complex nonlinear behavior
can be simplified in terms of modeling using hybrid systems. Switched systems,
as a well-known class of hybrid systems, consist of a switching pattern (or mode)
and a finite number of values (countable state variables) that coordinates with
corresponding continuous and linear subsystems (or submodels) (Lauer and Bloch
2018).

Hybrid system identification methods, as a tool to find a switched system to
approximate a highly nonlinear biological treatment model, involve two steps: 1)
estimating the parameters of the submodels, and 2) determining the switching
patterns. Furthermore, hybrid system identification methods as a data-driven
modeling approach avoid the complexity inherent in mechanistic modeling of
input-output relations. Moreover, using a set of linear models to approximate a
nonlinear dynamic of a biological treatment process not only is straightforward to
implement in comparison with Neural Networks but also holds significant accuracy
in comparison with non-switched systems.

The input-output model complexity ranges from relatively simple Auto-Regressive
eXogenous (ARX) models to more complex general Box-Jenkins (BJ) models.
Input-output models consist of two parts, i.e. auto-regressive (depending on
the previous forecasts) and moving-average (depending on the error of previous
forecasts). Box–Jenkins (BJ) models have the advantage of describing stochastic
systems in a more general and flexible way, since they include the output error
model (Ding et al. 2010), the output error moving average model (Wang 2011), and
the output error autoregressive model (Wang et al. 2010) as special cases. Moreover,
switched finite impulse response, SFIR, (Liu et al. 2021) switched autoregressive
exogenous, SARX (Du et al. 2018), switched autoregressive and moving-average,
SARMAX (Hojjatinia et al. 2020), switched output error, SOE (Goudjil et al. 2017), and
error-in-variable SARX, EIV-SARX (Ozbay et al. 2019) models can be mathematically
considered as subclasses of a switched Box-Jenkins (SBJ) model. In other words, the
mentioned simple model structures can be driven with simplification of a BJ model.

The BJ structure, also, has been widely and effectively used for time series
prediction due to its generality and efficiency in prediction (Box et al. 2015). As
summarized in Table 4.1, some biological processes have been modelled by switched
systems in the literature. The foundation of the submodels in these papers is ARX.
The identification problem has been addressed using different approaches in these
articles, including optimization-based methods by Hartmann et al. (2015) and Song
et al. (2020), likelihood-based methods by Chen et al. (2020a,b), clustering-based
methods by Wang et al. (2020), and Outer Bounding Ellipsoid (OBE) methods by
Yahya et al. (2020). Since all these papers deal with ARX models, the identification
approaches cannot be directly extended for the more general SBJ models.
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Table 4.1: Applications of biological processes modelled by different hybrid systems.
Application Hybrid model Method Reference
pH neutralization process PWARX Clustering-based Wang et al. (2020)
Diauxic bacterial growth SARX Optimization-based Hartmann et al. (2015)
CSTR with exothermic reaction PWARX Clustering-based Song et al. (2020)

Continuous fermentation reactor
SARX Likelihood-based Chen et al. (2020a)
Delay-SARX Likelihood-based Chen et al. (2020b)

Transesterification reactor PWARX OBE Yahya et al. (2020)

In addition to the base model (parametrization), selecting a suitable algorithm for
solving the identification problem is an integral part of hybrid system identification
that should be developed based on the selected base model (Moradvandi et al. 2023).
The approaches are classified into optimization-based techniques (Bianchi et al.
2021), clustering-based methods (Mazzoleni et al. 2021), likelihood-based methods
(Chen et al. 2020a), algebraic methods (Hojjatinia et al. 2020), and Outer Bounding
Ellipsoid (OBE) methods (Goudjil et al. 2023; Yahya et al. 2020). Comprehensive
reviews of these techniques have been done by (Garulli et al. 2012; Moradvandi
et al. 2023). The selection of an appropriate method depends on factors such as
parametrization, available knowledge of the system, and the computational burden
associated with the model. Optimization-based algorithms are the most commonly
used, and they have recently been combined with other approaches such as
clustering and classical algebraic methods (Du et al. 2020; Wang et al. 2020).

To select an approach, practical aspects of a biological treatment process should
also be taken into account. The behavior of a biological process can be affected
by random and unpredictable factors. Common examples are meteorological
fluctuations and influent concentration perturbations. Under these situations, Piga
et al. (2020a) showed that stochastic modeling can be an option. However, the
assumption of a statistical consideration for disturbances or noises may not always be
justified due to an unknown probability distribution or modeling mismatch (Goudjil
et al. 2023). On the other hands, the stochastic assumption requires precise
distribution information and employs a sequence of representative scenarios, which
is hard to be satisfied in real-world applications. Alternatively, the assumption
of bounded disturbances is considered less stringent and therefore a pragmatic
solution.

Amongst the mentioned hybrid system identification methods, the OBE method
is one of the methods that has the advantage of not requiring any stochastic
noise assumption. Furthermore, since the basis of the OBE algorithm is matrix
manipulation, the OBE algorithm is not only computationally efficient, but also
well-suited for analyzing large datasets (Goudjil et al. 2023). This method has
been developed for hybrid systems parametrized by SARX (Goudjil et al. 2016), SOE
(Goudjil et al. 2017), and piecewise affine ARX (PWARX) (Yahya et al. 2020) models,
not yet for the general models such as SBJ. The OBE algorithm encompasses two
stages: (1) the procedure of assigning data by considering both the residual error
and an upper bound for the estimation error of all the submodels, and (2) utilizing
Recursive Least Squares (RLS) simultaneously to update the parameters of the active
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submodel in each time step (Goudjil et al. 2023).
Motivated by the importance of BJ models, particularly for biological treatment

processes as well as the current trend of extending other methods for SBJ models
(Chai et al. 2020; Piga et al. 2020b), this chapter addresses the extension of OBE
algorithms to SBJ systems. For this purpose, auxiliary model identification and
decomposition techniques, which have been discussed for non-switched systems
by Ding and Duan (2013), are adapted to the considered switched structure and the
OBE framework. This adaptation deals with lack of availability of internal signals
within the BJ structure. Inspired by the work done by Chai et al. (2020), the
underlying principle involves the decomposition of a BJ system into two parts (the
autoregressive part and the moving-average part), followed by the auxiliary model
identification approach to determine the parameters of each part and the internal
signals simultaneously. Therefore, a reformulation of the two-stage OBE algorithm
based on adaptation of the decomposed technique is addressed in this study, and
the active submodel detection and the parameter identification procedures are
developed based on a decomposed OBE objective function for SBJ models.

The primary aim of the present work is, therefore, to develop the OBE algorithm
for SBJ models. To achieve this objective, we present a mathematical exposition by
adapting the decomposition technique to switched systems in order to formulate
the identification problem posed by SBJ systems within the OBE framework.
Furthermore, the approximation of biological treatment processes represented by
complex mathematical models, is explored within the framework SBJ models by
validating the proposed algorithm for Anaerobic Digestion Model 1 (ADM1) and
Purple Bacteria Model (PBM). Through a comprehensive numerical assessment and
interpretation, this research sheds light on the potential applications of the SBJ
modeling approach, contributing valuable insights into real-time data reconciliation
and control strategies of biological treatment processes.

The chapter is organized as follows. Materials and methods (Section 4.2)
include the formulation of the identification problem in Section 4.2.1 and the OBE
identification procedure in Section 4.2.2. Section 4.3 presents results and discussions.
Formulating of biological models in the form of SBJ is discussed in this section, and
the aforementioned case studies of biological wastewater treatment models are also
analyzed. Limitations of the proposed method are discussed in Section 4.4, and in
the last section, conclusions are drawn.

4.2. MATERIALS AND METHODS

4.2.1. PROBLEM FORMULATION

A switched discrete-time linear system parameterized by a BJ model is represented
as follows:

yk = B(q−1,θzk )

A(q−1,θzk )
uk +

C (q−1,θzk )

D(q−1,θzk )
vk (4.1)

where yk ∈R, uk ∈R, and vk ∈R denote the system output, the system input, and the
disturbance (noise). Moreover, A(q−1,θzk ), B(q−1,θzk ), C (q−1,θzk ), and D(q−1,θzk )
are the linear filters. The discrete state, zk ∈ {1, ...,m} indicates the active mode of m
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number of parameterized submodels or modes at time step k. If we assume at time
step k, the i -th mode is active, i.e. zk = i , the linear filters that are rational functions
of the time shift operator q−1 (i.e. q−d xk = xk−d for d ∈Z), can be written as follows:

B(q−1,θi )

A(q−1,θi )
= bi 1q−1 + ...+bi nb q−nb

1+ai 1q−1 + ...+ai na q−na
, (4.2a)

C (q−1,θi )

D(q−1,θi )
= 1+ ci 1q−1 + ...+ ci nc q−nc

1+di 1q−1 + ...+di nd q−nd
, (4.2b)

where na , nb , nc , and nd are the orders of the filters (A(·),B(·),C (·),D(·)) respectively,
and the vectors of parameters can be expressed as

θ1i = [ai 1, ..., ai na ,bi 1, ...,bi nb ]T ∈Rna+nb , (4.3a)

θ2i = [ci 1, ...,ci nc ,di 1, ...,di nd ]T ∈Rnc+nd , (4.3b)

θi = [θT
1i ,θT

2i ]T ∈Rna+nb+nc+nd , (4.3c)

B(q−1,θ1)
A(q−1,θ1)

uk

B(q−1,θm )
A(q−1,θm )

...

xk

C (q−1,θ1)
D(q−1,θ1)

vk

C (q−1,θm )
D(q−1,θm )

...

wk

yk

Figure 4.1: Schematization of the switched BJ system for m number of mode.

The block diagram of the switched BJ system is depicted in Figure 4.1. According
to the block diagram, the two auxiliary variables xk and wk can be written as
follows:

xk = (1− A(q−1,θzk ))xk +B(q−1,θzk )uk =φT
k θ1,zk , (4.4a)

wk = (1−C (q−1,θzk ))wk +D(q−1,θzk )vk =ψT
k θ2,zk + vk , (4.4b)

where φk and ψk are the regressor vectors:

φk = [−xk−1, ...,−xk−na ,uk−1, ...,uk−nb
]T ∈Rna+nb , (4.5a)

ψk = [−wk−1, ...,−wk−nc , vk−1, ..., vk−nd
]T ∈Rnc+nd . (4.5b)
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Therefore, the model (4.1) can be rewritten as

yk =φT
k θ1,zk +ψT

k θ2,zk + vk

=ΦT
k θzk + vk .

(4.6)

where Φk = [φT
k ,ψT

k ]T ∈Rna+nb+nc+ns d ,
The decomposition technique is a tool that is used to deal with two-stage

identification procedure (Ding and Duan 2013). In this study, we want to formulate
it for switched systems. An intermediate variable is defined as

ϖk = yk −ψT
k θ2,zk (4.7)

and the main system in (4.6) can be decomposed into two subsystems as follows:

ϖk =φT
k θ1,zk + vk (4.8a)

wk =ψT
k θ2,zk + vk , (4.8b)

ϖk −φT
k θ1,zk = wk −ψT

k θ2,zk = vk , (4.8c)

and they can be rewritten as

ϖk = yk −φT
k θ1,zk (4.9a)

wk = yk −ψT
k θ2,zk , (4.9b)

These decomposed functions will be utilized in the parameter identification stage
later on. The identification objective should be defined in order to estimate the
discrete state, zk , and the parameter vectors, θzk , zk = 1, ...,m, given a collection of
input and output observations. If the estimations of the discrete state and the
parameter vectors are defined as ẑk , θ̂1,ẑk , and θ̂2,ẑk , they should satisfy

|yk −ΦT
k θ̂ẑk | ≤ δ,∀k (4.10a)

|yk −φT
k θ̂1,ẑk −ψT

k θ̂2,ẑk | ≤ δ,∀k (4.10b)

where δ is an upper bound of vk , i.e. |vk | ≤ δ,∀k. The objective can also be expressed
according to (4.8c). The representation of the objective for the decomposed form of
the switched system will be used to derive the parameter identification procedure in
the next section.

To apply the OBE algorithm for the defined objective and to derive the estimation
procedure of the discrete state, the system represented by (4.6), should be extended
in the following format. If we assume that at time step k the submodel i is active,
then it can be written as

yk =φT
k θ11 +ψT

k θ21 + vk +φT
k (θ1i −θ11)+ψT

k (θ2i −θ21)

yk =φT
k θ12 +ψT

k θ22 + vk +φT
k (θ1i −θ12)+ψT

k (θ2i −θ22)

...

yk =φT
k θ1i +ψT

k θ2i + vk

...

yk =φT
k θ1m +ψT

k θ2m + vk +φT
k (θ1i −θ1m )+ψT

k (θ2i −θ2m )

(4.11)
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By defining the extended parameter vectors, Θ1 ∈ R(na+nb )m×1 and Θ2 ∈ R(nc+nd )m×1,
the extended noise vector, Vk ∈Rm×1, and the extended output vector, Yk ∈Rm×1, as
follows, the system (4.11) can be rewritten as follows:

Θ1 =[θ11, ...,θ1m]T (4.12a)

Θ2 =[θ21, ...,θ2m]T (4.12b)

Yk =[yk , ..., yk ]T (4.12c)

Vk,zk=i =



vk +φT
k (θ1i −θ11)+ψT

k (θ2i −θ21)
...

vk
...

vk +φT
k (θ1i −θ1m)+ψT

k (θ2i −θ2m)

 (4.12d)

Yk =φT
kΘ1 +ψT

kΘ2 +Vk,zk
(4.12e)

where φ= Im ⊗φ and ψ= Im ⊗ψ, in which ⊗ and IN denote the Kronecker product
and the identity matrix of order m, respectively. If the estimations of zk , and the
parameter vectors, Θ1 and Θ2 are denoted by ẑk , Θ̂1, and Θ̂2, respectively, (4.12e)
can be rewritten as

Vk,ẑk
= Yk −φT

k Θ̂1 −ψT
k Θ̂2 (4.13)

Therefore, if we define νk ( j ) as the j -th element of Vk,zk
, tanking (4.13) into account,

the problem objective (4.10b) can be redefined as follows:

|νk (ẑk )| ≤ δ,∀k (4.14)

where ẑk can be any integer values between 1 and m at time step k.

4.2.2. IDENTIFICATION ALGORITHM

The OBE method is a technique used in conventional identification algorithms to
estimate the parameters of a model within a given set of constraints, where the
feasible region (the set of possible solutions) is bounded. Using this technique for
switched systems allows computing the ellipsoid bounds for all the submodels and
finding the active one that fits inside the assigned ellipsoid bound. The proposed
identification algorithm is based on two stages, i.e. we first estimate the discrete
state (the switching pattern), then the parameter vectors, in a repetitive manner
for each time step. The parameter vector estimation is also derived based on
the decomposition technique in two stages, i.e. the parameter vector is primarily
updated, then we estimate internal signals for next steps. To derive the algorithm,
the estimates of the parameter vectors at time step k are denoted by Θ̂1,k and Θ̂2,k .
The a priori and the a posteriori predictors of Yk can be written w.r.t. (4.12e),
respectively, as Yk/k−1 =φT

k Θ̂1,k−1 +ψT
k Θ̂2,k−1

Yk/k =φT
k Θ̂1,k +ψT

k Θ̂2,k

(4.15)



4

68 4. SWITCHED BOX-JENKINS MODELS FOR BIOPROCESSES

Then a priori prediction error can be defined as follows:

Vk/k−1 = Yk −Yk/k−1 = Yk −φT
k Θ̂1,k−1 −ψT

k Θ̂2,k−1 (4.16)

Therefore, the two-stage OBE algorithm can be described as follows:
Step 1 (estimation of ẑk ): The first step estimates the discrete state, i.e. ẑk based on

the smallest element of the vector Vk/k−1 that can be expressed by ϱk = |νk/k−1(ẑk )|,
in which ẑk ∈ {1, ...,m} is the detected active mode at time step k.

Step 2 (estimations of Θ̂1 and Θ̂2): The second step is to identify the defined
parameter vectors, i.e. Θ̂1 and Θ̂2. This step is derived based on the decomposition
technique. According to the decomposed model written by (4.8c), the objective
functions to derive a Recursive Least Square (RLS) minimization for the decomposed
model can be defined as follows:

J1(θ1,zk ) :=
k∑

j=1

(
ϖk −φT

k θ1,zk

)2
(4.17a)

J2(θ2,zk ) :=
k∑

j=1

(
wk −ψT

k θ2,zk

)2
(4.17b)

where J1 = J2 according to (4.8c). Assuming the i -th mode is active at time step k
(ẑk = i ), the update laws for the estimates of the parameters, i.e. θ̂1i and θ̂2i can be
written as a result of the RLS minimization as follows:

θ̂1i ,k = θ̂1i ,k−1 +L1,k
[

yk −ψT
k θ̂2i ,k−1 −φT

k θ̂1i ,k−1
]

, (4.18a)

θ̂2i ,k = θ̂2i ,k−1 +L2,k
[

yk −φT
k θ̂1i ,k−1 −ψT

k θ̂2i ,k−1
]

, (4.18b)

where

L1,k = P1,k−1φk
[
1+φT

k P1,k−1φk
]−1

, (4.19a)

L2,k = P2,k−1ψk
[
1+ψT

k P2,k−1ψk
]−1

, (4.19b)

and

P1,k = [
Ina+nb −L1,kφ

T
k

]
P1,k−1, (4.20a)

P2,k = [
Inc+nd −L2,kψ

T
k

]
P2,k−1, (4.20b)

Now, the solution of the decomposed RLS formulated above for the i -th mode can
be extended for all m number of submodels to be able to apply the OBE algorithm.
This is done considering the definitions of Θ1 and Θ2 expressed by (4.12a) and
(4.12b). The extended matrices, φ and ψ, should also be used as defined by the
Kronecker product of an identity matrix of the order m to φ and ψ stated in (4.5a)
and (4.5b). To be able to update only the parameters of the active submodel, a
symmetric matrix is defined such that the values of all the elements are zero except
for the one element corresponding to the identified active submodel (Goudjil et al.
2023). Because we are using the decomposition technique in this chapter, we define
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two matrices - one for the autoregressive part, Υ1,k ∈ Rm×m , and the other one for
the moving average part, Υ2,k ∈Rm×m :

Υ1,k =



(
φ

T
k P1,k−1φk

)−1
(Λk − Im);

if φ
T
k P1,k−1φk ≻ 0 and ϱk > δ

0m×m ; else

(4.21a)

Υ2,k =



(
ψ

T
k P2,k−1ψk

)−1
(Λk − Im);

if ψT
k P2,k−1ψk ≻ 0 and ϱk > δ

0m×m ; else

(4.21b)

in which Λk ∈ Rm×m denotes the identity matrix at time step k, where the ẑk -th
element on the diagonal is ϱk

δ . Therefore, the parameters of the active submodel
are updated, when the error of the output, ϱk , is not within the assigned ellipsoid
bound, δ. The update gain is ϱk

δ in matrix Λk . On the other side, the adaptation is
frozen when ϱk ≤ δ.

Considering the discussions above, the equations (4.18a)-(4.20b) can be
reformulated for the extended version as follows:

Θ̂1,k = Θ̂1,k−1 +L1,k

[
Yk −ψT

k Θ̂2,k−1 −φT
k Θ̂1,k−1

]
(4.22a)

Θ̂2,k = Θ̂2,k−1 +L2,k

[
Yk −φT

k Θ̂1,k−1 −ψT
k Θ̂2,k−1

]
(4.22b)

L1,k = 1

2
P1,k−1φkΥ1,k

[
Im +φT

k P1,k−1φkΥ1,k

]−1
(4.22c)

L2,k = 1

2
P2,k−1ψkΥ2,k

[
Im +ψT

k P2,k−1ψkΥ2,k

]−1
(4.22d)

P1,k =
[

Im×(na+nb ) −L1,kφ
T
k

]
P1,k−1 (4.22e)

P2,k =
[

Im×(nc+nd ) −L2,kψ
T
k

]
P2,k−1 (4.22f)

The introduction of the factor 1
2 in (4.22c) and (4.22d) allows us to prove the

objective we defined in (4.14), which comes later. Remark: It should be noted that
individual update equations (4.18a) and (6.9) are written based on this assumption
that the system stays in one mode in two consecutive time instants k −1 and k.
After the extension and defining Υ1,k and Υ2,k , it is not the case for the extended
update equations (4.22a) and (4.22b), since if the mode is changed from k −1
to k, the corresponding elements on diagonal of matrices Υ1,k and Υ2,k are also
changed to the associated active mode to be updated at time step k and other



4

70 4. SWITCHED BOX-JENKINS MODELS FOR BIOPROCESSES

submodels remain frozen for the update process until they are detected active and
the procedure continues.

The inner variables x and w and the variable v within the definition of φk , (4.5a),
and ψk , (4.5b) and their extended corresponding matrices, i.e. φk and ψk are
unknown, which the estimates of these variables, i.e. x̂, ŵ , and v̂ can be replaced
(Ding and Duan 2013) as follows:

x̂k = Xk (ẑk ) (4.23a)

ŵk = yk − x̂ (4.23b)

v̂k = ŵk −Wk (ẑk ) (4.23c)

where Xk =φT
k Θ̂1,k and Wk =ψT

k Θ̂2,k are the estimates of the unknown signals for all
the submodels. If we assume the detected active submodel at time step k is i , i.e.
ẑk = i , the i -th element of the vectors Xk and Wk should be used for the calculation
of x̂k and v̂k , respectively, as stated in (4.23a) and (4.23c). Considering the
explained procedure, the two-stage decomposed OBE algorithm can be summarized
in Algorithm .

Algorithm Two-stage decomposed OBE algorithm

1: Initialize: P1,0 = p0Im×(na+nb ), P2,0 = p0Im×(nc+nd ),
2: Θ̂1,0 and Θ̂2,0 randomly initialized,
3: x̂k = ŵk = v̂k = 0 ∀k ≤ 0
4: for k = 1 do
5: step 1: detect the active submodel ẑk

6: Receive uk and yk

7: Form φk =φk ⊗ Im and ψk =ψk ⊗ Im

8: based on (4.5a) and (4.5b)
9: Compute νk/k−1 as (4.16)

10: Compute ẑk = argmin
j=1,...,m

|νk/k−1( j )|
11: Compute ϱk = |νk/k−1(ẑk )|
12: step 2: estimate the parameters vectors Θ̂1,k and Θ̂2,k

13: Compute Υ1,k and Υ2,k as (4.21a) and (4.21b)
14: Compute L1,k , L2,k , P1,k , and P2,k

15: as (4.22c)-(4.22f)
16: Update Θ̂1,k and Θ̂2,k as (4.22a) and (4.22b)
17: Compute x̂k , ŵk , and v̂k as (4.23a)-(4.23c)
18: k = k +1
19: end for

Remark: It can be shown that the objective defined in (4.14) is satisfied at each
time step by implementing the proposed two-stage decomposed OBE algorithm. The
a posteriori prediction error, i.e. Vk/k , can be written according to (4.16) as follows:

Vk/k =Vk/k−1 − (φ
T
k L1,k +ψT

k L2,k )Vk/k−1 (4.24)
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Using the definitions of L1,k and L2,k as stated in (4.22c) and (4.22d) in (4.24) yields

Vk/k =Vk/k−1(Im − 1

2
φ

T
k P1,k−1φkΥ1,k [Im +φT

k P1,k−1φkΥ1,k ]−1

− 1

2
ψT

k P2,k−1ψkΥ2,k [IN +ψT
k P2,k−1ψkΥ2,k ]−1)

(4.25)

If the persistent excitation conditions (Ljung 1999) are satisfied, i.e. φ
T
k P1,k−1φk ≻ 0,

and ψ
T
k P2,k−1ψk ≻ 0, according to the expressions of Υ1,k and Υ2,k stated by (4.21a)

and (4.21b), we have

• either ϱk ≤ δ: Υ1,k and Υ2,k become zero and (4.25) can be rewritten
element-wise as follows for the detected active submodel:

|νk/k (ẑk )| = |νk/k−1(ẑk )| (4.26)

which yields
|νk/k (ẑk )| ≤ δ (4.27)

• or ϱk > δ: by substituting Υ1,k and Υ2,k in (4.25) yields

Vk/k =Vk/k−1

(
Im − 1

2

(
Im −Λ−1

k

)− 1

2

(
Im −Λ−1

k

))
(4.28)

which can be rewritten element-wise for the detected active submodel as
follows:

νk/k (ẑk ) =Λ−1
k (ẑk )νk/k−1(ẑk ) (4.29)

where Λ−1
k (ẑk ) denotes ẑk -th element of matrix Λ−1

k and since |Λ−1
k (ẑk )| = δ

ϱk
, it gives

|νk/k (ẑk )| = δ (4.30)

Therefore, considering the two cases that can happen at each time step and
according to (4.27) and (4.30), (4.14) is proved.

4.3. RESULTS AND DISCUSSIONS

4.3.1. NUMERICAL EXAMPLE

A numerical example is considered to assess the accuracy of the prediction using the
proposed identification algorithm. The dynamics of this example as a two-mode SBJ
system are provided in Table 4.2.

To satisfy the persistent excitation, the input sequence is generated randomly
within the range of [−1,1]. The lower and upper bounds of the noise sequence
are considered −0.08 and 0.08, respectively. Therefore, δ as the upper bound of
the noise can be taken any value as larger as 0.08, which it is set to 0.1 in this
example. To reach and stay within the assigned bounds, 500 samples of the system
are produced and given to the proposed algorithm for the purpose of prediction.
The results are plotted for the last 100 samples. As depicted in Figure 4.2 (a), the
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Table 4.2: Dynamics of the numerical example; a two-mode SBJ system.

Subsystem dynamics Subsystem 1 Subsystem 2
A(q−1,θ1 or 2) 1+0.45q−1 −0.2q−2 1−0.15q−1 +0.35q−2

B(q−1,θ1 or 2) −0.4+0.95q−1 −0.5+1.15q−1

C (q−1,θ1 or 2) 1+0.64q−1 1−0.36q−1

D(q−1,θ1 or 2) 1−0.32q−1 1−0.50q−1

estimated output is capable to track the real output within the specified range.
Figure 4.2 shows the prediction output and errors and the detection of the switching
time instants. Switching instants have been also detected accurately, except at a
few steps. To assess the performance of the algorithm, the FIT index is considered,
which is the percentage fitting error between the true output, y , and the estimated
output, ŷ , which is 95.2 for the last 100 samples and 88.4 for all the samples.

400 420 440 460 480
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-1

0

1

2

-0.1

0

0.1

(a) The real system output, y , and the predicted system output, ŷ based on the estimated SBJ system. The
inner figure shows the posteriori prediction error.

400 420 440 460 480

1

2

(b) Detection of the switching sequences of the SBJ.

Figure 4.2: Numerical example simulation.

Remark: A few factors can impact the performance and the accuracy of the
proposed algorithm. The value of δ that comes from the main constraint of the
objective, is one of the major parameters. If it is chosen close to the bound of
the system noise, it can numerically destabilize the prediction, while by selecting it
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too big, the accuracy is deteriorated. The other important factor is the forgetting
procedure. The forgetting procedure is used to reduce the weight of past data and
to avoid the matrices P1,k and P2,k from approaching zero, as this can affect the
accuracy. Therefore, resetting the parameters P1,k and P2,k in a periodic time interval
can affect the accuracy of the prediction, which should be taken into account.

4.3.2. BIOLOGICAL WASTEWATER TREATMENT PROCESSES

A key question in modeling of biological wastewater treatment processes is which
modeling approach to choose. Using first principal knowledge to mechanistically
drive a model is one of the common and well-known approach. Mechanistic models
rely on chemical and biochemical insights and experimental studies, yet they can
suffer model mismatch due to potential inaccuracies, occasional perturbations, and
varying operational scenarios. Input-output modeling enables an alternative, since
it is a data-driven approach. These models can be utilized as prediction models
of model-based control systems like model-predictive control, even with the lack of
poor interpretability in some cases.

Within input-output modeling approaches, switched system identification is
worth exploring, particularly for approximating (highly-)nonlinear complex biological
processes. As discussed in the introduction, a few limited real-world applications
have been modelled by using simple switched system structures like SARX. Therefore,
in this study, we open up a new window for further exploration of input-output
switched system identification for the purpose of predictive modeling of biological
treatment processes.

For approximating a complex process in the form of input-output models, a
critical question arises:“how do we select influential inputs and their corresponding
influenced outputs?" Upon this selection, inputs can be categorized as main inputs
and disturbances. Taking (1) into account, main inputs are denoted as u, and
disturbances as v . By identifying parameters related to their dynamics, represented
by A(.), B(.), C (.), and D(.), the relationship between outputs and inputs/disturbances
is modelled in a data-driven framework. This chapter sheds light on applications
to be modelled using general SBJ models by illustrating this via two examples.
Depending on the application, some simple structures would suffice for modeling of
the process (Chen et al. 2020a; Hartmann et al. 2015; Wang et al. 2020; Yahya et al.
2020). For other cases, more complex structures may be needed.

In this section, we explore the implementation of the proposed prediction
method through two wastewater treatment processes; anaerobic fermentation in a
continuous stirred-tank reactor (CSTR) and microbial growth of purple phototrophic
bacteria (PPB) in a raceway-pond reactor acting as sequencing batch reactor (SBR).
Anaerobic fermentation in CSTR is chosen to discuss the importance of using
a SBJ model for such a complex bioprocess widely-used in various operational
scenarios. PPB biomass cultivation in an SBR is also selected not only because
of dynamic complexity, but also for assessment of a potential application of
the proposed algorithm in sequencing batch conditions. Moreover, the coupled
anaerobic fermentation and purple bacteria raceway-pond reactors for the growth
of PPB biomass is a resource recovery process, which has been designed as a pilot
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plant in SARASWATI2.0 project.
Anaerobic fermentation in CSTR: Anaerobic digestion is a multistage complex

biological process for converting biodegradable organic matter into biogas through
volatile fatty acid (VFA) intermediates in the absence of oxygen (Anukam et al.
2019; Batstone et al. 2002b). This process can be represented by comprehensive
mechanistic models such as ADM1, with a high-degree nonlinearity and stiffness
(Batstone et al. 2002a). The model, however, is bio- and physio- chemical-structured
for the purposes of process design and understanding, but it is computationally
expensive to use for the purposes of predictive models (Ghanavati et al. 2021; Kil et al.
2017). Its differential-algebraic equation sets consist of time-varying parameters,
multiple variables with intricate interconnections, monod-type kinetics, inhibition
functions, and competitive uptakes, which are the reasons for the nonlinear behavior.
Furthermore, significant fluctuations in both inflow and the composition of incoming
wastewater, that do reflect real-world behaviors, perturb both liquid and gas phases
characteristics. Input-output system identification for such a typical nonlinear
biological model in the framework of switched systems and BJ structure is worth
investigating, and as far as authors are aware is reported in literature for the first
time in this study.

It is challenging to select input and output variables of the process. As mentioned,
output variables can be a function of different variables. As an example, the output
to be predicted is chosen acetate as the process is fermentation and acetate is
expected to be the main product of the anaerobic fermentation process. Moreover,
prediction of acetate is worth considering due to its critical role, especially when
the anaerobic digestion is designed for operation in a wider range (Wainaina et al.
2019). From a practical point of view, the most influential while easily being
manipulating input on production of VFAs is the input flowrate. The flowrate affects
the hydraulic retention time, and is one of the most feasible manipulators in terms
of process control in practice. However, as mentioned earlier, producing acetate does
not depend only on inflow. Considering the mechanistic equation describing the
dynamic of acetate in the ADM1 model (Batstone et al. 2002b), its function can be
expressed as follows:

Sacetate = f (q, X lipid, Xprotein, Xcharbohydrate,Ssuger,Samino acid,Sfatty acid, ...) (4.31)

where Si and Xi stand for soluble and particulate concentrations of material i ,
respectively, q denotes and inflow rate. The composition of the influent is considered
as disturbance to the process. In practice, the process is usually designed around
a specific operating point by monitoring various bioreactor operating parameters.
However, perturbations like sudden influent concentration changes may happen any
time during operation, playing a role as a disturbance. Therefore, the input-output
relations can be represented by a BJ model. It means that disturbances can be
integrated in modeling with independent dynamics, which is biologically explainable
due to different mechanistic effects between the input and the disturbance to the
output. The dynamic between the input flowrate and acetate is completely different
from the dynamic between other variables and acetate as described in the ADM1
model (Batstone et al. 2002b). Therefore, considering the schematic of a BJ structure
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as depicted in Figure 4.1, dynamics of the disturbance is not the same as dynamics
for input.

flowrate
(input)

Anaerobic digestion

acetate
(output)

influent characteristics
(disturbance)

Figure 4.3: Simplified schematization of the anaerobic fermentation process for the
purpose of estimation with a SBJ system.

The three main components i.e. carbohydrate, protein, and lipid represents the
influent characteristics, which can be considered as the disturbance. They highly
impact the process output and are the potential perturbations due to lack of online
measurement. Now, the schematic of the process can be drawn in Figure 4.3.
The nominal operating condition as given in (Batstone et al. 2002a) are considered
to generate the dataset, while the reactor environment (the initial conditions) is
considered to be acidified at the start-up phase. To explore a wide domain of
operation, the process is excited by the input flowrate produced by a pseudo random
input signal, depicted in Figure 4.4 (a). The nominal values for carbohydrate, protein,
and lipid are 5, 20, and 5 kgCODm−3, respectively, while for fluctuation purposes,
a random deviation from the nominal values in a range of [−0.5,0.5] is assumed.
Therefore, the process output deviates from its designated nominal value, as shown
in Figure 4.4 (b).

Considering the modeling structure explained above, the proposed algorithm is
implemented to identify a parametric SBJ model, given the dataset generated from
complex ADM1 model. A few design parameters, therefore, should be assigned.
It should be noted that the process is not hybrid by its intrinsic nature and the
algorithm is used to capture the dynamics within the designed operating space by a
set of linear systems for simplicity for the purpose of prediction, not interpretation.
The orders of the SBJ system, therefore, are assigned as one for all na , nb , nc , and
nd . While the higher order may result in higher accuracy, but no amelioration is
observed when the complexity is increased. The bound of the disturbance, δ, should
be set equal to or bigger than 0.05 due to the assigned range for the disturbance.
The process dynamics can be captured accurately (F I T ≃ 95) by adjusting the two
major design parameters for different number of submodels. It is highlighted
in Remark 1 that the value of δ and the forgetting factor play important role
for the numerical stability as well as the output accuracy. The effects of these
aforementioned parameters on prediction accuracy are investigated in Table 6.1.

A comparison with the conventional two-stage BJ system identification (Ding and
Duan 2013) is also made to explore the priority of using a SJB system instead
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(a) The input flowrate produced by a pseudo random input signal used for identification process.
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(b) The process output (acetate) in nominal operating condition (green line) and deviated (blue line) by
random perturbation within the main components used for identification process.

Figure 4.4: Input (flowrate) and output (acetate) of the anaerobic fermentation
process.

of a non-switched system. The system orders are chosen the same for the both
conventional BJ and SBJ systems. The number of modes and the ellipsoid bound
for the SBJ system are assigned to 4 and 0.05, respectively. The initial values and
other required parameters are set similarly. For the forgetting factor, a period of
60 days is chosen for this particular application. This setting suffices the need for
accurate prediction with the desire for a reasonable rate of convergence. Generally,
the proposed SBJ system identification algorithm outperforms the conventional
BJ system identification method. The accuracy of the identified SBJ model is
better during the whole of the operation and particularly the start-up as shown in
Figure 4.5 (a). The OBE algorithm forces the system to stay within the assigned
bound by jumping to other mode, while the conventional BJ system cannot keep
the output error in the range accurately. As can be seen in Figs 4.5 (a) and (b),
the spikes occur, when the direction of the response output is changed, which can
be compensated by going to the other submodels in the SBJ system to keep the
accuracy within the assigned bound.

Remark: The anaerobic digestion process is not hybrid by its nature, but a highly
nonlinear system. Approximation of the dynamics by using a SBJ model with the
OBE algorithm has an advantage of capturing input-output relations with a limited
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Table 4.3: Prediction accuracy of anaerobic fermentation process under different
scenarios based on the proposed output prediction algorithm.

Number of modes
(N )

Ellipsoid bound
(δ)

Period of forgetting factor
(d ay)

Accuracy
(F I T )

2 0.2 40 94.9157
3 0.1 50 95.7483
4 0.05 60 96.7509
5 0.05 50 97.1826
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(a) The process output (acetate) in nominal operating condition (green line) and deviated (blue line) and its
output prediction by a SBJ system (black line) and a BJ system (red line).

10 50 100 150 200 250 300 340

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(b) The error comparison between the output of the estimated SBJ system (green line) and the output of
the estimated BJ system (blue line).

Figure 4.5: Prediction performance of the proposed identification algorithm on the
anaerobic fermentation process.
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number of linear submodels jumping among each other with a desired bound of
accuracy in terms of prediction error. Moreover, the other advantage of using BJ
structure is identifying different parameters for the moving average part, which is
explainable because of different dynamical function of disturbance to output from
mechanistic modeling point of view. Furthermore, the type of disturbance as it
comes from a nonlinear dynamics in the real system cannot be fitted easily to the
conventional stochastic assumption that is relaxed by proposing the developed OBE
algorithm.

Growth of PPB biomass in an SBR: Purple phototrophic bacteria (PPB) as a group
of microbes for resource recovery from wastewater can be cultivated by cost-effective
raceway-pond bioreactors (Alloul et al. 2023a). A mechanistic model for PPB in
raceway bioreactors has been proposed by Alloul et al. (2023b), known as the Purple
Bacteria Model (PBM). This type of bioprocesses, i.e. sequencing batch, is selected to
assess modeling in the SBJ framework with the proposed OBE algorithm. The cyclic
nature of sequencing batch bioreactor operation is regularly applied in conventional
wastewater treatment, like for example in aerobic granular sludge technology.

Besides hydraulic and sludge retention times, light also plays a critical role in
growth of PPB. In a raceway-pond bioreactor, control over light, more specifically
solar radiation, is not practically feasible, due to various hour-by-hour, day-by-day,
and seasonal fluctuations. It should be, therefore, considered as a potential
disturbance, especially for modeling of an open reactor. Furthermore, distribution
of solar radiation is barely representable by the common distribution functions.
For instance, illumination durations and radiation angles at a single day are not
independent of subsequent days, which may violate the independence assumption
required for probability distributions. It is, therefore, another motivation to employ
the OBE algorithm for approximation of the process dynamics, since it is not subject
to any assumptions for disturbances.

The dynamics of PPB in raceway reactors are also highly nonlinear (Alloul et al.
2023b). If the production of PPB is selected as an output to be predicted,
flowrate that determines feeding of each sequence is considered as input, while
solar irradiation fluctuation that deviates the process from the nominal operating
is considered as disturbance. The schematic of an SBJ structure is depicted in
Figure 4.6. Considering the mechanistic model proposed by Alloul et al. (2023b),
PPB production is the function of a wide range of variables with different dynamics.
Therefore, defining the problem of approximating this bioreactor in the frame of BJ
model is reasonable, due to different dynamics for the input and the disturbance.

To run the PBM model, the following conditions are considered; the sequential
batch is designed to feed the reactor once a day at the midnight; influent filling and
the effluent extraction are set at midnight, while feeding rate is set to one fourth
of the volume per hydraulic retention time; the paddlewheel is considered working
only during the light condition. Other operational parameters are set to the default
values of the PBM (Alloul et al. 2023b).

The solar radiation is subject to fluctuation. Light intensity is depicted in
Figure 4.7 (a) from day 21 to 42, when the process reaches steady state. It can be
observed, finding a probability distribution is subject to some simplifications that
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flowrate
(input)

PPB bioreactor

PPB
(output)

solar irradiation
(disturbance)

Figure 4.6: Simplified schematization of the purple bacteria raceway-pond photo-
bioreactor process for the purpose of estimation with a switched BJ
system.

may not be reliable. Therefore, the OBE algorithm that is not subject to probability
of disturbance is practically and theoretically more reasonable.

The deviation from nominal process operation with light variation as a disturbance
to the operation is shown in Figure 4.7 (b) between day 21 to 42. The output to be
predicted is considered purple bacteria produced from the three photoheterotrophic,
anaerobic and aerobic chemoheterotrophic pathways. The proposed algorithm is
implemented, given the dataset produced. Since the effect of ellipsoid bound and
number of modes were investigated in the previous case study, and the same results
were observed, the detected switching patterns and its interpretations are explored
in this case study.

The orders of the estimated SBJ system are assigned as one for all na , nb , nc , and
nd . The bound of the ellipsoid, δ, the number of modes, and the forgetting period
are set to 0.25, 2, and 60 h, respectively and the process behavior is acceptably
approximated as depicted in Figure 4.8. Moreover, the switching patterns are shown
in Figure 4.8 (b). As can be seen, the time of being in mode one is much longer
than mode two. If only the subsystem one is active for prediction, the ellipsoid
bound constraint is violated, as shown in Figure 4.8; sub-figures (a) and (b). In other
words, using second mode assists the prediction process to stay within the bound.

Remark: Instants of jumping can be explained based on process operating
conditions that they occurred around time of extraction, when the light goes off.
As described above, biomass removal happens every 24 h, and it is replaced by
new influent. PPB are produced photoheterotrophically, aerobic and anaerobic
chemoheterotrophiccally. As the reactor is an open system, the amount of PPB
grown anaerobic chemoheterotrophiccally is negligible, while photoheterotrophic
growth is the major metabolic growth pathway of PPB, which steadily increases
when exposed to solar radiation and decreases when no light is available. A sudden
decrease happens on the time extraction, and it is also affected negatively because
of the absence of light availability. Therefore, the algorithm needs to switch to keep
the accuracy within the assigned bound. In other words, this biomass withdrawal
is behaving like a hybrid feature in this example that the algorithm is capable of
capturing it.
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(a) The solar radiation fluctuation over a 24-hour period, with zero radiation occurring for 12 hours followed
by non-zero radiation for the next 12 hours each day.
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(b) the PPB production for the nominal-designed process (green line) and deviated PPB by disturbance
caused by light intensity fluctuation (blue line).

Figure 4.7: Implemented disturbance (solar radiation) and observed output (PPB) of
the raceway-pond photobioreactor.

4.4. LIMITATIONS OF THE PROPOSED APPROACH AND

FURTHER WORK

This chapter illustrates how SBJ models can be formulated for biological wastewater
treatment process models by analyzing two ADM1 and PBM models. Depending on
the application, some simple structures would suffice for process modeling (Chen
et al. 2020a; Hartmann et al. 2015; Wang et al. 2020; Yahya et al. 2020). For
other cases, more complex structures like SBJ may be more meaningful, as different
dynamics could be fitted to represent the relation between disturbances and outputs.

The identification algorithm used does not require an assumption on statistical



4.4. LIMITATIONS OF THE PROPOSED APPROACH AND FURTHER WORK

4

81

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

500

550

600

650

700

750

800

850

900

(a) The process output (blue line) and its output prediction by a SBJ system (black line) and the same
estimated system with one mode, where more frequently mode is considered than the other one (red
line).
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(b) The error comparison between the output of the estimated SBJ system (green line) and the output of
the estimated SBJ system with one mode, where that mode occurred more frequently is considered than
the other (blue line).
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(c) The switching patterns (mode occurrence) of two-mode estimated SBJ system.

Figure 4.8: Prediction performance of the proposed identification algorithm on the
PPB photobioreactor.



distribution for disturbances, and only has the less strict assumption that they are
bounded. Nonetheless, the proposed method is built upon an approach that needs
a few design parameters influencing the accuracy of prediction. These parameters
discussed in Remark 3 can be determined through trial and error simulations.
Moreover, preprocessing of a dataset for some cases may be required to avoid
numerical issues.

As a future research, the algorithm can be extended for processes that require
a multiple inputs and multiple outputs system representation. Parametrizing the
switching domain in the form of polyhedral partitions for better interpretation
of switching behavior may also be considered as another extension, specially for
biological wastewater treatment processes

4.5. CONCLUSIONS
In this chapter, the application of switched Box-Jenkins systems is investigated in
the context of modeling biological treatment processes, using two widely-utilized
complex models for benchmarking model performance, i.e. ADM1 and PBM. An
identification method is introduced by extending the OBE identification algorithm
for switched Box-Jenkins models. The algorithm builds upon the standard OBE
approach as its foundation, eliminating the need for the assumption that a
probability distribution of disturbances exists and relying solely on the assumption
of bounded disturbances. This feature is particularly valuable in practical scenarios
of treatment processes, where such distributions might not even be available due
to unpredictable fluctuations. To tackle the mathematical challenges arising from
the SBJ structure and its inner signals, we employ a decomposition technique. The
resulting algorithm is recursive, enabling real-time data processing. This attribute
makes it well-suited for systems dealing with extensive data volumes. The results
underscore the algorithm’s capacity to yield accurate predictions, thereby highlighting
its potential for real-world implementation for biological treatment processes.
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5
MPC SYSTEM FOR PPB RACEWAY

REACTORS

Purple Phototrophic Bacteria (PPB) are increasingly being applied in resource recovery
from wastewater. Open raceway-pond reactors offer a more cost-effective option,
but subject to biological and environmental perturbations. This study proposes a
hierarchical control system based on Adaptive Generalized Model Predictive Control
(AGMPC) for PPB raceway reactors. The AGMPC uses simple linear models updated
adaptively to project the complex process dynamics and capture changes. The
hierarchical approach uses the AGMPC controller to optimize PPB growth as the core
of the system. The developed supervisory layer adjusts set-points for the core controller
based on two operational scenarios: maximizing PPB concentration for quality, or
increasing yield for quantity through effluent recycling. Lastly, due to competing PPB
and non-PPB bacteria during start-up phase, an override strategy for this transition is
investigated through simulation studies. The Purple Bacteria Model (PBM) simulates
this process, and simulation results demonstrate the control system’s effective and
robustness.

This chapter is an adapted version of model predictive control of purple bacteria in raceway reactors:
handling microbial competition, disturbances, and performance, Ali Moradvandi, et al. (under
review), Computers and Chemical Engineering.
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5.1. INTRODUCTION

Cultivation of Purple Phototrophic Bacteria (PPB) has been gaining importance
as a promising alternative for microalgae for nutrient and resource recovery in
general. The beneficial aspect of nutrient recovery, coupled with the assimilation
of Chemical Oxygen Demand (COD) in wastewater treatment, positions PPB as a
viable solution for industrial wastewater resources, consequently contributing to the
fertilizer-feed-food-fork chain (Capson-Tojo et al. 2020). It reflects the increasing
interests into the application of PPB under various growth conditions over the last
decade (Capson-Tojo et al. 2023a; Cerruti et al. 2020; Hulsen et al. 2016).

Owing to PPB’s metabolic versatility, they can use a broad range of organic
compounds for growth, both in the presence and absence of light (photoheterotrophic
and chemoheterotrophic grown) and oxygen (aerobic and anaerobic conditions)
(Capson-Tojo et al. 2020). PPB cultivation has proven effective in anaerobic
closed photobioreactors. Puyol et al. (2017) have discussed the mechanistic growth
metabolisms of PPB in this type of reactor environments and have proposed the
Photo-Anaerobic Model (PAnM). While closed controlled systems like membrane
and tubular photobioreactors and illuminated stirred reactors offer ideal conditions
for maximizing PPB microbial selectivity, open raceway-pond reactors require lower
capital and operational expenses (Alloul et al. 2021). The PAnM accurately represents
PPB performances for controlled reactors in research labs, however, the extended
PAnM (ePAnM) (Capson-Tojo et al. 2023b) and Purple Bacteria Model (PBM) (Alloul
et al. 2023) are not limited to photo-anaerobic conditions by taking diverse metabolic
capabilities of PPB across various varying environmental conditions into account.
More specifically, the PBM mechanistically represents PPB growth in a sequencing
batch configuration of raceway reactors, and has been calibrated for alternating
aerobic and anaerobic conditions as well as various metabolic growth pathways of
PPB (Alloul et al. 2023).

Although raceway reactors are potentially cost-effective industrial options for
scale-up, biomass growth productivity can be easily perturbed due to limited
control over operating conditions (de Andrade et al. 2016). Therefore, implementing
automatic control systems can be a solution for ensuring bioreactor robustness
against inevitable operational variations. In recent years, control of microalgae
biomass production in tubular and raceway reactors have been studied by proposing
various advanced control strategies, like linear active disturbance rejection control
(Carreño-Zagarra et al. 2019), hierarchical optimization-based control (Fernández
et al. 2016), and learning-based model predictive control (Pataro et al. 2023). These
methods have been tailored for microalgae and their dynamics and metabolisms,
while PPB responds differently to environmental conditions owing to their different
and highly versatile metabolisms, like ability for high yield on organic carbon sources
and utilization of the near infrared light spectrum. Alloul et al. (2019) have shown
that efficient PPB production can be achieved utilizing fermented wastewater that is
enriched in volatile fatty acids (VFAs). They have also experimentally investigated
various operational strategies impacting the PPB growth in raceway reactors (Alloul
et al. 2021).

The mechanistical understanding acquired through the aforementioned investiga-
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tions has been incorporated in the PBM. Basically, the system configuration is made
on a fixed daily sequencing batch through a natural 12 h dark and 12 h light regime,
fed by VFAs, while taking the stirring effect of the paddle wheel into account. The
growth of PPB encompasses three main pathways: photo-, aerobic, and anaerobic
chemotrophic metabolisms. Observations have shown that due to the constant
transition between dark and light conditions, all these pathways can contribute
to PPB growth, even when a specific operational condition seems predominant
(Alloul et al. 2021). This metabolic-mechanistic switch (Alloul et al. 2023) has
been incorporated into the PBM by introducing an empirical constant for parallel
metabolic growth (Alloul et al. 2023). Although this parameter can be fine-tuned
through dedicated experiments, it remains a significant source of model mismatch.
Furthermore, the open reactor environment of a raceway pond is conducive for
microbial competition between PPB and non-PPB, when PPB are not the dominant
trophic group. From the work by Alloul et al. (2021), as a consequence of being
exposed to air with fluctuating diffusion causing by paddle wheel operation, the low
but alternating dissolved oxygen concentration, seem to be particularly important.
Light intensity and wavelength are other factors affecting PPB growth in raceway
reactors that would affect the growth if not controlled (Cerruti et al. 2022).

Thus, design of a control system to optimize reactor performance under these
challenging conditions is desired. As discussed above, such a control system would
need to enhance the stability and efficiency of PPB cultivation under complex
biological dynamics and meteorological fluctuations. Advanced control strategies
like model predictive control (MPC) has shown its applicability and credibility for
various biological wastewater treatment systems (Gupta et al. 2022; Han et al.
2021). The adaptive version of Generalized Model Predictive Control (GMPC) (Clarke
et al. 1987) presents a control strategy for processes with intricate dynamics, such
as the sophisticated microbial dynamics of PPB as described by the PBM. This
approach involves simplifying the complex system into input-output dynamics and
continuously updating parameters to mimic the evolving behavior of the actual
process under varying operational conditions, uncertainties, and perturbations.
Furthermore, the continuous changes in operational conditions pose the challenge
of adapting the set-point to optimize process performance throughout the operation,
which can be effectively tackled through a hierarchical control strategy assigning an
appropriate set-point (Ghanavati et al. 2021; Sadeghassadi et al. 2018).

According to the authors’ best knowledge, advanced control of PPB-based raceway
reactor has not reported in the existing literature. Therefore, this chapter introduces
a control configuration for a PPB-based raceway reactor. The primary controller
is based on Adaptive GMPC (AGMPC), and a supervisory layer is responsible
for determining an appropriate set-point given an operational decision strategy
and current process status. An operational decision is made based on either a
water quality-driven scenario, which reduces effluent VFA as much as possible to
increase PPB concentration as well as treatment efficiency, or a quantity-driven
scenario, which increases the production rate, and thereafter the yield, by recycling
unconverted effluent VFA. Additionally, an override control strategy is integrated into
the system to facilitate the transition from the start-up phase to the PPB-dominant
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phase. The proposed control strategy is operationally advantageous as its makes it
possible to do the following:

• Assigning appropriate time varying set-points for PPB concentration, employing
a supervisory layer to determine based on two operational scenarios, i.e.
quality-driven and quantity-driven under varying operational scenarios.

• Maintaining PPB concentration at the desired set-point under different
illumination scenarios and light perturbations.

• Maintaining PPB concentration at the desired set-point even when parallel
metabolic growth constant is unknown and the contribution of the
different metabolic PPB pathways (photoheterotrophic, anaerobic, and aerobic
chemoheterotrophic) to the overall PPB growth cannot be quantified.

• Suppressing the growth of other competing bacterial species, enabling moving
towards the desired set-point for PPB concentration under non-steady-state
conditions more swiftly (i.e. start up phase) using override phase-based control
that regulates the paddlewheel.

• The proposed applied controller, based on an adaptively updated linear input-
output model, ensures a low computational burden, and utilizes available
measurements to effectively capture process variations and disturbances at
each time step.

The chapter is organized as follows. Section 5.2 includes the PPB process
description and the corresponding control challenges to be addressed. Section
6.3 presents the PPB control system by discussing the control configuration for
PPB-based raceway reactor integrating adaptive generalized model predictive control,
override phased-based control, and decision-making supervisory layer. Finally,
the proposed control strategy is assessed via comprehensive simulation studies in
Section 5.4, and in the last section, conclusions are drawn.

5.2. PPB PROCESS DESCRIPTION
A first-principle model, describing a biological wastewater treatment process, is
a valuable tool to design, optimize, and control a process. Purple phototrophic
bacteria (PPB) dynamics can be mechanistically represented by the Purple Bacteria
Model (PBM) (Alloul et al. 2023). The PBM is the extended model based on the
Photo-anaerobic model (PAnM) (Puyol et al. 2017) and the extended Photo-Anaerobic
Model (ePAnM) (Capson-Tojo et al. 2023b) for growth of PPB in open raceway-pond
reactors. The PBM thus serves as a reliable benchmark to analyze the PPB dynamics,
considering the complexity of microbial versatility of PPB as well as competition
between PPB and non-PPB. Therefore, in this work, it will be used as a benchmark
to simulate the growth of PPB in a raceway-pond reactor and assess the performance
of the proposed control system. In this section, a few notable behaviors of the
process are described with respect to the PBM, which should be taken into account
for designing a control system and assessing its performance.
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5.2.1. METABOLIC VERSATILITY OF PPB
The PBM describes the PPB’s microbial versatility among the photoheterotrophic
(XPB ,ph), and both anaerobic (XPB ,anc ) and aerobic chemoheterotrophic (XPB ,aec )
growth of PPB. This mechanistic-metabolic microbial dynamical selection is modelled
through an empirical constant called the parallel metabolic growth constant (MS ).
This factor is responsible for the contribution of alternative pathways to PPB
growth alongside the dominant pathway, resulting in model mismatches. These
mismatches stem from its variations during operation, transitions between light and
dark conditions, and the challenge of precisely determining the constant empirically
through timely experiments (Alloul et al. 2021). Variations of MS result in different
values of PPB concentration during operation, as all these pathways can contribute
to PPB growth.

5.2.2. PPB COMPETITORS

In addition to PPB, non-PPB are considered within the microbial biomass of the
PBM. Non-PPB are divided into aerobic bacteria (X AEB ) and anaerobic bacteria
(X AN B ). Since the raceway-pond reactor is an open system, aerobic bacteria are
the main competitor of PPB. This competition can impact control performance,
especially during the start-up phase when PPB concentration is not dominant.
Although, the oxygen concentration in raceway reactors is nearly zero, using the
paddlewheel to pass oxygen through the bulk, it affects the competition between
PPB and non-PPB, particularly when PPB are not the dominant species.

5.2.3. LIGHT IRRADIANCE, ATTENUATION, AND DISTRIBUTION

Light is a crucial input factor to support the phototrophic growth of PPB. Light
intensity is considered constant during daylight times; this assumption can be
reliable if an artificial illumination system is used (Cerruti et al. 2022). Otherwise,
the controller should be able to deal with a Gaussian-like illumination intensity that
represents the real-world scenario in which the circadian rhythm is perturbed with
cloud formation. Therefore, meteorological fluctuations and incoming suspended
solids may disturb light distribution and attenuation.

5.2.4. MAXIMUM YIELD OF PPB
PPB is metabolically capable of using energy and carbon sources to grow (Imhoff
2006). In other words, light as an energy source and chemical oxygen demand
(COD) in wastewater as a carbon source are required to efficiently cultivate PPB.
In this sense, fermented wastewater including mostly volatile fatty acids (VFAs) has
been considered by Alloul et al. (2019) and Capson-Tojo et al. (2020) as favorable
carbon sources for PPB microbial selectivity. Depending on the availability of varying
amounts of these two sources, the maximum yield achievable during operation
can vary. Therefore, the control system should be designed in such way that it
makes best use of available sources, subject to fluctuations, to enhance the process
performance.
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5.3. PPB CONTROL SYSTEM
In this section, a step-by-step design of an advanced control system aimed at
tackling the mentioned control challenges for PPB utilization in raceway reactors
is discussed. The primary control objective is to regulate the concentration
of PPB during operation, subject to biological and meteorological fluctuations.
Among the advanced control strategies, model predictive control (MPC), which
has demonstrated its efficiency and applicability in various biological wastewater
treatment processes, is selected as the core of the control system (Ghanavati et al.
2021; Han et al. 2021). To improve efficiency, a supervisory layer is also developed,
accounting for an appropriate set-point to be assigned for the MPC controller based
on two operational scenarios. An override control strategy is also proposed for the
condition when the PPB are not dominant. The developed control system for the
raceway reactor is illustrated in Figure (5.1). It includes three main components: (i)
phased-based controller: it serves as an override control mechanism, facilitating the
transition to the MPC controller for PPB concentration during the start-up operation;
(ii) main controller: this component is dedicated to regulating PPB concentration
and to manage process uncertainty and potential disturbances effectively; and (iii)
decision-making supervisory layer: it acts as a supervisory layer to assign an
appropriate PPB set-point concentration based on the preferred operational strategy
and the process condition. In the following, the adaptation of the control architecture
based on MPC for PPB cultivation in a raceway-pond reactor, and developing the
supervisory layer and the override control strategy will be discussed.

5.3.1. CONTROL OF PPB RACEWAY REACTORS

PPB raceway reactors are modelled as a sequential batch process with daily cycles
of filling and extracting the reactor with influent and effluent, respectively. As
discussed by Alloul et al. (2021), a favorable operational strategy is 12 h light/12 h
dark condition with 24 h stirring, where the reactor is fed by the VFA-based medium
before the start of the light condition. To maintain a constant reactor volume, the
feeding and extraction rates are kept equal. From an automatic control point of
view, practical manipulated variables include the concentration and the flowrate of
influent. If the concentration of the incoming medium is assumed to be constant,
the feeding flowrate is the feasible control action to regulate PPB concentration.

Given the operational conditions of the raceway reactor, the significance of
employing MPC becomes evident. With the reactor being fed once a day and the
complex behavior of microorganisms characterized by long response times, making
predictions over a horizon and controlling the process accordingly becomes crucial.
Therefore, while the simulation (process) time step is an hour, the controller time
step is a day (24 h). As depicted in Figure 5.2, at time step 24k, where k is
an integer value, measured PPB concentrations (measured XPB ) and implemented
feeding rates (past u) at past times like 24(k −1), 24(k −2), 24(k −3), etc. are utilized
to predict PPB concentrations over a prediction horizon (Np ) and calculate planned
control action over a control horizon (Nu) accordingly. This concept is similar to
event-based MPC (Pawlowski et al. 2014, 2012), where the event is fixed in this work.
This concept also allows for sufficient time to determine PPB concentration daily
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Figure 5.1: MPC-based control system architecture for a raceway reactor. The figure
illustrates the three main components of the control system: (i) the
phased-based controller for transitioning to the MPC controller, (ii) the
main controller for regulating the PPB concentration while handling
uncertainties and disturbances, and (iii) the decision-making supervisory
layer for assigning the PPB set-point concentration based on a preferred
operational strategy. Dashed lines represent variables to be measured
(XPB as the primary controlled variable, and influent and effluent VFAs
for the supervisory layer). Solid bold lines represent manipulated
variables: u, which adjusts the speed of the inflow and outflow pumps
(thus controlling the flow rate), and up , which controls the paddlewheel.

with an off-line spectroscopic measurement combined with conventional TSS/VSS
monitoring if real-time monitoring is not available (Cerruti et al. 2020).

5.3.2. ADAPTIVE GPC ALGORITHM: MAIN CONTROLLER

Model predictive control is a model-based control strategy. Although the mechanistic
PBM model provides detailed process dynamics, using it as the base model for
an MPC controller presents significant challenges. Due to its complex biological
characteristics and integrated structure, the PBM model is highly nonlinear. As
a result, employing such a large model for MPC controller design leads to a
nonlinear non-convex optimization problem that must be solved at each control
step, causing computational complexities and a heavy computational burden (Ahmed
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Figure 5.2: Schematic representation of the raceway reactor operation and the
integration of model predictive control: hourly process time step vs daily
control time step.

and Rodríguez 2020). Furthermore, designing an MPC controller based on this model
requires either measurements or estimations of every state variable at each control
step. Measuring all the state variables is economically and practically unfeasible
(Dochain 2013), while developing a state estimator is also challenging, particularly
for PPB states that grow through different pathways (XPB ,ph , XPB ,anc , and XPB ,aec ).
Additionally, the effectiveness of MPC relies on the accuracy of the model, but the
PBM model is susceptible to potential mismatches, such as those related to the
parallel PPB growth constant (MS ). Therefore, an input-output model is employed in
this work to characterize the relationship between the feeding flow rate and the PPB
concentration. To capture the variations of the process such as those related to the
nature of the process like parallel growth pathways as well as external disturbances,
an adaptive version of the input-output model is employed. This adaptive approach
allows the model parameters to be updated based on new sets of observations,
ensuring accurateness of predictions as well as robustness of the controller against
biological and meteorological variations.

Given the input-output model as the basis of MPC, the generalized model
predictive control (GMPC) algorithm can be used as a feedback controller (Clarke
et al. 1987). In this method, the GMPC controller calculates the control actions over
a control horizon (Nu) that minimizes a cost function based on a prediction horizon
(Np ). The cost function, J , is defined as follows:

J =
Np∑
j=1

δ
[

ŷ(k + j |k)−w(k + j )
]2 +

Nu∑
j=1

λ
[
∆u(k + j −1)

]2, (5.1)

where ŷ(k + j ), w(k + j ), and ∆u(k + j ) denote the j−step ahead prediction on
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data up to time step k, the future set-point trajectory, and the planned control
increments, respectively. Moreover, δ and λ are the controller design parameters
representing the error and the control weighting factors. The predicted output, ŷ , of
the actual output, y , over the prediction horizon Np is obtained by a single-input
single-output discrete time linear model as follows:

A(q−1)y(k) = B(q−1)u(k)+ϵ(k)/∆, (5.2)

in which
∆= 1−q−1, (5.3)

where ϵ denotes zero mean white noise, and A(q−1) and B(q−1) are the linear
models. These linear models are the rational functions of the time shift operator q−1

(i.e. q−d xk = xk−d for d ∈Z) that can be written as follows:

A(q−1) = 1+a1q−1 + ...+ana q−na , (5.4a)

B(q−1) = b0 +b1q−1 + ...+bnb q−nb , (5.4b)

in which na and nb express the order of the system with respect to the outputs and
inputs, respectively. Since, the adaptive version of the GMPC controller is considered
to tackle with improper future predictions, the parameters of model (6.6) should be
updated. If we consider θ = [a1, ..., ana ,b0, ...,bnb ]T as the vector of the linear model
coefficients, the online estimation of this parameter vector at time step k, i.e. θ̂(k),
can be derived using the least-squares method as follows:

θ̂(k) = θ̂(k −1)+ P (k −1)φT (k)

1+φT (k)P (k −1)φ(k)
(y(k)− ŷ(k)), (5.5)

where φ(k) is the augmented vector of past input and output observations, P (k) is
the covariance matrix, and ŷ(k) is the prediction output. The identification process
can be written as follows:

φ(k) = [y(k −1), ..., y(k −na),u(k), ...,u(k −nb)]T , (5.6a)

P (k) = P (k −1)+ P (k −1)φT (k)φ(k)P (k −1)

1+φT (k)P (k −1)φ(k)
, (5.6b)

ŷ(k) =φT (k)θ̂(k −1). (5.6c)

Given this adaptive model, the minimization of the cost function J expressed by (6.5)
can be explicitly derived, assuming no constraints on the control signals (Camacho
et al. 2007). Therefore, if f is defined as the free response of the process, the optimal
vector of the planned control actions, i.e. u can be written as

u = (GT G+λI)−1GT (w− f), (5.7)

where G, I, and w express the step response matrix of the system, the identity matrix,
and the vector of the future set-points, respectively. However, the actual control
action sent to the process, is the first element of the vector u that can be written as

∆u = K(w− f), (5.8)
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where K denotes the first row of the matrix (GT G+λI)−1GT . Now, the first element
of ∆u is the implemented control action, and the rest of the elements are planned
ones that will be re-updated during next control time steps. The adaptation of the
system parameters is reflected in the response matrix of the system (G) and the free
response (f). In other words, to derive G, we need to find two polynomials E j and
F j based on the Diophantine equation as follows:

1 = E j (q−1)∆A(q−1)+q− j F j (q−1), (5.9)

in which the degrees of polynomials E j and F j are na and j −1 ( j as in (6.5)),
respectively, and they can be derived by dividing 1 by ∆A(q−1) until the reminder is
a factor of q− j F j (q−1), and then, the quotient is E j (q−1). Therefore, the polynomial
G j (q−1) can be written as

G j (q−1) = E j (q−1)B(q−1). (5.10)

The matrix G is then an Nu ×Nu matrix based on the coefficients of the polynomial
G j (q−1) (Camacho et al. 2007). The elements of the free response vector f can also
be written as follows:

f j+1 = q(1−∆A(q−1))f j +B(q−1)∆u(k −d + j ) (5.11)

in which f1 = y(k). Therefore, as can be seen in equations (5.9), (5.10), and (5.11),
these are derived based on the system polynomials of A(q−1) and B(q−1). Therefore,
as these system polynomials are updated at each time step, the response matrix of
the system (G) and the free response (f) are also updated accordingly.

It should also be highlighted that the only physical constraint that may be taken
into account in the actuator limits as follows:

umi n ≤ u ≤ umax , (5.12)

where umi n and umax express the upper and lower bounds of the actuator inputs.
Considering the reactor configuration, the lower bound is zero, while the upper
bound can be defined based on the volume of the reactor. In case of taking
the constraint into account, the optimization problem written by (6.5) subject to
inequality constraint of (5.12) has to be solved numerically (Camacho et al. 2007).

5.3.3. SUPERVISORY LAYER: DECISION-MAKING OPERATIONAL SCENARIOS

As discussed in Section 5.2.4, maximum productivity of PPB depends on availability
of two sources, i.e. the light intensity and the VFA concentration in influent. From
a design perspective, the daily product extraction is scheduled before sunrise. This
implies that if there is too much VFA in the influent, such that the illumination
of one day was insufficient to cultivate maximum productivity, there will be some
unconverted VFA in the effluent. Therefore, determining an appropriate value for the
desired PPB set-point concentration of the controller (w in the objective function J
expressed by (6.5)) enables the control system to operate as efficiently as possible.
In addition to this point, variations in each of these two sources highlight the
importance of selecting the desired PPB set-point concentration.
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In thinking of a suitable value for the desired PPB set-point concentration,
it is essential to prioritize the operational strategy based on either “quality” or
“quantity". In other words, increasing the feeding rate can enhance quantity but
may compromise quality, and vice versa. Quantity and quality can be considered
as a higher production rate and a higher PPB concentration, respectively. The
production rate at control time step k can be defined as

Q(k) = XPB (k)u(k), (5.13)

where Q [mgCODh−1] denotes the production rate, but since the feeding is
configured for only one hour per day, it can be considered as a daily production rate.
Hence, increasing u may result in a higher production rate, but reduces the quality,
i.e. XPB . The another factor to consider is yield. This comes along as decreasing
XPB may lead to unconverted VFA remaining in the effluent. Yield of production, Y ,
at control time step k can be defined as follows:

Y (k) = Q(k)

SV F A,i (k −1)u(k −1)
, (5.14)

where SV F A,i is the influent VFA concentration. To have some indications towards
the factors defined, Table 5.1 provides the steady-state values of the open-loop
process simulation. As can be seen, increasing the feeding flow rate (u) leads to
a higher daily production (Q) but with less steady-state PPB concentration (XPB ).
On the other hand, less PPB concentration results in less yield (Y ), but some
unconverted VFA in the outlet.

Table 5.1: Steady-state values of the inlet and outlet VFA, PPB concentration, yield,
and daily production rate under three different operational conditions.

Light intensity
12 h dark/12 h light

[Wm−2]

Paddlewheel
12 h dark/12 h light

SV F A,i

[mgCODL−1]
u

[Ld−1]
SV F A,o

[mgCODL−1]
Q

[mgCODd−1]
Y ×100

XPB

[mgCODL−1]

54 on/on 3000
20
25
30

≃ 0
238.6
637.8

17792
23025
25713

29.6
30.6
28.6

889.6
921.0
857.1

60 on/on 3000
20
25
30

≃ 0
127.5
534.1

19020
24332
27300

31.7
32.4
30.3

951.0
973.2
910.0

60 off/on 2500
20
25
30

212.0
594.4
939.3

14764
17187
18120

29.5
27.4
24.1

738.2
687.5
604.0

In addition to the discussion above, it is inevitable that fluctuations will occur
in both incoming VFA and light intensity. It also highlights the importance of
determining an appropriate desired PPB concentration given the process conditions.
Therefore, a supervisory layer is developed in this chapter to overcome this challenge.
The supervisory layer is responsible for decision-making considering the current
status of the process. Utilizing such a decision-making supervisory layer within the
feedback loop enables the control system to update the desired set-point for the
PBB concentration. Therefore, a criterion should be designed for quality-driven and
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quantity-driven strategies. In this sense, the concentration of VFA in the inlet and
outlet plays a crucial role in determining the desired PPB set-point concentration,
and thereafter the production rate and the yield. Considering the relations among
Q, Y , and XPB the two following operational scenarios can be discussed:

• Quality as priority: In this scenario, the PPB set-point should be set as high
as possible. A suitable measurement for tracking this trajectory could be the
outlet VFA concentration. As this concentration approaches the minimum
assigned value, i.e. Smi n

V F A , it indicates that most portion of carbon sources
have been consumed and converted to PPB. This indication provides valuable
feedback to the controller subject to possible uncertainties, enabling it to
calculate control actions even when no additional information is available for
the biological and meteorological conditions. Therefore, a stepwise increase
(∆XPB ) is implemented for the set-point until the outlet VFA concentration
goes below Smi n

V F A . It should be noted that in practice a buffer range, like

Sl
VFA,o ≤ SVFA,o < Su

VFA,o should be taken into account in order to keep the
process operation stable. It should also be highlighted that using this scenario
contributes to not only PPB output quality, but also to wastewater treatment
by reducing output chemical oxygen demand (COD).

• Quantity as priority: In this scenario, by reducing the PPB set-point, the
production rate will be increased. However, as can be seen by a few examples
provided in Table 5.1, the yield is also decreased. To tackle this issue, a
novel solution is to recycle the soluble effluent, which primarily consists of
unconverted VFA. Yield without recycling can be written as (5.14). Recycling
unconverted VFA reduces the amount of VFA required from the VFA tank,
thereby increasing the yield to some extent. In other words, it can be written
as follows:

SV F A,i (k +1)u(k +1) = SV F A,i (k +1)u∗(k +1)+SV F A,o(k)u(k), (5.15)

where u∗ is the required flow rate of VFA from the fermented stream, which
obviously is less than what should be used without circulation. Given (5.14),
the new yield based on circulation, Yr ec , can be written based on u∗ as follows:

Yr ec (k) = XPB (k)u(k)

SV F A,i (k −1)u∗(k −1)
, (5.16)

and by substituting (5.15), it gives

Yr ec (k) = XPB (k)u(k)

SV F A,i (k −1)u(k −1)−SV F A,o(k −2)u(k −2)
, (5.17)

in which it can be seen that Yr ec > Y by comparing (5.17) and (5.14). In
contrast to the alternative strategy, we should implement a stepwise reduction
(∆XPB ). However, we also require an indication for the set-point reduction. To
do so, (5.17) is rewritten as follows:

1

Yr ec (k)
= SV F A,i (k −1)u(k −1)

XPB (k)u(k)
− SV F A,o(k −2)u(k −2)

XPB (k)u(k)
, (5.18)
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and
1

Yr ec (k)
= 1

Y (k)
− SV F A,o(k −2)

SV F A,i (k −2)
× SV F A,i (k −2)u(k −2)

XPB (k)u(k)
, (5.19)

Now, it can be seen that a potential measurement indication can be
SV F A,o
SV F A,i

. In

other words, as the process approaches its steady-state condition considering
recycling effluent, this factor determines the amount of increase in yield. This
strategy not only boosts production rates but also improves yield, which might
otherwise decline, but is offset by recirculation. Like the other strategy, a buffer
range is also required to taken into account in practice for operational stability.

Considering these two operational strategies, i.e. quality-driven and quantity-driven,
the decision-making layer can be formulated based on the decision tree given in
Figure 5.3. The assignment of the design parameters for this mechanistic decision
tree, along with the complementary notes on upper and lower bounds (Su

VFA,o, Sl
VFA,o,

α, and β) will be discussed in a simulation study later.

Decision-making operational strategy

Quality

SVFA,o ≥ Su
VFA,o

w(k) = w(k −1)+∆XPB

Sl
VFA,o ≤ SVFA,o < Su

VFA,o

w(k) = w(k −1)

SVFA,o < Sl
VFA,o

w(k) = w(k −1)−∆XPB

Quantity

SVFA,o
SVFA,i

≤α

w(k) = w(k −1)−∆XPB

α< SVFA,o
SVFA,i

≤β

w(k) = w(k −1)

SVFA,o
SVFA,i

>β

w(k) = w(k −1)+∆XPB

Figure 5.3: Decision-making supervisory layer for assigning a suitable PPB concen-
tration set-point based on either quality- or quantity-driven operational
strategy.

5.3.4. OVERRIDE START-UP CONTROL: PHASED-BASED CONTROL

The microbial community considered in the PBM has been divided into three
categories: PPB, aerobic bacteria (AEB), and anaerobic bacteria (ANB) (Alloul et al.
2023). Furthermore, three different growth pathways. i.e. photoheterotropic (ph),
aerobic chemoheterotropic (aec), and anaerobic chemoheterotropic (anc) have been
defined for PPB. Since the operational condition is not favorable for anaerobic growth,
concentrations of anaerobic bacteria (X AN B ) and anaerobic chemoheterotropic PPB
(XPB ,anc ) are very negligible. Therefore, the main competition is between other two
types of PPB (XPB ,ph , XPB ,aec ) with aerobic bacteria (X AEB ) only during the start-up
operation, as the oxygen supply contributes to the growth of both competitors.

This operational scenario predominantly occurs during the start-up phase, when
no microbial biomass dominates and the oxygen concentration is high. Once PPB
becomes the dominant species, it enhances its growth accordingly. In other words,
the reactor is then a PPB-dominated system, because of availability of light, excess in
organic carbon and limited oxygen conditions (Capson-Tojo et al. 2023b). Therefore,
an override control strategy can be a solution to bring the process from the start-up
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phase to the PPB-dominated operation (Chung et al. 2006; Sheik et al. 2022). A
feasible candidate for the control action is regulation of the paddlewheel. As
modeled in the PBM, if the paddlewheel is turned on, it results in oxygen depletion
from the bulk through accelerating oxygen diffusion for growth, thereby reducing
oxygen concentration. Conversely, when the paddlewheel is turned off, oxygen
concentration is higher (Alloul et al. 2023).
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Figure 5.4: Open loop outputs for PPB (XPB ) and aerobic bacteria (X AEB ) for two
phases, i.e. start-up and steady-state under two operational conditions
w.r.t. the paddlewheel.
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As can be seen in Figure 5.4, the maximum capacity for PPB cultivation is attained
when the paddlewheel operates continuously throughout the day. This outcome
is biologically explainable, as lower levels of oxygen enhance the productivity of
photoheterotrophic PPB (Alloul et al. 2021; Capson-Tojo et al. 2021). Furthermore,
during the start-up phase, the high oxygen levels result in the aerobic bacteria’s
oxygen affinity being at its maximum level, consequently maximizing their production
as depicted in Figure 5.4. Therefore, to facilitate a smooth transition from the start-up
phase, a heuristic control approach for regulating paddlewheel is implemented in
this chapter. This controller can effectively suppress the growth of aerobic bacteria.
It is worth noting that utilizing this override control approach, we can switch from
this override control to the main MPC controller, when the competition between
PPB and non-PPB is minimal. This strategic activation helps prevent any sudden
changes that might otherwise destabilize the process. This is chosen because the
process stability is crucial, given that the solution of the objective function (6.5)
relies mainly on appropriate initialization. In the next section, the implementation
of the developed control system and its results will be discussed.

5.4. RESULTS AND DISCUSSIONS
In this section, the proposed control strategy is assessed via a step-by-step simulation
study. First, the main controller is evaluated, including an assessment of its
effectiveness and robustness against the most critical model mismatch, namely PPB
microbial parallel growth constant, and the most probable disturbances, namely
light perturbation and incoming VFA concentration. Secondly, the effectiveness of
the phase-based override controller is discussed, and finally, the performance of the
main controller coupled with the supervisory layer is assessed.

5.4.1. MPC FOR PPB CONCENTRATION: PERFORMANCE ASSESSMENT

UNDER DIFFERENT PERTURBATIONS

Given the control structure discussed in Section 5.3.1, to assess the performance of
the proposed controller, the process is considered in the PPB-dominant condition
with 24 h paddlewheel in use. Prediction and control horizons are determined based
on the process settling time to the open-loop step response. As a role of thumb
(Seborg et al. 2016), the control horizon Nc can be chosen between ts

3∆t < Nc < ts
2∆t ,

in which ts denotes the settling time that is around 8 d in this case for step response
w.r.t. the feeding rate, and ∆t expresses the sampling time, which is set to 1 d
as discussed in Section 5.3.1. The prediction horizon is also selected close to the
control horizon (Seborg et al. 2016). Hence, Nc and Np are assigned the value of
4 d and 5 d, respectively. The constraint on the control input can be posed based
on the reactor volume. Since the total reactor volume is 100 L in the PBM, the
upper limit can be physically considered 40 Lh−1, while the lower limit can be zero,
i.e. 0 ≤ u ≤ 40L/h. In addition, the model expressed by (6.6) is taken into account
as the base model of the MPC controller. The order of model is set to na = 1 and
nb = 1 with respect to the output and the input, respectively. Thus, the parameter
vector to be updated at each time step is θ = [a1,b0,b1]T . As increasing the order
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did not improve the performance, and the chosen orders provide sufficient control
performance, these values are considered fixed for the simulation studies.

Four operating scenarios: (i) set-point tracking without disturbance; (ii) set-point
tracking subject to fluctuation in incoming VFA; (iii) set-point tracking under
different illumination scenarios; and (iv) set-point tracking with mismatch in the
PPB parallel growth constant are considered to assess the controller performance.
As depicted in Figure 5.5, the AGMPC controller is able to track the assigned
set-points by regulating the feeding flow rate as the control action. As mentioned
in Table 5.1, the steady-state equilibrium of the system with initial feeding rate of
25 Lh−1 is 921 mgCODL−1, in which by lowering the PPB set-point concentration,
the production rate can be increased. Such an observation brought us to design a
supervisory layer that. Moreover, it has been observed that assigning a set-point
either too high may cause process instability, since required amounts of carbon
sources may not be available to convert to PPB, or too low may violate the actuator
constraint and drastically decrease the performance and yield. This one also
motivates to introduce a supervisory layer to avoid such occurrences.

While having a storage tank for VFA produced from an anaerobic fermentor process
helps to stabilize the VFA concentration feeding to the raceway reactor, fluctuations
in VFA levels are inevitable. To assess the designed AGMPC controller, a potential
±20 % disturbances for the nominal incoming VFA concentration is implemented
to the process. As shown in Figure 5.6, the controller is able to keep the process
stable to the assigned set-point, subject to the incoming VFA disturbances. As
mentioned previously, light and VFA are the two main sources for PPB growth. In
case of a significant decrease in VFA such that there is no sufficient VFA biologically
available to convert and reach the designated PPB set-point concentration, especially
in the presence of adequate light intensity, the process may become unstable. This
instability arises from the absence of an optimal solution for the control action
within the considered actuators constraints. For instance, for a −20 % decrease in the
nominal inlet VFA, the outlet PPB concentration can be deceased by 100 mgCODL−1

without adjusting the feeding rate. Conversely, a significant increase in VFA poses
less of a challenge. However, assigning a set-point concentration that is too low can
lead to diminished yield and productivity, as significant amounts VFA may remain
unconverted. This again highlights the importance of a suitable set-point to be
assigned, considering the process status.

To assess the robustness of the proposed control strategy against light intensity,
three illumination scenarios are considered, namely (i) controlled (constant)
illumination with a constant intensity of 54 Wm−2, (ii) natural illumination with the
total intensity equal to the controlled illumination, and (iii) natural illumination with
uncertainty that may happen due to meteorological events, like cloud formation
(depicted in Figure 5.7 - top figure). As can be seen in Figure 5.7, even if the
light distribution is varying, the controller keeps the process stable on the assigned
PPB set-point. Switching from controlled illumination to natural light, even though
the total intensity remains constant, results in a decrease in the feeding flow
rate determined by the controller. This indicates that apart from light intensity,
the distribution of light also influences growth (in agreement with Capson-Tojo
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Figure 5.5: AGMPC set-point tracking — process response and control action.

et al. (2023b)). These results indicate the automatic controller can handle these
perturbations without light distribution information. As the light intensity and
distribution may not be the same for every day, in case of meteorological events that
perturbs the planned light intensity, the controller still satisfies the control objective
as shown in Figure 5.7. Once again, if the total intensity becomes too low, in case
of too high set-point, there is no potential energy source available to convert to
PPB, thereby the process becomes unstable, and the importance of assignment of an
appropriate set-point is, then, highlighted.

As mentioned in Section 5.2.1, the most important source of the model mismatch
is the parallel metabolic growth constant (MS ). Determination of this parameter is
experimentally and mathematically complex, as it may change due to changes in
species and continuous daily switching between light/dark conditions (Alloul et al.
2021). The proposed AGMPC controller is robust against uncertainty and model
mismatch due to its reliance on an input-output model that is free of mechanistic
relationships. Therefore, this model is daily updated based on observed data to
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Figure 5.6: AGMPC set-point tracking subject to inlet VFA variation — process
response and control action.

accurately capture changes over time. As depicted in Figure 5.8, even though the
parallel metabolic growth is changed over time, the controller tracks the assigned
set-point by regulating the feeding flow rate. To compare the results, the open loop
steady-state values of PPB concentration for the different parallel metabolic growth
constants on the last five days for the feeding flow rate of =25 Lh−1 have been also
drawn in Figure 5.8. As can be seen, it is an important contributing factor to the
PPB concentration, which can drastically change the output concentration without
the controller. Thus, the controller keeps the output concentration fixed even when
the parallel growth constant changes and no information about these changes is
available.

As discussed above, it has been shown that the controller effectively tracks
an assigned set-point and can satisfactorily manage two significant potential
disturbances: incoming VFA concentration and changes in illumination scenarios,
which are the primary resources enabling PPB growth. Moreover, the robustness of
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Figure 5.7: AGMPC set-point tracking subject to different illumination scenarios —
daily illumination intensity, process response, and control action.



5

104 5. MPC SYSTEM FOR PPB RACEWAY REACTORS

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

700

851

920
934

1117

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

0

20

25

30

40

Figure 5.8: AGMPC set-point tracking subject to uncertainty of the PPB metabolic
growth constant — process response, and control action.

the controller against model mismatch of the parallel metabolic growth constant has
been demonstrated as well. It has been also investigated, whether in some scenarios
with severe fluctuations, one might need to assign an appropriate set-point in order
to make the best use of available sources to convert to PPB and to avoid process
instability. The simulated examples are for the process conditions wherein PPB are
the dominant species. In the following section, the discussion focuses on designing
a controller to transition the process from the competition phase (start-up phase) to
this PPB dominant phase.

5.4.2. OVERRIDE CONTROL FOR MICROBIAL COMPETITION:
PHASE-BASED CONTROL

According to the discussion in Section 5.3.4, the paddlewheel is considered as a
control regulator for the competition phase during the start-up phase. When the
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paddlewheel is activated, it boosts the growth of PPB, if it is the dominant bacteria.
Alternatively, turning it off suppresses the growth of non-PPB bacteria. Due to
inability of the main controller to find a control input within the search domain
dictated by the control input constraint, it is suggested to use an override control
with a heuristic approach for the first few days during the start-up phase to prevent
non-PPB growth by turning the paddlewheel off, and then switch to MPC controller
for PPB concentration control and full-time paddlewheel activation to enhance PPB
growth to a maximum extent.

As can be seen in Figure 5.4, the growth of non-PPB is decreased after 4−7
days. Therefore, by suppressing non-PPB growth during these days, by keeping the
paddlewheel deactivated, PPB can be the dominant bacteria in a shorter time, then
we can switch to the MPC controller and turn the paddlewheel on 24 h to get the
maximum growth of PPB. The switching time for the paddlewheel and the activation
of the MPC controller depends on the initial condition (in this case concentration
in influent) for non-PPB namely, aerobic heterotrophic bacteria, X AHB . As depicted
in Figure 5.9, when X AHB = 10 mgCODL−1, the transition can occur as early as day
2. For X AHB = 100 mgCODL−1, this transition can take place from day 5 onwards.
However, if X AHB = 200 mgCODL−1, switching to the main controller on day 5 may
lead to difficulties for AGMPC in stabilizing the PPB concentration at 860 mgCODL−1

as shown. Alternatively, delaying the switch until day 6 can mitigate these control
action variations. The process response shown in Figure 5.9 also highlights that when
the concentration of aerobic heterotrophic bacteria is lower, or when competition
decreases due to a delay in switching, the PPB set-point concentration can be
reached more rapidly, while maintaining a higher production rate. Therefore, it can
be concluded that such an override control benefits the PPB growth.

5.4.3. SUPERVISORY LAYER: DISCUSSION ON DECISION-MAKING

OPERATIONAL STRATEGIES

As discussed above, the proposed AGMPC control system is able to control the
assigned output PPB concentration subject to the model mismatch, influent VFA
variations, and different illumination scenarios. According to the discussion in
Section 5.3.3, the main parameter that affects the process performance is the
PPB set-point concentration to be assigned. According to an operational decision
expressed by the decision tree given in 5.3, the design parameters can be assigned
as follows:

(i): If the priority is quality and reaching water treatment criteria, the PPB set-point
concentration should be increased to get the maximum potential of available sources,
i.e. incoming VFA concentration and light intensity for PPB cultivation. As explained,
SV F A,o is a reasonable indication to check how much VFA remains unconverted
after one cycle of the process and then to decide for increase/decrease of the PPB
set-point trajectory. The cross-checking boundaries, i.e S1

V F A,o and S2
V F A,o are set to

250 mgCODL−1 and 150 mgCODL−1, respectively, as can be seen in the decision chart
in Figure 5.3. Therefore, as long as SV F A,o ≥ S1

V F A,o , the set-point is increased, while

if SV F A,o < S2
V F A,o , the set-point is decreased. Given that the outlet VFA concentration
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Figure 5.9: Override control for microbial competition during the start-up phase. The
override control switches to the MPC controller after a specific day.

is the only indicator, in instances of significant increases in light intensity resulting
from meteorological fluctuations, it may be required to lower the set-point. This
adjustment is aimed at preventing process instability, as insufficient VFA may be
not available for conversion to PPB, leading to a subsequent drop in outlet PPB
concentration. Consequently, the lower bound is considered in such cases to address
this concern. The buffer range, i.e Sl

VFA,o ≤ SVFA,o < Su
VFA,o is also considered keeping

the process stable between a specific range of outlet VFA, instead of continuously
increasing and decreasing the PPB set-point concentration. Implementing the
proposed decision-making layer for quality successfully achieves the highest PPB
concentration given available sources, as mentioned in Table 5.2. According to
Table 5.2, for different operational settings in terms of the required sources for PPB
utilization, by checking the outlet VFA, the set-point, and consequently the output
PPB concentration, are increased. This decision strategy also contributes to COD
removal, as the outlet VFA concentration is decreased by regulating the feeding
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flow rate. The outcomes associated with both PPB concentration and COD removal
align with the conclusions drawn by Alloul et al. (2021, 2023), emphasizing the
impact of augmenting hydraulic retention time (HRT), achievable through reducing
the feeding flow rate as managed by the controller, on both COD removal and PPB
concentration.

Table 5.2: Operational conditions (five operational conditions in terms of available
sources, i.e. light intensity and incoming VFA, SVFA,i) and performance
outcomes: comparative analysis of quality-driven (denoted by #1) and
quantity-driven (denoted by #2) approaches in PPB cultivation process.

Operational
scenario

Light intensity
12 h dark/12 h light

[Wm−2]

SV F A,i

[mgCODL−1]
SV F A,o

[mgCODL−1]
Q

[mgCODd−1]
Y ×100

XPB

[mgCODL−1]
Output
u[Ld]

Required input
u∗[Ld]

#1
#2

54 3000
170.07

1179.60
22790.50
28914.18

31.67
39.66

950.00
741.96

23.99
38.97

23.99
24.30

#1
#2

60 3000
191.26

1117.80
25244.49
30631.33

32.99
40.96

989.98
782.01

25.50
39.17

25.50
24.93

#1
#2

50 3000
173.61
1153.2

21298.37
26.382.78

30.71
40.73

989.98
782.01

23.12
36.26

23.12
21.59

#1
#2

54 2500
211.97
979.48

25695.50
28140.02

34.00
41.44

850.00
629.39

30.23
44.71

30.23
27.16

#1
#2

54 3500
239.00

1355.00
21298.37
26.382.78

28.84
38.69

1009.70
830.00

20.19
32.88

20.19
20.15

(ii): For the another operational strategy, quantity as a production rate is a priority.
It can be achieved by reducing the set-point, which increases the feeding flow rate,
and thereafter, the output production rate, according to (5.13). While the higher
production can be achieved, this operational strategy is not appropriate for COD
removal. Therefore, it has been suggested to recycle the soluble materials for the
subsequent cycle after separation. It helps to reduce the amount of consumption of
the VFA tank from the VFA tank, as denoted by u∗ in Table 5.2. As discussed in

Section 5.3.3,
SVFA,o
SVFA,i

can be an appropriate indication to decide for decreasing the

PPB set-point concentration. As can be seen in the decision chart in Figure 5.3, α
and β are the two boundaries to decide for increase/decrease of the PPB set-point.

These parameters are typically regarded as design parameters that should to be
determined by a process expert. For instance, they should not be set at levels where
control action becomes saturated. Considering the nominal design provided in the
original PBM model, α and β are set to 1

3 and 2
5 . Since in this example, recirculation

is taken into account and a portion of feeding rate includes it, the upper actuator
limit is also set to 50 Lh−1. Investigating data given in Table 5.2, while increasing the
production rate, the required input from the VFA stream, u∗ is also decreased due
to the recirculation. Therefore, using this operational decision scenario successfully
increases the production rate and decreases the amount of VFA that needs to be
provided from the VFA tank. This highlights that the VFA feeding rate in this
operational strategy is close to the feeding rate computed by the quality decision
strategy (see the column of u∗ in Table 5.2). Moreover, according to (5.19) and the

factor
SVFA,o
SVFA,i

≥ 1
3 , the yield should exceed 3

2 of the yield in case of a non-recycling

process. In other words, without recirculation, reducing the PPB set-point leads to
a corresponding decrease in yield. Conversely, by recycling non-converted VFA, the
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yield can be increased by almost 3
2 .

The last assessment includes investigating how the supervisory layer reacts to
perturbation and uncertainty during operation. In this regard, the following
operational conditions are assumed:

1. Start: A light intensity of 54 Wm−2 and incoming VFA concentration
of 3000 mgCODL−1 as the nominal condition,

2. Event 1: Perturbation on incoming VFA by 20 % increase on day 100, i.e. a light
intensity of 54 Wm−2 and an incoming VFA concentration of 3600 mgCODL−1,

3. Event 2: Perturbation on light intensity by a 10 % increase on day 200,
i.e. a light intensity of 60 Wm−2 and an incoming VFA concentration of
3600 mgCODL−1,

4. Event 3: Perturbation on light intensity by a 20 % decrease, while considering
a mismatch in the parallel growth constant on day 300, i.e. MS = 0.32, a light
intensity of 50 Wm−2 and an incoming VFA concentration of 3600 mgCODL−1.

As can be seen in Figures 5.10 and 5.11, for the both decision strategies, the PPB
concentration should be increased upon Events 1 and 2 by the supervisory layer, as
the incoming VFA on Event 1 and the light intensity on Event 2 are increased. The
basis of such a decision for the quality-driven scenario is keeping the outlet VFA
concentration within the specified range as indicated in Figure 5.10 (blue line in top
figure), while for the quantity-driven scenario, the criterion is the ratio between the
inlet and outlet VFA concentrations, resulting in a higher VFA in the effluent that
should be recycled. On Event 3, it is assumed that the parallel growth constant is
MS = 0.32 (the nominal constant is MS = 0.28). As discussed in Section 5.4.1 and
more specifically the discussion of Figure 5.8, the parallel growth constant is a main
source of model mismatch, and therefore, it affects the production, while its value is
not known. Therefore, considering this unknown parameter, the supervisory decision
layer should determine an appropriate set-point based on the defined criterion. As
can be seen in Figures 5.10 and 5.11, however, the light intensity is decreased, but
the increase in MS is the reason of more labor division among different types of PPB
(Alloul et al. 2021), and consequently the higher PPB concentration in comparison
with Event 1. In terms of the calculated control action for the both scenarios,
feeding flow rate is adjusted according to the changes (Figures 5.10 and 5.11, bottom
ones). On the occurrence of an event, the supervisory layer intervenes to restore
stability to the process by addressing the decision criteria that have been violated.
Moreover, for the quantity-driven scenario, the flow rate required from the VFA tank
(u∗ according to Equation (5.15)) is also shown in Figure 5.11 (red line in bottom
figure), which is lower than the actual feeding flow rate, as the unconverted VFA
is recycled for the next cycle of the process. According to the feeding flow rates
depicted in Figures 5.10 and 5.11, the flow rate from the VFA tank is within a similar
range (≃ 20 Ld−1). However, in quantity-driven operational scenarios, the HRT is
prolonged due to circulation compared to quality-driven scenarios. This prolonged
HRT seems to correspond to an increased yield, aligning with the discussion on PPB
aggregation and HRT presented by Blansaer et al. (2022).
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Another point to be discussed is the adaptation and switching dynamics.
As discussed in Section 3.1 and shown in Figure 2, the system parameters
are theoretically updated every 24 hours (daily) based on new observations
(measurements). However, as long as the process remains within a stable operating
domain, meaning no significant perturbations occur, the observations reach a steady
state, and the system parameters remain unchanged. This can be clearly seen in
Figures 11 and 12 (bottom ones), where the parameter vector θ starts switching
when an event occurs, such as on days 100, 200, and 300.

5.4.4. IMPLICATIONS OF THE PROPOSED CONTROL SYSTEM AND

FURTHER DEVELOPMENT

The presented control system is the first developed automatic controller for PPB
cultivation in a raceway reactor. This reduces the need for skilled labors to supervise
the process, not only to ensure process stability against biological perturbations and
environmental disturbances, but also to enhance process performance according to
the preferred operational strategies mentioned in this work. The best control can be
achieved on reliable measurements. Cerruti et al. (2020) have discussed a method
to measure PPB concentration. Measurement methods based on flow though cell
UV-Vis and NIR spectroscopy (Qi et al. 2023) allow online measurement if only one
species, such as PPB are dominant. If some errors occur due to a lack of precise
measurements, developing a mathematical prediction method based on reliable
available measurements, such as using either a mechanistic model (Piaggio et al.
2024) or an observer (Kemmer et al. 2023), would address data availability for the
developed control system. It should be also highlighted the control system is based
on input-output model, which allows including delay in measurement by increasing
time shift operators. Moreover, if any error occurs for PPB measurement, it can be
somehow offset via the supervisory layer by cross-checking outlet VFA consecration,
for which more reliable and faster measurement is available, which also highlights
another advantage of the developed hierarchical control system.

This chapter highlights dealing with the start-up phase for the transition between
non-PPB and PPB bacteria communities. This has been addressed by proposing an
override control based on mechanistic and heuristic understanding. As mentioned,
the capability of the MPC controller to maintain the process on the assigned set-point
depends on an appropriate initialization. To include the competition phase into the
MPC model, using a simplified mechanistic model instead of such a proposed linear
input-output model would address it. Moreover, designing a mechanistic-derived
override controller can also be considered as a further development. Finally, a novel
supervisory layer based on two proposed operational strategies has been proposed in
this work to enhance the process performance. This is based on mechanistic analysis
of the process and the simulation model. As a further investigation, application of
alternative approaches, namely fuzzy logic system (Ghanavati et al. 2021), neural
networks (Sadeghassadi et al. 2018), and switched systems (Moradvandi et al. 2024),
can be taken into account.
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Figure 5.10: Quality-driven scenario: AGMPC set-point tracking integrated with the
decision-making supervisory layer to assign the appropriate set-point
subject to the operational conditions and fluctuations — process
response, determined set-point, outlet VFA, feeding flow rate, and
adaptations of parameters.
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Figure 5.11: Quantity-driven scenario: AGMPC set-point tracking integrated with the
decision-making supervisory layer to assign the appropriate set-point
subject to the operational conditions and fluctuations — process
response, determined set-point, outlet VFA, and feeding flow rate, and
adaptations of parameters.



5.5. CONCLUSIONS
In this chapter, a control system on the basis of adaptive generalized model
predictive control (AGMPC) for PPB raceway reactors is developed. PPB cultivation
in raceway reactors is subject to biological and meteorological fluctuations. The
proposed control strategy is able to effectively deal with environmental disturbances.
However, significant changes in two essential sources for PPB utilization, namely
incoming VFA concentration and light intensity, may lead to process and control
inefficiency and instability if the set-point is set either too low or too high.
Therefore, the AGMPC controller is integrated to a supervisory layer to assign an
appropriate set-point given the process condition. Two operational strategies, namely
quality-driven and quantity-driven, are developed for assigning a set-point. In both
operational strategies, the hierarchical control system is able to fulfill the process
objectives under various perturbations. In the quality-driven scenario, maximizing
PPB concentration in each cycle can be achieved by monitoring the outlet VFA
concentration. This approach also facilitates COD removal, as it ensures minimal
outlet VFA concentrations are attained. In the quantity-driven scenario, decreasing
the PPB set-point results in an increased production rate. Simultaneously, the system
is configured to recycle unconverted outlet VFA, thereby enhancing yield through
the extension of HRT. Moreover, an override control strategy is developed in order to
transition the process from the microbial competition phase to the PPB-dominant
phase. To achieve this, an investigation is conducted to determine the transition,
given an initial condition of the process, the paddlewheel should be deactivated for
a few days before switching to full-time activation. The effectiveness of the proposed
control framework has been assessed via the PBM model as a benchmark. This
automatic control framework can also be used for full-scale plants, even they are
supervised by unskilled labors.
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6
ANAEROBIC DIGESTION UNDER

METEOROLOGICAL FLUCTUATIONS

Temperature plays a critical role in performance and stability of anaerobic digestion
processes, subject to frequent meteorological fluctuations. However, state-of-the-
art modeling and process control approaches for anaerobic digestion often do
not consider the temporal dynamics of the temperature, which can influence
microbial communities, kinetics, and chemical equilibrium, and consequently, biogas
production efficiency. Therefore, to account for anaerobic digesters operating under
fluctuating meteorological conditions, the Anaerobic Digestion Model no. 1 (ADM1)
is mechanistically extended in this chapter to incorporate temporal changes into
temperature-dependent parameters. This extension defines inhibition functions for
microbial activities using the cardinal temperature model, and accounts for the lag
in microbial adaptation to temperature fluctuations using a time-lag adaptation
function. Thereafter, given that temperature fluctuations are a significant disturbance,
a control framework based on Model Predictive Control (MPC) is developed to regulate
the feeding flow rate and to ensure stable production rates despite temperature
disturbances without relying on direct temperature control. An adaptive MPC
approach is formulated based on a linear input-output model, where the parameters
of the linear model are updated online to capture the nonlinear dynamics of the
process and frequent changes in the dynamics accurately. In addition, a fuzzy logic
system is employed to assign a reference trajectory for the production rate based on the
temperature and its rate of change. Integrating this fuzzy logic system with the MPC
controller enhances the production rate on warm days and avoids the operational
failure in production on cold days. Additionally, to enhance biogas production rates,
the feasibility of utilizing a portion of the produced biogas for external heating
purposes is also investigated. It is demonstrated that by utilizing the proposed MPC
approach, the additional amount of feed for the digester to produce methane required

This chapter is an adapted version of model predictive control of feed rate for stabilizing and
enhancing biogas production in anaerobic digestion under meteorological fluctuations, Ali Moradvandi,
et al. (under review), Journal of Process Control.
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for a self-consumption biogas-fueled heating system can be calculated according to
the meteorological variations. This enhances the process performance and stability.
Finally, a thermally optimized dome digester semi-buried in the ground, operating
under climate conditions of the Netherlands is considered as a case study to validate
the extended model in agreement with biological and physicochemical behaviors of
real-world applications, and to demonstrate the effectiveness of the proposed control
system in handling temperature changes and enhancing performance.

6.1. INTRODUCTION

Biogas as a type of renewable energy is the primary product of Anaerobic Digestion
(AD), an industrial biological process technology that converts wastewater through
biochemical and physio-chemical conversions into methane and carbon dioxide
(Nguyen et al. 2019). This biological process occurs in four stages: first, the
hydrolysis of organic matter; followed by acidogenesis and next by acetogenesis of
intermediate products; and finally, methanogenesis for biogas production (Batstone
et al. 2002). These stages are characterized by intricate intracellular and extracellular
interactions among microorganisms, as well as soluble and particulate matters.
The performance of AD, i.e. the amount of biogas produced, depends on various
environmental, biological, and operational parameters. This performance can be
negatively impacted by not only inoperative design and inexperienced operators, but
also by inevitable perturbations, drawing attention and efforts towards maximizing
the efficiency despite disturbances and varying operating conditions.

The operating temperature is among the most important parameters, influencing
process performance and possibly causing instability in case of continuous
fluctuations and sudden perturbations (Kovalovszki et al. 2020). Temperature
fluctuations might affect biological processes including microbial activity and
growth, and yields and thermodynamics, as well as physicochemical processes. In
general, three main temperature domains can be considered for anaerobic digester
operations, namely psychrophilic 4−15 ◦C, mesophilic 20−40 ◦C, and thermophilic
45−70 ◦C. The impact of temperature on anaerobic digestion has been explored from
various angles in the literature (Nie et al. 2021). These range from studies on the role
of temperature on microorganisms and microbial bioconversion (Mei et al. 2016),
to investigations of temperature effects on process optimization and performance
(Caposciutti et al. 2020), and analyses of the effect of temperature conditions on
process sustainability and energy efficiency (Calise et al. 2023), all of which show the
importance of temperature in this context. However, in many of these investigations,
the operating temperature has been assumed to be either constant or varying in a
limited range.

Mathematical simulation models provide a valuable virtual benchmark for design,
monitoring, and control. This is particularly relevant for assessing the effects of
temperature on biogas production, which is crucial for sustainability management,
optimal digester design, and effective control. For instance, Pedersen et al.
(2020) investigated the thermal management of biogas digesters by proposing a
non-calibrated heat network model. Similarly, Ahmadi et al. (2023) studied a
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thermally optimal design for large-scale biogas plants through energy analysis using
a heat transfer model. Donoso-Bravo et al. (2013) and Kovalovszki et al. (2020)
proposed two mechanistic models with explicit temperature dependency based on
two different anaerobic digestion models, namely AM2 and BioModel, respectively.
Donoso-Bravo et al. (2013) showed that by using a cardinal temperature model,
coupled with a simplified anaerobic digestion model, temperature fluctuations can
be reflected in the overall system behaviors, more importantly biogas prediction
in the presence of seasonal changes. Kovalovszki et al. (2020) also proposed a
novel approach to incorporating short-term and long-term temperature changes in
BioModel to capture the dynamic temperature dependency on process response and
biogas production. However, to simultaneously investigate both thermal analysis
and process behaviors within a comprehensive framework, a detailed model that
integrates thermal and biological aspects is still required, which has not yet been
proposed in the literature.

Since the temperature within the digester can be influenced by factors such as
digester design as well as environmental, meteorological, and operational conditions
and fluctuations, designing a control system to maintain an optimal temperature to
ensure consistent biogas production and efficient energy management is required
(Garkoti et al. 2024). Therefore, some studies have proposed temperature-controlled
digesters by implementing various control strategies, such as internal model control
based PID control (Kumar et al. 2019), fuzzy-PID control (Anand et al. 2021), and
adaptive neural network control (Anand et al. 2022). However, these methods
aim to regulate the temperature and to manage disturbances without incorporating
biological parameters. From suitability and energy efficiency points of view, it is also
very important to investigate other parameters like feeding flow rate to ensure stable
biogas production. Integrating biological parameters can enhance biogas production
subject to temperature perturbations. Advanced control strategies, such as model
predictive control (MPC), are particularly well-suited for this aim. Furthermore,
steering the feeding profile using MPC approach to control biogas production
has been proposed for various objectives, e.g. demand-orientated and load-flexible
biogas production (Dittmer et al. 2022), robust automatic process start-up (Ahmed
and Rodríguez 2020), and maximization of methane production rate (Ghanavati et al.
2021). However, temperature changes have not been considered as a potential and
influential parameter in these studies.

To the best knowledge of the authors, design of an MPC controller for anaerobic
digestion has not yet been considered for biogas production management, subject
to meteorological perturbations and uncertainties by regulating feeding flow rate.
In the current chapter, to address temperature fluctuations and to assess advanced
control strategies, a simulation model is developed. Anaerobic Digestion Model no. 1
(ADM1) (Batstone et al. 2002), a widely accepted model for anaerobic digestion pilot
plants, is extended for accounting how physio-chemical and biological parameters
dynamically adapt to the operating temperature by introducing temperature
inhibition functions. In addition, the operating temperature is modelled based on a
heat network (Pedersen et al. 2020) that accounts for ambient conditions and digester
configurations. These two models together take several parameters and variables
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into account to provide a comprehensive virtual benchmark for analyzing both
thermal and biological aspects of an anaerobic digester under varying meteorological
conditions. This novel proposed extension is validated against research analyzing
temperature fluctuations in anaerobic digestion, demonstrating reliable results. From
a process control point of view, the feeding flow rate is regulated by the adaptive
MPC controller to deal with the operational temperature fluctuations caused by
meteorological variations, without directly controlling the temperature. The proposed
MPC approach is based on a linear input-output model. The adaptive version
of MPC is adopted in order to capture the highly-nonlinear dynamics of the
process and to take into account the temperature fluctuations and potential model
mismatches, while providing a computationally effective framework for the MPC
controller. In addition to the proposed MPC controller, the enhancement of the
process productivity, i.e. biogas production rate, is considered. A fuzzy logic system,
acting as an expert process supervisor, is employed to assign a reference trajectory
based on the temperature variations. This has been previously used to maximize the
methane production rate based on volatile fatty acids (Ghanavati et al. 2021; Robles
et al. 2018), but in this chapter, it is designed according to the digester temperature
and the change rate of the temperature. Additionally, a parallel preventive inhibition
action is also proposed in order to enhance the process efficiency, while dealing
with temperature changes. This includes a mechanism to balance inhibitory effects
of increasing ammonia concentrations and lowering pH that are associated with
a disbalance between acidogenic and methanogenic conversion rates. Lastly, to
maximize the biogas production rate, and to increase the net biogas production, a
process management option is also investigated. It concerns the integration of active
temperature management in the anaerobic digester with a biogas-fueled heating
system, by regulating the extra feeding flow rate required for this heating system.
The objective is to avoid severe and seasonal temperature changes, while maximizing
net biogas production rate. In summary, the main contributions of the present work
can be listed as follows:

• ADM1 is extended temperature-wise and integrated into a heat transfer
network, in order to obtain a comprehensive model to investigate the impact
of different operating temperature profiles;

• An adaptive MPC framework based on a linear input-output model to control
biogas production under varying meteorological conditions by regulation of
the feeding flow rate is developed, as opposed to the conventional direct
temperature control approach;

• A fuzzy logic system is developed based on the temperature and its rate of
change over two consecutive days to assign a change value to the reference
trajectory of the production rate, enhancing production when temperature
rises and preventing operational failures of zero production when temperature
drops due to washout;

• A preventive inhibition approach to maintain pH, integrated with the MPC
framework to increase input-to-product conversion (biogas and methane yield)
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is proposed, in which the response to temperature fluctuations is incorporated;

• A self-consumption biogas-fueled heating system is integrated with the process
in order to enhance the overall process performance; the proposed MPC
framework is employed to calculate the required amount of extra feeding flow
rate, and it shows a positive net biogas production.

The chapter is organized as follows. In the process model (Section 6.2) the
development of the temperature-wise extended ADM1 and its integration with a heat
transfer model is discussed. In the process control section (Section 6.3), designing
an adaptive MPC controller, assigning a reference trajectory using the fuzzy logic
system, the preventive inhibition mechanism, and biogas MPC management using
self-consumption biogas-fueled heating system are provided. In the simulation study
(Section 6.4), a virtual dome digester operating in the Dutch climate is simulated
using the extended model and the proposed control system is then evaluated. In the
last section, conclusions are drawn.

6.2. PROCESS MODEL
Biochemical and physicochemical phenomena of anaerobic digestion have been
mechanistically modelled at different levels of complexity that can be used for
process dynamics analysis, and control. Among those, ADM1 is the one that
describes the process in a comprehensive structure through four stages, namely:
hydrolysis, acidogenesis, acetogenesis, and methanogenesis (Batstone et al. 2002)
and it is flexible for further model development. Although the temperature is
initially considered as a constant variable within the model, the structure of
ADM1 allows mechanistic extension to incorporate timely temperature dynamics.
Therefore, in this section, the model extension is discussed. The extended model
is considered as a benchmark to simulate the anaerobic digestion under operating
temperature fluctuations and to assess the performance of the proposed control
system subsequently.

6.2.1. ANAEROBIC DIGESTION MODEL: ADM1
The state variables of ADM1 can be represented as variables for soluble matter, Si ,
particulate matter, Xi , gaseous variables, Sgas,i , and ion variables, Si−, in which
i denotes the component name. These state variables are formulated on the
basis of mass balances in a set of differential equations considering biochemical
and physicochemical interactions (Thamsiriroj and Murphy 2011). The model’s
stoichiometry is determined according to chemical oxygen demand (COD). Through
conversions of main composite and particulate components (total composites,
Xc , carbohydrates, Xch , proteins, Xpr , and lipids, Xl i ) and soluble components
(like Ssu) to gaseous compounds (methane, Sgas,ch4, carbon dioxide, Sgas,co2, and
hydrogen, Sgas,h2), methanogenesis can be inhibited by changes of pH, hydrogen,
and free ammonia. These changes mostly affect the biochemical uptake rate, which
can be formulated by inhibition functions (I j ). The model is formulated for a
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continuous-flow stirred tank (CSTR) with a fixed volume. The model is basically
represented for a continuous-flow stirred tank (CSTR) with a fixed volume. A
summary of the model is provided in Table 6.1. The model consists of several
parameters that can change if the temperature is not constant, which is discussed in
the next section.

6.2.2. TEMPERATURE DEPENDENCY OF THE PARAMETERS: INTEGRATION

OF DYNAMICAL TEMPERATURE

The ADM1 parameters are mostly dependent on the change of the operating
temperature. In this section, the temperature dependency of ADM1 and integration
of temporal temperature dynamics into this model are discussed.

physicochemical processes: The liquid-gas transfers and the acid-base reactions
are temperature-dependent. Henry’s constants of gases, ion/acid dissociation
constants, and the partial pressure of water can be corrected by van ’t Hoff’s
equation (Batstone et al. 2002). In other words, the temperature dependence of
the equilibrium constants at temperature T , can be corrected according to a base
temperature Tbase as follows:

ln
Ki ,Tbase

Ki ,T
= ∆H o

R
(

1

T
− 1

Tbase
) (6.1)

where Ki ,Tbase and Ki ,T denote values of the Henry’s constant at Tbase and T ,
respectively, and ∆H o and R express enthalpy of volatilization and the universal
gas constant. The associated correction to ADM1 parameters is given in Table
6.2. Besides, the partial pressures of each biogas are also related to the operating
temperature, which can be written based on the ideal gas law as provided in Table
6.2. Furthermore, as suggested by Lee (2017), the volumetric mass transfer constant,
kLa , can also be corrected based on the 5th order of the base and operating
temperature ratio as expressed in Table 6.2.

Biochemical processes: Reaction pathways, thermodynamics, and yields are
affected by temperature fluctuations, which subsequently changes microbial kinetics
and the microbial population dynamics. Raising the temperature can enhance
reaction rates up to their optimal point, but they will be subsequently diminished
beyond that optimal temperature (Batstone et al. 2002). This works like inhibitory
factors. Therefore, temperature inhibition functions are defined in this study to
model dynamical effects of temperature changes on some selected biochemical
processes. To model the temperature inhibition functions, IT , the cardinal
temperature equation (Rosso et al. 1993) is employed as follows:

IT = (T −Tmax)(T −Tmin)2

(Toptimum −Tmin)
[

(Toptimum −Tmin)(T −Toptimum)− (Toptimum −Tmax)(Toptimum −Tmin −2T )
] (6.2)

in which T , Tmax, Tmin, and Toptimum denote the operating temperature, the
maximum and the minimum temperatures that the growth rate is no longer observed
beyond them, and the optimal temperature for maximum growth rates, respectively.
Basically, three main operating temperature ranges are defined as psychrophilic
4−15 ◦C, mesophilic 20−40 ◦C, and thermophilic 45−70 ◦C ranges, with the optimal
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Table 6.1: Summary of ADM1; processes are divided into biochemical, ρi , physio-
chemical, ρAB ,i , and liquid-gas, ρT,i , processes with νi , j as stoichiometric
coefficients; q denotes the flow rate; kdi s , khyd ,i , km,i , KS,i , and
kdec,i express disintegration, hydrolysis, maximum uptake, half saturation
coefficient, and biomass decay rates, respectively; Ii denotes the inhibition
function; Ka,i and kAB ,i− denote acid dissociation, and acid-base kinetic
constants; qgas and Vgas denote gaseous flow rate and volume, while Vliq

expresses the liquid volume; and kL a is the volumetric mass transfer
rate and Pgas,i and KH denote the partial gas pressure and the Henry’s
constant.

Process Variable Variable description Rate Expression (ρ) Mass balance ( d
d t )

Disintegration Xc Composites kdi s Xc Expression (1)1

-
S I Soluble inerts

-
Expression (2)2

X I Particulate inerts Expression (1)1

Hydrolysis
Xch Carbohydrates

khyd ,i Xi Expression (1)1Xpr Protein
Xl i Lipid

Acidogenesis
Ssu Monochaccharides (sugars)

km,i
Si

KS,i+Si
Xi Ii Expression (2)2Saa Amino acids

S f a Fatty acids

Acetogenesis
Sva Valerates

km,i
Si

KS,i+Si
Xi Ii Expression (2)2Sbu Butyrates

Spr o Propionates

Methanogenesis
S Ac Acetate

km,i
Si

KS,i+Si
Xi Ii Expression (2)2Sh2 Soluble hydrogen

Sch4 Soluble methane -

Death/Growth

Xsu Sugar degraders

kDec,i Xi Expression (1)1

Xaa Amino acids degraders
X f a Fatty acids degraders
Xc4 Valerate and butyrate degraders
Xpr o Propionate degraders
Xac Acetate degraders
Xh2 Hydrogen degraders

Acid-base conversion

Scat Cations

kAB ,i−
[
Si− (Ka,i +SH+ )−Ka,i Si

]
Expression (3) 3

San Anions
Sva− Valerates ion
Sbu− Butyrates ion
Spr o− Propionates ion
Sac− Acetate ion
Shco3− Bicarbonate
Snh3 Ammonia
S IC Inorganic carbon
S I N Inorganic nitrogen

Liquid-gas transfer
Sgas,h2 Hydrogen gas

kLa(Si −KH Pgas,i ) Expression (4)4Sgas,ch4 Methane gas
Sgas,co2 Carbon dioxide gas

1 Expression (1): q
Vliq

Xi n,i − Xi
tr est+Vl i q /q +∑

j ρ jνi , j

2 Expression (2): q
Vliq

+ (Si n,i −Si )+∑
j ρ jνi , j

3 Expression (3): q
Vliq

+ (Si n,i− −Si− )−ρAB ,i

4 Expression (4): − qgas

Vgas
Sgas,i + Vliq

Vgas
ρT,i

temperatures of 35 ◦C and 55 ◦C for the mesophilic and the thermophilic ranges,
respectively (Nie et al. 2021).
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This inhibition function is included into ADM1 for hydrolysis kinetic rate constants
and maximum uptake rates of acidogenesis, acetogenesis, and methanogenesis as
given in Table 6.2. Although each component can have its own inhibition function,
for the sake of simplicity and lack of available experimental data, 5 temperature
inhibition functions, i.e. hydrolysis of carbohydrates, protein, and lipid (IT,{ch,pr,l i }),
acidogenesis of sugars, amino acids, and fatty acids (IT,{su,aa, f a}), acetogenesis of
valerate and butyrate (IT,c4), acetogenesis of propionate (IT,pr o), and methanogenesis
of acetate and hydrogen (IT,{ac,h2}), are calibrated based on the data set given
by Bergland et al. (2015) and Donoso-Bravo et al. (2009). In other words, the
corresponding inhibition function for each stage of anaerobic digestion is determined
by applying the nonlinear least squares method to identify parameters Tmax, Tmin,
and Toptimum of the cardinal function expressed by (6.2).

Temperature adaptation: The operating temperature can vary substantially day-
by-day in some regions, subject to diverse variations in meteorological conditions.
Although the response of physicochemical processes is fast, the microbial growth
rates as biochemical processes require more time to adapt themselves to new
conditions (Kovalovszki et al. 2020). As suggested by Kovalovszki et al. (2020),
an effective temperature (Teffective) according to the operating temperature and an
adaptation constant (τ) can be defined as follows:

dTeffective

d t
= Teffective −T

τ
(6.3)

Therefore, the effective temperature is used for the correction of not only
the methanogenesis pathways, as the most sensitive pathways to temperature
perturbations (Prakash et al. 2019), but also for other microbial growth rates
(Kovalovszki et al. 2020). The effective temperature is also considered for the
design of the fuzzy logic system, which will come later. In other words, the
effective temperature (Teffective) is the main digester temperature to be taken into
account. The operating temperature (T ) is only utilized for temperature corrections
of dissociation, ionization, and gas-liquid mass transfer.

6.2.3. THERMAL BALANCE MODEL: HEAT TRANSFER NETWORK

The main mathematical model is ADM1 with the dynamical temperature extension
as explained above. However, another model is required to simulate the operating
temperature over a specific period of time. The operating temperature (T ) is
the substrate liquid temperature of the digester, which may be influenced by
meteorological conditions and the design of the reactor. Therefore, a thermal/energy
balance model should be provided to simulate it. This is carried out by a thermal
balance digester model, inspired by the heat transfer network introduced by Pedersen
et al. (2020). A dynamical thermal model for the expression of the state variable,
denoted by T , can be written as follows:

ρliqCliqVliq
dT

d t
=QIRR +QADV +QCON +QRAD +QEX, (6.4)

where ρliq and Cliq denote the density of the digester substrate and specific
heat capacity of the substrate, respectively. Various forms of heat transfers are
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summarized in Table 6.3.

6.3. PROCESS CONTROL
In this section, we discuss a step-by-step design of an advanced control system for
anaerobic digestion under temperature fluctuations. In order to do so, we first
define the control problems. As mentioned in the original ADM1 development
report (Batstone et al. 2002), three operational strategies with respect to temperature
can be considered: (i) temperature-controlled digestion with minor (±3 ◦C) changes,
(ii) variable-temperature digestion with temperature changes in one specific range,
(iii) variable-temperature digestion with temperature changes between mesophilic
and thermophilic conditions. In second and third operational conditions, no
temperature control is applied. Considering the conventional temperature ranges
and realistic meteorological perturbations, the third operational scenario may be
seen less often in real-world applications, as a digester working in two distinct
temperature ranges may not be efficient as well. Therefore, the first two can be
considered for designing a control system configuration. As far as the authors are
aware of, most of the proposed control methods in the literature are meant to
control the temperature of the digester as a temperature-controlled system, which
is not really an anaerobic digestion control problem, while it is a “temperature
control" or "temperature regulation” problem. Therefore, in this chapter, we develop
a control system for digestion considering the second operating scenario with new
control objectives such as maximizing total biogas production (in this case, methane)
subject to the varying operational temperature using feeding flow rate regulation.
In this scenario, two cases, namely a constant set-point, and a reference trajectory
are taken into account for the design of a control system. In the first case, the
controller should be able to maintain biogas production at the given set-point,
even if the operational temperature varies. In the second case, in addition to the
objective in case one, a reference trajectory is assigned according to the operational
temperature based on a fuzzy logic system. This approach enhances productivity
when the temperature rises and reduces the risk of zero production (washout)
when the temperature drops. Furthermore, we define an operational strategy using
self-consumption biogas-fueled heating to bring the process to the first operational
scenario in order to be able to increase the value of the constant set-point, and
consequently improve the productivity during operation. The buildup of the control
system is discussed in the next sections.

6.3.1. MODEL PREDICTIVE CONTROL: MAIN CONTROLLER

The primary control objective is to control biogas production, while the operating
temperature fluctuates within a specific temperature range, by regulating the feeding
flow rate without temperature control. From the control point of view, the feeding
flow rate is the most feasible control action in practice. The MPC strategy can
be an appropriate candidate, as it anticipates process responses and takes control
action accordingly to prevent operation failure (Anand et al. 2021). MPC control
is model-based. However, the developed mechanistic model is too complex and
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computationally expensive to be used for MPC control. As an alternative, a linear
input-output model can be utilized instead (Ghanavati et al. 2021; Moradvandi
et al. 2024). To properly capture the plant’s dynamics with this simpler model, its
parameters should be updated at each time step based on new and past observations
of the input and output variables. In addition, as the plant is subject to temperature
changes, employing an adaptive prediction model can mimic these changes at every
time step. Therefore, the adaptive MPC control is utilized to incorporate these
aforementioned characteristics of the process. It should be noted that once the
parameters are set for a particular time step, they are fixed over the prediction
horizon for the calculation of the control actions.

According to the MPC framework, the control action is calculated for a control
horizon (Nu) that minimizes a cost function based on a prediction horizon (Np ).
The cost function, J , and the process constraint are, then, defined as follows:

J =
Np∑
j=1

δ
[

y(k + j |k)−w(k + j )
]2 +

Nu∑
j=1

λ
[
∆u(k + j −1)

]2 (6.5a)

s.t. umi n ≤ u(k) ≤ umax , (6.5b)

where y(k) denotes the j−step ahead prediction of the output of the process
(methane production rate) at time k, w(k) expresses the future set-point or reference
trajectory (i.e. set-point or reference trajectory for methane production rate) at
time k, and ∆u(k) denotes the planned control input increments (i.e. change in
feeding flow rate) at time k. Moreover, δ and λ are the controller design parameters
representing the error and the control weighting factors. In a simple form, it is
assumed that the methane production rate at time step k (y(k)) is a function of
the feeding flow rate (u(k)), which can also be affected by other potential operating
conditions like operating temperature. The problem constraint is also given by
(6.5b), where umi n and umax express the upper and lower bounds of the actuator.
To simplify the problem, as suggested above, an input-output model is considered
as a basis of the MPC framework. Therefore, the prediction, ŷ , of the actual output,
y , is replaced in (6.5a) and the model function is expressed by a single-input
single-output discretized parameter linear model as follows (Goodwin and Sin 2014):

A(q−1)y(k) = B(q−1)u(k), (6.6)

where A(q−1) and B(q−1) are rational functions of the time operator q−1 (i.e.
q−z xk = xk−z for z ∈Z), and they can be written as follows:

A(q−1) = 1+a1q−1 + ...+ana q−na , (6.7a)

B(q−1) = b0 +b1q−1 + ...+bnb q−nb , (6.7b)

in which na and nb express the order of the system with respect to the outputs and
the inputs, respectively. Considering θ = [a1, ..., ana ,b0, ...,bnb ]T as the vector of the
linear functions’ coefficients, the online estimation of this parameter vector at time
step k, i.e. θ̂(k) can be derived using the least square method as follows:

θ̂(k) = θ̂(k −1)+ P (k −1)φT (k)

1+φT (k)P (k −1)φ(k)
(y(k)− ŷ(k)), (6.8)
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where φ(k) is the augmented vector of past input and output observations, P (k) is
the covariance matrix, and ŷ(k) is the prediction output, which can be written as
follows:

φ(k) = [y(k −1), ..., y(k −na),u(k), ...,u(k −nb)]T , (6.9a)

P (k) = P (k −1)+ P (k −1)φT (k)φ(k)P (k −1)

1+φT (k)P (k −1)φ(k)
, (6.9b)

ŷ(k) =φT (k)θ̂(k −1). (6.9c)

Using this approach as discussed by Camacho et al. (2007), Ghanavati et al. (2021),
and Goodwin and Sin (2014), since the model is updated at every time step based
on new and past observations, this adaptive scheme is an effective approach to deal
with disturbances and impreciseness of simplified linear model by updating θ̂ and
predicting ŷ accordingly.

6.3.2. ASSIGNING A REFERENCE TRAJECTORY BASED ON A FUZZY LOGIC

SYSTEM

As discussed, the primary control objective is to maintain the methane production
stable even when the operating temperature varies. Therefore, an appropriate
set-point (w in (6.5a)) determined, ensuring it is feasible to reach under all possible
temperatures. Meteorological conditions may vary drastically, not only seasonally,
but also diurnally, affecting the process operation. Although the proposed MPC
controller aims to stabilize process production, the set-point can also be adjusted
according to the operating temperature at each time step. A decision for the
set-point adjustment can be made by an expert, who is aware of the process and its
conditions. To design an automatic control system, a fuzzy logic system is employed
to obtain an appropriate reference trajectory. The fuzzy logic system works based
on IF-THEN rules that are written according to expert knowledge (Mendel 1995). In
this chapter, the aim of using a fuzzy logic system is to assign a reference trajectory
for the MPC controller according to meteorological changes. As explained, these
meteorological variations yield on varying operating and effective temperatures,
thereby affecting the process performance and the production rate. In other words, if
the temperature rises, the production rate can be increased, and if the temperature
decreases, the production rate should be decreased, thereby adjusting the reference
trajectory for the controller in order to be matched to the temperature. Since
the effective temperature accounts for the temperature adaptation for biological
processes, it is selected as a reference to design a fuzzy logic system.

Therefore, the effective temperature (Teffective(k)) is one input to the fuzzy logic
system. The direction of effective temperature changes based on two consecutive
days (∆Teffective(k) = Teffective(k)−Teffective(k −1)) is also considered as another fuzzy
logic system input. The output of the fuzzy logic system is the value of change in
trajectory (∆w(k)). The first input assigns the range of the change in the reference
trajectory, and the second input determines the rate of the change. Each fuzzy logic
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system consists of four compartments: (i) fuzzification, (ii) inference, (iii) rule base,
and (iv) defuzzification. Membership functions for the inputs are trapezoidal for the
sides and Gaussian for the middle, while the membership functions for the output
are all Gaussian (De Barros et al. 2016). Three, five, and seven membership functions
are considered for Teffective, ∆Teffective, and ∆w , respectively. A decision-making rule
table that relates inputs to the output is given in Table 6.4. All ranges for the inputs
and the output are shaped symmetrically to facilitate easy tuning of the fuzzy logic
system. A Mamdani inference system and the center of gravity method are employed
to convert linguistic values into a crisp numerical value during defuzzification
(Anand et al. 2021). The details of the membership functions will be given and
discussed for an example in Section (6.4.3).

Table 6.4: Decision-making fuzzy rules for assigning a value for the set-point change
(∆w) based on the effective temperature (Teffective) and the rate of the
change of the effective temperature (∆Teffective).

∆Teffective → Big negative Negative Zero Positive Big positive
Teffective ↓
Low Big negative Medium negative Zero Positive Positive
Medium Meidum negative Negative Zero Positive Medium positive
High Negative Negative Zero Medium positive Big positive

6.3.3. PARALLEL PREVENTIVE INHIBITION MECHANISM

Biogas production and process efficiency can be significantly reduced when
temperature is varying (Nie et al. 2021). These variations trigger inhibitory factors
(Yuan and Zhu 2016), that result in a different inhibitory response by various
trophic groups and lead to process acidification due to VFA accumulation (Cysneiros
et al. 2012). For example, a specific reduction of acidogenic bacteria due to high
concentration of free ammonia was observed by (Yenigün and Demirel 2013). To
deal with these situations, a few preventive inhibition actions can be taken in order
to prevent the operation failure and enhance the performance of the main MPC
controller. In other words, in case of either ammonia or pH-induced inhibition,
this action can act as a preventive strategy. Since the feeding flow rate is utilized
for biogas production within the framework of MPC, a different strategy should be
considered. These strategies should be fast in response and preferably should not
involve the biological processes to avoid affecting the performance of the main MPC
control system. In this regard, pH adjustment by regulation of alkalinity (cations,
anions and the charge balance) as a parallel physical fast process (Cysneiros et al.
2012; Yuan and Zhu 2016) is a well-known strategy for preventing acidification.
Furthermore, this can also be considered in association with physicochemical
approaches like chemical additions (Yuan and Zhu 2016). Consequently, a more
stable pH during operation prevents inhibition, allowing the main MPC system to
regulate biogas production more effectively. Therefore, the efficiency of maintaining
a constant pH with the main MPC controller will be studied in the results and
discussion section, using the developed temperature-extended ADM1 model.
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6.3.4. BIOGAS MPC MANAGEMENT USING SELF-CONSUMPTION

BIOGAS-FUELED HEATING

As biogas is a type of organic fuel that can be used for heating, burning a portion
of the produced biogas from anaerobic digestion, more specifically methane, to heat
up the anaerobic digester, may not only upgrade the overall process efficiency, but
also prevent the aforementioned inhibitions by raising the operating temperature
(Caposciutti et al. 2020). In other words, a biogas-fueled boiler heats up the digester
to bring the process to the first operational strategy, i.e. temperature-controlled
digestion with minor temperature (±3◦) changes. Therefore, the digester should
be fed with extra feed to produce the required methane for the self-consumption
biogas-fueled heating system. It should be noted, that temperature can fluctuate
freely within the proposed boundary conditions. Since it is assumed that the fuel of
the boiler is provided from produced methane, the amount of methane required for
burning, i.e. ṁburned ch4, can be written as follows:

ṁburned ch4 =
QEX

ηch4τ
, (6.10)

in which ηch4 denotes the fuel burning efficiency or lower heating value and τ

expresses the adaptation constant used in (6.3). Moreover, QEX represents the
external heating used in (6.4), which can be written as follows:

QEX = ρsubCsubVsub(Theater −T ). (6.11)

Therefore, using the MPC control system presented in Section 6.3.1, feeding flow
rate profiles subject to temperature variations as well as different Theater settings can
be investigated to manage biogas production effectively, which will be discussed for
a dome digester in the next section.

6.4. RESULTS AND DISCUSSIONS: A SIMULATION STUDY
In this section, a case study is defined to assess the temperature-wise extension of
ADM1. Historical meteorological changes and perturbations are used as a benchmark
to verify the response of the anaerobic digester. The proposed control strategies,
including MPC controller with a constant set-point as well as a fuzzy-driven reference
trajectory, and the integration of stable pH with the MPC controller are assessed
on the defined case study as well. Finally, a discussion on results of biogas MPC
management using biogas-fueled heating strategy is also drawn.

6.4.1. A DOME DIGESTER WITH THE METEOROLOGICAL CONDITIONS

CORRESPONDING TO THE NETHERLANDS CLIMATE CONDITIONS

To verify the extended model and the proposed control strategies, a full-scale
concrete dome anaerobic digester is virtually located in De Bilt, the Netherlands.
The dome digester is constructed according to the full-scale thermally optimal
design specifications as discussed by Ahmadi et al. (2023) and presented in Table
6.5. As Hreiz et al. (2017) and Ahmadi et al. (2023) discussed, it concerns a
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semi-buried dome digester with approximately one-fourth of its surface (mostly
dome part) exposed to solar radiation (Figure 6.1). It should be noted that this type
of digesters usually do not have a direct control system. Moreover, as they are not
currently in use in the Netherlands, this investigation provides its feasibilty for future
consideration.

Table 6.5: Design parameters and characteristics of a semi-buried dome digester
used for simulation based on optimal thermally design discussions by
Ahmadi et al. (2023).

Parameter description Expression Value/Expression Unit
Operating conditions

Feeding flow rate (on average) q 290 m3 day−1

Influent temperature (on average) Tinf 297.15 K
Soil temperature (on average at a depth of 1 m) Tsoil 283.15 K
Sky temperature Tsky 0.0552T 3/2

ambient K
Digester geometry

Total volume V 3761.87 m3

Liquid/gas volume ratio - 3.36 -
Dome surface Adome 536.81 m2

Wall surface Awall 471 m2

Floor surface Afloor 490.62 m2

Characteristic length (for forced convection) Lc 13.13 m
Wall thickness ∆Xwall 0.3 m
Insulation thickness ∆Xinsulation 0.02 m

Regarding meteorological and ambient conditions, three influential variables,
i.e. daily mean ambient temperature (Tambient), daily mean wind speed, and
daily mean solar irradiation (Qsolar), have been taken into account due to
their significant impacts. The datasets for these variables are obtained based
on historical data for a 30-year period (1992-2021) from the Royal Netherlands
Meteorological Institute (KNMI). A comprehensive heat network discussed in Section
(6.2.3) and schematically presented in Figure 6.1 along with the aforementioned
meteorological variables, is considered for the thermal balance and to determine
daily changes in the operating temperature. As can be seen, four resistance series,
i.e. air–cover–dome–biogas–substrate, soil–wall–biogas–substrate, soil–wall–substrate,
and soil–floor–substrate, are defined. The conductive and convective resistances,
and all parameters required to simulate the heat network, are provided in Table 6.6.
There is also no external heating.

According to the given conditions and specifications of the dome digester,
the defined heat network model is simulated, and the operating and effective
temperature variations over a year are depicted in Figure 6.2. As previously
mentioned, the operating temperature will be used to adjust the temperature for
the physicochemical parameters, while the effective temperature will be utilized to
correct the biological parameters and to assign a reference trajectory based on the
fuzzy logic system.
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Table 6.6: Thermal parameters used for simulation.
Parameter description Notation Value/Expression Unit Reference
Thermal conductivity

Wall (plain concrete walls surrounded by moist earth) kwall 1.5 W m−1 K−1 Metcalf et al. (1991)
Dome (plain concrete with air space plus brick facing) kdome 1.2 W m−1 K−1 Metcalf et al. (1991)
Insulation (fiberglass) kins 0.04 W m−1 K−1 Metcalf et al. (1991)
Air kins 0.026 W m−1 K−1 Metcalf et al. (1991)
Convection

Dry wall–biogas coefficient hdw-b 2.15 W m−1 K−1 Pedersen et al. (2020)
Wet wall–biogas coefficient hww-b 2.70 W m−1 K−1 Pedersen et al. (2020)
Biogas–substrate coefficient hb-s 2.20 W m−1 K−1 Pedersen et al. (2020)
Wet wall–substrate coefficient hww-s 177.25 W m−1 K−1 Pedersen et al. (2020)
Floor–substrate coefficient hf-s 244.15 W m−1 K−1 Pedersen et al. (2020)
Forced (Air) convection

Thermal conductivity kair 0.026 W m−1 K−1 Cengel and Ghajar (2011)
Dynamic viscosity νair 1.82×10−5 Pa s Cengel and Ghajar (2011)
Density ρair 1.205 Kg m−3 Cengel and Ghajar (2011)

Reynolds number Re ρairvwindLc
νair

– Cengel and Ghajar (2011)

Nusselt number Nu 0.037Re4/5Pr 1/3 – Cengel and Ghajar (2011)

Air–insulation convection coefficient hair
Nu.kair

Lc
W m−1 K−1 Cengel and Ghajar (2011)

Substrate/influent thermal coefficients

Heat capacity Cinf 4.179×103 J Kg−3 K−1 Pedersen et al. (2020)
Density ρinf 1×103 Kg m−3 Pedersen et al. (2020)
Radiative parameters

Stefan-Boltzmann constant σ 5.67×10−8 W m−2 K−4 Mohr and Taylor (2005)
Wall emissivity ϵwall 0.75 – Cengel and Ghajar (2011)
Substrate emissivity ϵsub 0.67 – Pedersen et al. (2020)

6.4.2. SIMULATION OF A DOME DIGESTER SYSTEM: ASSESSMENT OF THE

PROPOSED EXTENDED ADM1 MODEL

In this section, the temperature-wise extended ADM1 proposed in Section 6.2.1 is
simulated, considering the dynamical operating and effective temperatures, reactor
configurations, and other aforementioned operational conditions of the defined
case study. The initial conditions are set to the default initial conditions of
the original ADM1 (Batstone et al. 2002), in which the substrate is protein-rich,
thereby ammonia accumulation may be inevitable. Variations of the temperature
inhibition functions are shown in Figure 6.3. These functions are calibrated
based on experimental data given by Bergland et al. (2015) and Donoso-Bravo
et al. (2009), and inhibit the maximum growth rates of hydrolysis, acidogenesis,
acetogenesis, and methanogenesis of the corresponding compounds in case of a
deviation from the optimal temperature. Therefore, as can be seen, they inhibit
growth rates more on cold days and less when the temperature is close to the
optimal level. Consequently, this is reflected in the methane production, which is
depicted in Figure 6.4. Thus, the methane production rate is higher in a range
when the temperature is relatively higher, in line with the season-based production
discussed by Hreiz et al. (2017). Accumulation of fatty acids (S f a = 1.3 gL−1 at the
lowest temperature) and volatile fatty acids (Sva+bu+pr o+ac = 1.4 gL−1 at the lowest
temperature) occur as the temperature drops. The correlation between the fatty
acid accumulation and methane production rate with temperature aligns with the
findings from experimental studies conducted by Erdirencelebi and Ebrahimi (2022).

While the effective temperature peaks (as shown in Figure 6.2 for the effective
temperature), methane production does not peak (as shown in Figure 6.4). Based
on the model output, it is anticipated that a temperature-induced increase in
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Figure 6.1: Schematization of the heat map of a dome digester: besides heat
transfers by radiation QR AD , solar irradiation QI RR , and advection Q ADV

through the influent feeding to the digester, three resistance series are
considered: R11, R12, R13 and 22, R21, R31, and R41 are the convection
resistors of air–cover, dry wall–biogas, biogas–substrate, wet wall–biogas,
wet wall–substrate and floor–substrate, respectively. Furthermore, Ri 1 and
Ri 2 express the conduction resistors for dry and wet walls.

the hydrolysis rate constant of protein increases the free ammonia concentration
and its inhibitory effect (as shown in Figure 6.5). This then counteracts the
temperature-induced increase in methane production rate (Nie et al. 2021; Yuan
and Zhu 2016). Therefore, although the temperature increase suffices for more
methane production, it is suppressed by free ammonia inhibition. In other words,
due to the disproportionally accelerated process rates at elevated temperatures, the
total concentration of free ammonia increases more than the shift in the acid-base
equilibrium, and aceticlastic methanogenesis remains inhibited. It then takes
some time for the methanogens to overcome the free ammonia induced inhibition,
although it does not lead to significant VFA accumulation. Temperature and methane
production stabilize then up till September, after which the drop in effective
temperature results in significant VFA accumulation, that leads to acidification,
further suppression of the growth rate and ultimately wash out (as shown in Figure
6.5), in agreement with research conducted by Xing and Wang (2021).
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Figure 6.2: Operating temperature (T ) and effective temperature (Teffective) based on
30 years historical meteorological data given from KNMI and simulated
based on the heat network thermal model.

6.4.3. CONTROL SYSTEM ASSESSMENT: DISCUSSION ON MPC
CONTROLLER

To assess the performance of control configuration presented in Section 6.3, the
dome digester coupled with the proposed MPC controller is simulated in a closed
loop. The objective is to maintain the methane (or biogas) production subject
to meteorological fluctuations, i.e. varying operating and effective temperatures.
Therefore, the performance of the proposed control strategy is evaluated based on
its ability to track the assigned set-points accurately. In this regard, three yearly
random selected temperature scenarios from the historical data are considered,
along with three different set-points for each year: constant set-points for year one
(2600 m3 d−1) and year two (2300 m3 d−1), and step changes in the set-points for year
three. The prediction and control horizons are set to 8 and 5 days, respectively.
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Figure 6.3: Variations of the temperature inhibition functions over a year.
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Figure 6.4: Variations of methane production rate and VFA concentration over a year
according to the temperature fluctuations.

As shown in Figure 6.6, despite varying temperatures, the MPC controller is able to
track the assigned set-points using the first order of internal model expressed by
(6.7a) and (6.7b). However, when the set-point is too high (as in year one), the
controller encounters spikes at the moments of considerable changes in temperature.
In contrast, with a moderate set-point (as in year two) or step-wise set-points across
different seasons (as in year three), the methane production rate is smoother. As
explained earlier, the motivation of the current study is to use the feeding flow rate
as a biological manipulator to control methane production in response to varying
temperatures, instead of controlling the temperature directly. Therefore, as shown in
Figure 6.6, the control action varies in relation to the temperature (the higher the
temperature, the lower the control action required). This outcome was expected,
as temperature inhibition reduces methane production when the temperature is
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Figure 6.5: Variations of free ammonia inhibition function and inhibition function of
hydrogen to uptake of fatty acids (as an example to show the trend of
inhibition functions of hydrogen to the uptakes), and pH variation over a
year.

low. Consequently, the feeding flow rate should be increased to offset the lower
growth rate by supplying more influent. However, increasing the feeding flow rate
reduces the hydraulic retention time, which may increase the risk of acidification
and washout (Khan et al. 2016). On the other hand, as shown and discussed in the
previous section, when the temperature is low, there is also a risk of acidification
and free ammonia accumulation.

In addition to the proposed MPC controller with either a constant set-point or a
reference trajectory, as discussed, the stabilized pH during operation can offset VFA
and free ammonia accumulations, and consequently enhance process performance,
and robustness (Yuan and Zhu 2016). A constant pH value can be regulated
by manipulating the physicochemical processes and hydrogen ions, and adding
chemical components that do not affect the biological processes. Therefore, by
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Figure 6.6: MPC set-point tracking subject to varying temperature — process
response, and control action.

assuming a constant hydrogen ion concentration of 8×10−8 gCOD L−1 (i.e. pH
= 7.1), the defined digester is simulated over year one to compare the results with
the MPC controller that is not integrated with a constant pH. The results are shown
in Figure 6.7. As can be seen, the inhibitory effect of free ammonia, which is a
major factor preventing an increase in methane production at high temperatures, is
drastically reduced. It also reduces the VFA concentration overall, particularly at low
temperatures, which diminishes the risk of acidification. Consequently, the feeding
flow rate required to maintain methane production (with the set-point assigned to
2600 m3L−1) is reduced by almost 20 %. This shows the advantages of a constant pH
with the proposed MPC strategy.
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Figure 6.7: MPC with the constant pH and varying pH during operation —
comparison of control action, VFA concentration, and free ammonia
inhibition.

6.4.4. TRAJECTORY ASSIGNMENT: DISCUSSION ON THE FUZZY LOGIC

SYSTEM

As proposed, we can use a reference trajectory assigned by the designed fuzzy
logic system instead of a fixed set-point to adjust the production rate according to
the effective temperature at each time step to enhance the production rate during
warm days and to prevent the risk of washout during cold days. The fuzzy rules,
detailed in Table 6.4, are designed in alignment with the biological understanding
of microbial activities. In other words, an increase in effective temperature leads to
an increase in microbial activity, which in turn enhances biogas production, and
vice versa, following a symmetric pattern. Therefore, this can be easily transferred
to other similar technologies. Since the system is tuned offline, it relies on the
initial set-point for determining the trajectory. In other words, the fuzzy logic system
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calculates the adjustment (∆w) to be applied to the next set-point. Consequently,
the initial set-point is crucial in shaping the overall trajectory. To assess the process
behavior under different initial set-points, open-loop simulations are required. This
ensures that the method is independent of skilled operators, if the initial set-point is
assigned appropriately.

For this case study, the effective temperature over a 30-year period is illustrated in
Figure 6.2. Based on the observed maximum and minimum effective temperatures,
the reference temperature (Tref) is defined within a range of 290 to 303 K. To
accommodate values beyond these boundaries, trapezoidal membership functions
are employed for the Low and High fuzzy rules. The possible range of ∆Tref is
determined to be between -0.15 and 0.15, with trapezoidal membership functions
extending beyond these limits. Similarly, the range of ∆w is set between -50 and 50
m3 d−1, as larger changes between two consecutive days are considered impractical.
The assigned ranges are symmetrically divided for their respective rules, ensuring
balanced coverage. The specifications for the corresponding membership functions
are summarized in Table 6.7. As depicted in Figure 6.8, the reference trajectory
properly changes at each time step based on the effective temperature and its rate
of change. As expected, at higher temperatures, the assigned production rate to be
tracked is higher, and vice versa. The controller action also changes accordingly
to follow the assigned reference trajectory and to offset the temperature variations.
Integrating the fuzzy logic system with the adaptive MPC framework to assign the
reference trajectory allows us to reduce the yearly feed by 5%, while still producing
nearly the same amount of methane annually.

Table 6.7: Degree of membership for the fuzzy logic system aiming to assign the
change in the reference trajectory according to the operating temperature.

Fuzzy set Type Specification
Teffective ([290 303])
Low Trapezoidal [290 291 293 295]
Medium Gaussian [1.5 296.5]
High Trapezoidal [298 300 301 303]
∆Teffective ([-0.15 0.15])
Big negative Trapezoidal [-0.15 -0.12 -0.125 -0.075]
Negative Gaussian [0.02 -0.075]
Zero Gaussian [0.04 0]
Positive Gaussian [0.02 0.075]
Big positive Trapezoidal [0.075 0.125 0.13 0.15]
∆w ([-50 50])
Big negative Gaussian [5 -37.5]
Medium negative Gaussian [5 -25]
Negative Gaussian [5 -12.5]
Zero Gaussian [5 0]
Positive Gaussian [5 12.5]
Medium positive Gaussian [5 25]
Big positive Gaussian [5 37.5]
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Figure 6.8: MPC with a reference trajectory assigned by the fuzzy logic system
according to temperature variations.

6.4.5. BIOGAS MANAGEMENT: DISCUSSION ON BIOGAS-FUELED HEATING

STRATEGY

As discussed above, the proposed MPC strategy can handle variations in
meteorological conditions by adaptively updating the parameters of the internal
linear input-output model. This approach effectively regulates the feeding flow rate
to maintain a constant methane production and off-set temperature-change induced
inhibition, throughout the year, despite varying operating and effective temperatures.
On the other hand, using this control framework can help to estimate the amount of
extra feed required to be fed to the digester to produce extra methane and use it to
heat the digester. In other words, similar to the reference trajectory assigned by the
fuzzy logic system discussed above, a different reference trajectory can be obtained
based on the amount of external heating, as given in (6.10). Therefore, the control
action calculated is based on this reference trajectory, provides a yearly overview of
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the additional influent required for feeding the digester according to temperature
fluctuations. In this regard, the reference trajectory in the control framework (w)
is the amount of external heating (6.10) at each time step. The exact amount of
external heating is dependent on the design of the heating system, which specifies
the heating efficiency. However, for the sake of simplification, in this case, it is
assumed that the total produced amount of methane can be burned for heating to
calculate only the amount of the extra feed.

According to the historical meteorological data and the corresponding simulated
operating and effective temperatures depicted in Figure 6.2, the MPC strategy
determines the amount of methane required for burning in an external heating
system based on Theater = 308.15 K (Ahmadi et al. 2023; Batstone et al. 2002). The
methane requirements for the lower and upper temperature bounds, as well as
for a random year are then calculated to assign a reference trajectory based on
(6.10). Given the controller calculation, the required feeding flow rate to be fed to
the digester to provide the required methane for heating is shown in Figure 6.9.
Considering the external heating from extra methane production, the achievable
effective temperature is calculated using the heat model and is also depicted in
Figure 6.9. It shows that the daily temperature increases by 5◦ in average, while the
temperature range (the difference between the coldest and warmest temperatures)
decreases by 1.5◦, which brings the digester to the temperature-controlled condition
with minor (±3◦) changes.

This self-consumption method can improve process performance and stability
in three aspects: (i) yearly feed, (ii) total COD conversion, and (iii) methane
production rate. As summarized in Table 6.8 for the simulation of the dome digester
and the developed MPC controller with and without an external heating system,
using external heating reduces the total yearly required feed for the production of
2600 m3 d−1, even though a portion of the produced biogas is burned for heating.
This is due to an increase in COD conversion, as the effective temperature rises
with external heating (Figure 6.9), leading to more biogas production and less VFA
accumulation. On the other hand, with the increase in the effective temperature,
the methane production can also be enhanced by increasing the feeding flow
rate without any concern about acidification, free ammonia accumulation, and
subsequent washout as can be seen in Table 6.8 (the potential daily methane
production rate column). However, the trade-off between COD conversion and
enhanced biogas production through increased feeding flow rate should also be
considered (Khan et al. 2016), although it is beyond the scope of this study.

Thanks to the proposed MPC framework, a comparison of different heating
systems in terms of heater temperature can also be investigated. As summarized in
Table 6.9, the total required feed for a process with a heater at 308.15 K is almost
4600 m3 higher compared to a process with a heater at 298.15 K to produce a daily
methane production rate of 3000 m3 d−1. However, this extra feeding enhances the
process over a year in two ways: (i) improving the conversion of feed to product
(with less VFA in the outputs), and (ii) increasing process stability, allowing daily
production to increase to 3800 m3 d−1.
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Figure 6.9: MPC with a reference trajectory based in the required external heating to
be used as a self biogas-fueled heating system.

Table 6.8: Comparison of the proposed MPC approach for calculating the required
feed and the maximum methane production rate with and without an
external heating system for a random year; the daily potential methane
production can be increased by 46%, with the almost the same amount of
yearly feed.

External heating
Yearly extra feed

(m3)

Yearly feeding for daily
production of 2600 m3 d−1

(m3)

Total required feed
(m3)

Potential daily methane
production rate (m3 d−1)

Applied 9.5616e3 1.0156e5 1.1112e5 ≲ 3800
Not applied - 1.1159e5 1.1159e5 ≲ 2600

6.4.6. IMPACTS AND IMPLICATIONS OF THE PROPOSED METHODOLOGY

Using the proposed MPC approach integrated with either a fuzzy logic system for
assigning a reference trajectory or a self-sustaining biogas-fueled heating system,
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Table 6.9: Comparison of the proposed MPC approach for calculating the required
feed and the maximum methane production rate with external heating for
a random year for two different heater temperatures; increasing heater
temperature increases the daily potential of methane production by 26%
with less than 3% of increase in the yearly feed.

Heater temperature (K)
Yearly extra feed

(m3)

Yearly feeding for daily
production of 3000 m3 d−1

(m3)

Total required feed
(m3)

Potential daily methane
production rate (m3 d−1)

308.15 9.5616e3 1.2018e5 1.2970e5 ≲ 3800
298.15 1.9139e3 1.2385e5 1.2508e5 ≲ 3000

not only can address temperature fluctuations, but also enhance the production
efficiency. It then highlights the importance and the efficiency of an integrated
approach that combines MPC control of the flow rate without an external temperature
control approach for AD designers and process supervisors. Such an automatic
control system can also be used for processes supervised by unskilled operators.
By online measurements, the control system can adapt its parameters to varying
conditions and regulate the control action to stabilize and enhance the production
rate. It is then proposed to apply and validate this novel temperature-wise extended
model as well as the integrated automatic control framework to full-scale plants
and in different geographic locations or with different digester geometries, even if
they are supervised by unskilled operators as a topic for future work. It should
also be pointed out that this investigation depends on meteorological conditions,
which determines operating and effective temperature profiles, and therefore needs
to be investigated for each specific scenario individually. In this regard, the
proposed control scheme relies on expert knowledge only for the pre-analysis of
historical meteorological data, initializing the fuzzy logic system, and determining
an appropriate temperature for the self-heater. However, during operation, it is
fully automatic, utilizing the adaptive manner to handle variations and disturbances,
which ensures that the process can be effectively managed.

6.5. CONCLUSIONS
In this chapter, the anaerobic digestion model no.1 (ADM1) has been mechanistically
extended in order to incorporate temporal temperature variations caused by
meteorological fluctuations. The extended model demonstrates reliable outcomes in
general agreement with experimental studies. On the other hand, a feeding flow
rate control strategy based on MPC approach has also been proposed to deal with
varying meteorological conditions and to maintain a stable methane production rate.
This method can be employed in the absence of any external heating system, as it
regulates the feeding flow rate to compensate for changes in the temperature. To
enhance the productivity of the process under these conditions, a fuzzy logic system
has been employed to assign a reference trajectory for the methane production rate
for the MPC controller. This fuzzy logic system can adjust the reference trajectory
to increase the production rate when the temperature rises and to reduce it when
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the temperature drops, thereby enhancing the process performance and avoiding
operational failures. Thanks to the extended model and proposed control strategy,
it has been also demonstrated that the production rate can be increased, if the pH
value is fixed to deal with free ammonia and VFA accumulation. This strategy shows
improvements in conversion by reducing the required feeding flow rate. Additionally,
the adaptive MPC framework enables the calculation of the required extra feed to
produce more methane to be used for a self-consumption biogas-fueled heating
system in order to increase process performance and stability for a fixed set-point.
The effectiveness of the proposed control framework has been assessed using a
defined dome digester under climate conditions in the Netherlands.
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7.1. OVERALL OBJECTIVE AND RESEARCH SCHEME

EVALUATION

This thesis addresses the central research question: What tools and approaches can be
employed to advance resource recovery from wastewater, and how do these tools contribute
to achieving the desired outcome for PPB raceway reactors and anaerobic digesters? To
answer this question, we have explored two key technologies: anaerobic digestion (a
well-established process) and PPB raceway reactors (a promising emerging technology).
Through the application of three main approaches—mechanistic modeling, hybrid sys-
tem identification, and adaptive predictive control—we have shown how these tools
contribute to advancing resource recovery. Mechanistic modeling has provided a de-
tailed and foundational understanding of the processes, establishing the groundwork
for further exploration. Hybrid system identification has demonstrated how simpler,
low-order models can effectively forecast system behavior and support dynamic adjust-
ments. Finally, adaptive predictive control has shown its ability to ensure robust and ef-
ficient operation, optimizing performance despite operational disturbances. Together,
these approaches form an integrated framework that advances the efficiency and sus-
tainability of wastewater resource recovery, offering practical solutions for both current
and future challenges.

A research scheme comprising four subprojects, namely mechanistic model, predic-
tion model, control configuration, and MPC Model, has been also defined. This ap-
proach, which ranges from modeling to control, establishes a proven research trajectory
applicable to various processes in resource recovery from wastewater. In summary, if
one has a process, they should first develop a mechanistic model to understand its dy-
namics and behavior, providing a virtual benchmark for simulation. Then, this under-
standing can be used to develop a supervisory layer that manages the performance of the
MPC model based on the process characteristics. Additionally, for tasks such as predic-
tion, data reconciliation, or model-based control, one will need to employ a simplified
input-output model. The novelty and contributions of this work lie both in developing
new approaches and in adapting existing methods to the specific cases under consid-
eration. In the following sections, the findings for each research direction, as well as
potential further explorations for ADs and PPB raceway reactors and resource recovery
technologies in general, are summarized.

7.2. MECHANISTIC MODELING

7.2.1. PURPLE BACTERIA MODEL

The Purple Bacteria Model (PBM), which has been developed in this PhD thesis, is
the third model proposed for describing PPB dynamics, but the first one specifically
for raceway reactors. Besides the model structure, the main novelty of the PBM is its
mechanistic-metabolic growth contribution modeling, which introduces an empirical
parallel growth constant for PPB dynamical selection. This constant accounts for the
contribution of other growth pathways in addition to the dominant one, resulting in
more accurate predictions for PPB. This is the first time a method has been proposed
for including parallel growth, opening up new possibilities for alternative approaches
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for inclusion of the microbial parallel growth pathways and the microbial community
complexity. The developed PBM model in a mechanistic manner provides clear under-
standing of microbial mechanisms and process interactions, yielding a reliable virtual
model for assessment of process control approaches. The structure of the model allows
for controlling the complexity of the model as needed.

As a topic for future work, one alternative for inclusion of parallel growth pathways
could involve defining an inhibition function, although identifying an appropriate in-
hibitor indicator may be challenging. The concept of dividing a state variable based on
different growth pathways and integrating them into a more precise mechanistic rep-
resentation in the model can also be validated for other microbial communities and
processes. However, experimental analysis and verification may not be straightforward.
This idea can enhance the understanding of process behaviors. When adding additional
state variables to enhance process understanding, the model becomes more complex.
In the current version of the PBM developed in this PhD thesis, including other species
could be considered, while the inclusion of dynamical pH and temperature can also be
taken into account in future work, specifically due to their importance from the process
control point of view. On the other hand, since the PBM is highly nonlinear and complex,
it can only be considered for dynamic analysis and process simulation. Simplifying it, ei-
ther via the use of PCA and model order reduction methods or in a mechanistic manner
(first-principles-based), may yield a simplified version with 5 or 6 state variables. Such
simpler models could be used for model-based control design, as it would be less com-
plex while computationally feasible.

7.2.2. EXTENDED TEMPERATURE-WISE ADM1

From both process understanding and process control perspectives, the original ADM1
model has been mechanistically extended to account for temperature variability. This
has been achieved by introducing a temperature inhibition function based on the Car-
dinal model. The model has also been integrated into a heat transfer network, thereby
reflecting varying meteorological conditions into the operational temperature. This ex-
tended temperature-wise ADM1, integrated with a heat network, can predict product
production rates and yields with satisfactory accuracy in line with known biological re-
sponses, and provides mechanistic overviews on inhibition factors that affect perfor-
mance.

As a topic for future work, the Arrhenius model could also serve as an alternative
for defining the novel temperature inhibition function. The main challenge in prop-
erly defining a temperature inhibition function, whether using the Cardinal or Arrhe-
nius model, is the calibration and verification through dedicated experiments for vari-
ous microbial communities. Therefore, through sensitivity analysis and parameter iden-
tification, required experiments can be defined and conducted to properly calibrate the
model.
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7.3. HYBRID SYSTEM IDENTIFICATION

7.3.1. STATE-OF-THE-ART HYBRID SYSTEM IDENTIFICATION

A survey has been conducted as a part of this PhD thesis, revealing state-of-the-art in
hybrid system identification research. This systematic survey highlights two aspects of
hybrid system identification, i.e., parametrizations (how to model) and methods (how
to identify). In terms of general contributions to this field, there are numerous poten-
tial options that our review highlighted, while application-based contributions are rela-
tively scarce. This systematic survey outlines which parameterizations and effective as-
sociated parameter identification methods have been studied, highlighting areas for fur-
ther advancement and improvement. By focusing on application-based hybrid system
identification, both the parameterization approaches and the corresponding parameter
identification approaches can be specifically defined and developed to meet practical
requirements.

As a topic for future work, a survey on hybrid system modeling—combining mechanis-
tic components with input-output modeling for parts that are challenging to represent
mechanistically—can be conducted, particularly in the context of biological processes.
This approach can be applied to model dynamical pH in the PBM. It should be high-
lighted that describing physico-chemical processes is more straightforward with input-
output modeling than it is for biological processes, where data can be collected more
easily through experiments for the identification procedure.

7.3.2. APPROXIMATING BIOPROCESS USING SYSTEM IDENTIFICATION

Identification of switched Box-Jenkins systems in the presence of bounded disturbances,
which has been discussed in this PhD thesis, can be considered as an application-
based identification problem. Representing a complex process using a switched Box-
Jenkins model is advantageous for several reasons. Firstly, it allows for the consider-
ation of multiple linear subsystems, enabling the system to switch between them and
potentially increase prediction accuracy, while mitigating model complexity. Secondly,
it accommodates different dynamics for the relationships between input-to-output
and disturbance-to-output, which can be biologically explainable. Lastly, it assumes
bounded disturbances, a more practical and reliable assumption on disturbances, as
stochastic information on disturbances is not always readily available for biological and
environmental factors. This approach increases prediction accuracy. However, depend-
ing on the specific application—such as data assimilation, prediction, or model-based
control—simpler switched systems may be sufficient to meet the requirements, and
these models can be derived from the switched Box-Jenkins model.

As a topic for future work, further exploration in terms of modeling switching rules
can be taken into account. Considering methods that divide the operational space in a
biologically meaningful way, such as piecewise affine systems, can also be investigated.
However, identifying a comprehensive operational space for this purpose requires fur-
ther research in both experimental and modeling aspects. In other words, although a
bioprocess might be complex and involve different biological mechanisms in a hybrid
manner by its inherent nature, this complexity may not always be reflected in the nu-
merical data used to model the process.
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7.4.1. CONTROL OF PPB RACEWAY REACTORS

The developed control configuration based on the MPC control approach is the first au-
tomatic control system for PPB cultivation, and particularly PPB in raceway reactors.
Due to the specific features of the raceway reactor configuration and operation, as well
as the characteristics of PPB, the MPC control strategy is integrated with a supervisory
layer. This supervisory layer accounts for an operational strategy based on the given re-
quirements, whether it would be production rate or yield. This combination of MPC con-
trol and a supervisory decision-making layer optimizes the use of available resources,
such as light and carbon sources, to convert them to PPB. Even with potential biologi-
cal and meteorological fluctuations and incomplete knowledge of PPB growth pathway
contributions, this control system configuration ensures effective resource utilization
and stable process operation. The model used for the MPC controller is a linear input-
output model, which is updated adaptively to capture accurate dynamics and perturba-
tions during operation.

As a topic for future work, instead of adaptive MPC control, nonlinear MPC based on
a simplified nonlinear model of the process (as mentioned in Section 7.2.1) can also be
investigated. This approach allows the inclusion of resource availabilities into the MPC
objective function, as their dynamics can be modelled. In such a case, designing an
observer to estimate state variables for which online measurements are not available,
may also be necessary. On the other hand, investigating different approaches to drive
a decision-making layer, not only in terms of design but also by using methods such
as fuzzy logic and neural networks, can be considered as further improvement for this
system.

7.4.2. CONTROL OF ANAEROBIC DIGESTION SUBJECT TO

METEOROLOGICAL FLUCTUATIONS

The proposed adaptive MPC controller in this thesis can effectively handle meteorologi-
cal fluctuations and maintain the production rate. Beside the robust operation by using
the MPC controller, the production rate can also be adjusted according to temperature
changes in order to enhance the production rate when the temperature rises, and to
ensure the stable production and avoid any operational failures when the temperature
drops. Therefore, an appropriate reference trajectory should be implemented according
to the expert knowledge. In this regard, a fuzzy logic system is employed to mimic the
expert knowledge based on the temperature and its rate of change to assign a value for
a change in the reference trajectory. Moreover, a self-consumption biogas-fueled exter-
nal heating system has been proposed in order to enhance the overall production and
performance. The required extra feed for this external heating can be calculated based
on the proposed MPC framework. Finally, the effect of a fixed value for pH has been also
studied and according to the enhancement of the production, the integration of MPC
controller with a physical preventive inhibition mechanism has been suggested.

As a topic for further development, the mechanism for stabilizing pH during operation
can be formulated as a pH control problem that an effective control method can be then
designed for. Moreover, although the two aforementioned approaches—namely assign-
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ing an appropriate reference trajectory and integration of a self-consumption biogas-
fueled heating system—have shown improvement for the process performance and ro-
bustness, the thermally optimal digester design can also be investigated by defining a
multi-objective optimization problem. In addition, a double-layer fuzzy logic system to
take the volatile fatty acid concentration into account for a more reliable supervisory
layer to avoid the process washout can be considered for further development as well.

7.5. ADVANCING RESOURCE RECOVERY FROM WASTEWATER

VIA MODELING AND CONTROL APPROACHES
As discussed in this PhD thesis, resource recovery from wastewater can be enhanced
through modeling and control approaches. This encourages us to focus on improving
existing technologies rather than proposing entirely new solutions. A promising topic
for future research could be the development of a comprehensive benchmark that inte-
grates various reactors within a single plant and simulates control strategies for them,
known as plant-wide modeling and control. Such a virtual simulation benchmark facil-
itates the investigation of potential perturbations in processes that might compromise
operational efficiency and expected outcomes. This research idea can be explored for
the integration of PPB and anaerobic digestion based on modeling and control system
configurations developed in this thesis, while other resource recovery technologies suf-
fering from inefficiency can be considered as well.
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