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SUMMARY

Distributed and Learning-based Model Predictive Control
for Urban Rail Transit Networks

Model predictive control (MPC) is an efficient optimization-based control methodol-
ogy for real-time control of constrained systems. Urban rail transit networks are typical
examples of constrained systems dedicated to providing safe, efficient, and eco-friendly
services within infrastructure limitations. This thesis focuses on innovative MPC strate-
gies for traffic management in urban rail transit networks, integrating three key elements
in traffic management, i.e., passenger flows, timetables, and train speeds. The thesis in-
cludes four topics, where in the first topic, we develop an integrated model and its cor-
responding control approach. The second topic focuses on scenario-based distributed
MPC intending to determine train departure frequency based on passenger flows in ur-
ban rail transit networks. The third topic includes efficient centralized and learning-
based MPC for timetable rescheduling according to passenger demands. The fourth
topic investigates cooperative distributed MPC for the speed control of trains.

In the first topic, we investigate the integration of passenger flows, timetables, and
train speeds. A passenger absorption model that explicitly includes time-dependent ori-
gin–destination demands is developed, where the term “absorption” refers to passengers
boarding trains. Then, the passenger absorption model is extended to a bi-level model,
where passenger demands and rolling stock availability are considered at the higher
level, and detailed timetables and train speed profiles are included at the lower level.
A bi-level MPC approach is developed for the integrated problem. We show that the op-
timization problems of both levels of the bi-level MPC approach can be converted into
mixed-integer linear programming (MILP) problems, which enables us to solve them
with existing MILP solvers. In this way, we can achieve real-time train scheduling for ur-
ban rail transit networks. Simulation results show that the bi-level MPC approach out-
performs the centralized MPC approach.

The second topic of the thesis focuses on train departure frequency optimization
for urban rail transit networks while also considering uncertain time-dependent origin-
destination demands. A distributed MPC approach is developed to deal with the com-
putational burden and the communication restrictions of the train scheduling problem
in urban rail transit networks. For the distributed MPC approach, a cost-to-go function
is designed to reduce the prediction horizon of the original MPC approach while tak-
ing into account the control performance. By applying a scenario reduction approach,
a scenario-based distributed MPC approach is proposed to handle the uncertain pas-
senger flows with an acceptable increase in computation time. The simulation results
indicate that distributed MPC can be used to achieve real-time train scheduling for the
urban rail transit network, while scenario-based distributed MPC can handle the uncer-
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xiv SUMMARY

tainty in the passenger flows with an acceptable sacrifice in computation time.
The third topic of the thesis focuses on efficient centralized MPC approaches for

passenger-oriented real-time timetable rescheduling on an urban rail transit line. At
each platform, we discretize the planning time window into several time intervals of
equal length, where every time interval includes one departure of a train at the same
platform. We adjust the train departure within the time interval to improve passenger
satisfaction while ensuring regular departures. The resulting nonlinear non-convex MPC
optimization problem is reformulated into an MILP problem that can be solved very ef-
ficiently by existing MILP solvers. The mixed-integer programming problem typically
has computational issues due to the problem scale, and the computational complexity
is significantly influenced by the number of integer variables. Therefore, we further de-
velop a learning-based MPC approach, where the integer variables are obtained by deep
learning, and then the MPC optimizer only needs to solve a continuous nonlinear opti-
mization problem with fewer variables than the original problem at each time step. Sim-
ulation results show that compared to the original MPC approach, the learning-based
MPC approach significantly reduces the computational time while achieving compara-
ble performance.

In the fourth topic, we investigate the speed control of virtually coupled trains, which
is crucial for trains to adhere to a timetable. Virtual coupling is regarded as an efficient
way to improve the line capacity of rail transportation systems by reducing the spacing
between consecutive trains. In real life, masses of trains are different and can change at
stations due to changes in passenger loads, which influence the dynamics and control of
the virtually coupled trains. Taking into account the nonlinear train model and changes
in masses of trains, cooperative distributed MPC, serial distributed MPC, and decentral-
ized MPC are compared and assessed for controlling virtually coupled trains. To make
a balanced trade-off between computational complexity and efficiency, we also pro-
pose and assess convex approximations of the above control approaches. We introduce
relaxed dynamic programming into the train control field, and a distributed stopping
criterion with a stability guarantee has been developed for the cooperative distributed
MPC approach. Simulation results indicate that the cooperative distributed MPC ap-
proach has the best tracking performance, while the serial distributed MPC approach
can reduce communication requirements and computation capabilities with sacrifices
of tracking performance.

In summary, this thesis addresses the integration of passenger flows, timetables, and
train speeds by developing several MPC frameworks, including bi-level MPC, scenario-
based distributed MPC, learning-based MPC, and cooperative distributed MPC. These
approaches are applied to traffic management of urban rail transit networks and yield
improved performance compared to conventional methods.



SAMENVATTING

Gedistribueerde en Leer-gebaseerde Modelvoorspellende Be-
sturing van Stedelijke Spoorwegnetwerken

Modelvoorspellende besturing (in het Engels: Model Predictvie Control, MPC) is een
efficiënte optimalisatie-gebaseerde regelmethodologie voor real-time besturing van sys-
temen met beperkingen. Stedelijke spoorwegnetwerken zijn typische voorbeelden van
dergelijke systemen, die zijn ontworpen om veilige, efficiënte en milieuvriendelijke dien-
sten te leveren binnen de beperkingen van de infrastructuur. Dit proefschrift richt zich
op innovatieve MPC-strategieën voor verkeersmanagement in stedelijke spoorwegnet-
werken, waarbij drie belangrijke elementen van verkeersbeheer worden geïntegreerd,
namelijk passagiersstromen, dienstregelingen en treinsnelheden. Het proefschrift om-
vat vier onderwerpen. In het eerste onderwerp ontwikkelen we een geïntegreerd mo-
del en de bijbehorende regelmethode. Het tweede onderwerp richt zich op scenario-
gebaseerde gedistribueerde MPC met als doel de vertrekfrequentie van treinen te be-
palen op basis van passagiersstromen. Het derde onderwerp omvat efficiënte gecen-
traliseerde en op leren gebaseerde MPC voor het herschikken van dienstregelingen op
basis van passagiersbehoeften. Het vierde onderwerp onderzoekt coöperatieve gedistri-
bueerde MPC voor de snelheidsregeling van virtuele gekoppelde treinen.

In het eerste onderwerp onderzoeken we de integratie van passagiersstromen, dienst-
regelingen en treinsnelheden. We ontwikkelen een passagiersabsorptiemodel dat ex-
plicit de tijdafhankelijke herkomst-bestemmingsvraag omvat, waarbij de term “absorp-
tie” verwijst naar passagiers die in treinen stappen. Vervolgens wordt het passagiersab-
sorptiemodel uitgebreid naar een tweeledig model, waarbij de passagiersvraag en de be-
schikbaarheid van rollend materieel op een hoger niveau worden beschouwd, en gede-
tailleerde dienstregelingen en treinsnelheidsprofielen worden bepaald op een lager ni-
veau. Een tweeledige MPC-aanpak wordt ontwikkeld voor het geïntegreerde probleem.
We tonen aan dat de optimaliseringsproblemen van beide niveaus van de tweeledige
MPC-aanpak kunnen worden omgezet in gemeng-geheeltallige lineaire programmerings-
problemen (in het Engels: Mixed-Integer Linear Programming, MILP), wat ons in staat
stelt ze op te lossen met bestaande MILP-oplossers. Op deze manier kunnen we real-
time treinplanning bereiken voor stedelijke railtransitnetwerken. Simulatieresultaten
tonen aan dat de tweeledige MPC-aanpak beter presteert dan de gecentraliseerde MPC-
aanpak.

Het tweede onderwerp van het proefschrift richt zich op de optimalisatie van de ver-
trekfrequentie van treinen in stedelijke spoorwegnetwerken, waarbij ook rekening wordt
gehouden met de onzekere tijdsafhankelijke oorsprong-bestemming svraag. Een gedis-
tribueerde MPC-aanpak wordt ontwikkeld om de rekenlast en de communicatiebeper-
kingen van het treinplanningsprobleem in stedelijke spoorwegnetwerken aan te pak-
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ken. Voor de gedistribueerde MPC-aanpak wordt een cost-to-go functie ontworpen om
de voorspellingshorizon van de oorspronkelijke MPC-aanpak te verkorten, terwijl de re-
gelprestaties worden meegenomen. Door een scenarioreductie-aanpak toe te passen,
wordt een scenariogebaseerde gedistribueerde MPC-aanpak voorgesteld om de onze-
kere passagiersstromen te beheersen met een aanvaardbare toename van de rekentijd.
De simulatieresultaten geven aan dat gedistribueerde MPC kan worden gebruikt voor
real-time treinplanning in stedelijke spoorwegnetwerken, terwijl scenariogebaseerde ge-
distribueerde MPC de onzekerheid in passagiersstromen kan verwerken met een aan-
vaardbare in rekentijd.

Het derde onderwerp van het proefschrift richt zich op efficiënte gecentraliseerde
MPC-aanpakken voor passagiersgerichte real-time herschikking van dienstregelingen
op een stedelijke spoorlijn. Op elk perron discretiseren we het planningsvenster in ver-
schillende tijdsintervallen van gelijke lengte, waarbij elk tijdsinterval één vertrek van een
trein op hetzelfde perron omvat. We passen het treinvertrek binnen het tijdsinterval
aan om de passagierstevredenheid te verbeteren, terwijl regelmatige vertrekken worden
gewaarborgd. Het resulterende niet-lineaire niet-convexe MPC-optimalisatieprobleem
wordt geherformuleerd tot een MILP-probleem dat zeer efficiënt kan worden opgelost
met bestaande MILP-oplossers. Het gemengd-geheeltallige programmeerprobleem on-
dervindt doorgaans rekenproblemen vanwege de schaal van het probleem, en de reken-
complexiteit wordt sterk beïnvloed door het aantal gehele variabelen. Daarom ontwik-
kelen we een op leren gebaseerde MPC-aanpak, waarbij de gehele variabelen bij elke
tijdstap worden verkregen via deep learning, en de MPC-probleem een wordt geredu-
ceerd tot niet-lineair optimalisatieprobleem met alleen reële variabelen en met minder
variabelen hoeft op te lossen dan het oorspronkelijke probleem. Simulatieresultaten to-
nen aan dat de op leren-gebaseerde MPC-aanpak, vergeleken met de oorspronkelijke
MPC-aanpak, de rekentijd aanzienlijk vermindert, terwijl vergelijkbare prestaties wor-
den behaald.

In het vierde onderwerp onderzoeken we de snelheidsregeling van virtueel gekop-
pelde treinen, wat cruciaal is voor treinen om zich aan de dienstregeling te houden.
Virtuele koppeling wordt beschouwd als een efficiënte manier om de lijncapaciteit van
spoorwegsystemen te verbeteren door de afstand tussen opeenvolgende treinen te ver-
kleinen. In de praktijk zijn de massa’s van treinen verschillend en kunnen ze op stati-
ons veranderen door variaties in de passagiersbelasting, wat de dynamiek en besturing
van de virtueel gekoppelde treinen beïnvloedt. Rekening houdend met het niet-lineaire
treinmodel en veranderingen in de massa’s van treinen, worden coöperatieve gedistri-
bueerde MPC, seriële gedistribueerde MPC en gedecentraliseerde MPC vergeleken en
beoordeeld voor de besturing van virtueel gekoppelde treinen. Om een gebalanceerde
afweging te maken tussen rekencomplexiteit en efficiëntie, stellen we ook convexe bena-
deringen voor en vergelijken we deze voor de bovengenoemde regelmethoden. We intro-
duceren gerelaxeerd dynamisch programmeren in het domein van treinbesturing, en we
ontwikkelen een gedistribueerd stopcriterium met stabiliteitsgarantie voor de coöpera-
tieve gedistribueerde MPC-aanpak. Simulatieresultaten geven aan dat de coöperatieve
gedistribueerde MPC-aanpak de beste volgprestaties oplevert, terwijl de seriële gedistri-
bueerde MPC-aanpak de communicatie-eisen en rekenkost kan verminderen, maar met
een afname in volgprestaties.
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Samenvattend behandelt dit proefschrift de integratie van passagiersstromen, dienst-
regelingen en treinsnelheden door verschillende MPC-methodes te ontwikkelen, waar-
onder twee-laags MPC, scenariogebaseerde gedistribueerde MPC, op leren gebaseerde
MPC en coöperatieve gedistribueerde MPC. Deze benaderingen worden toegepast op
het verkeersmanagement van stedelijke spoorwegnetwerken en leveren verbeterde pres-
taties op in vergelijking met traditionele methoden.





1
INTRODUCTION

1.1. BACKGROUND
Urban rail transit plays a prominent role in public transportation systems due to its
safety, efficiency, high transport capacity, and environment-friendly characteristics. Ac-
cording to the data published by The International Association of Public Transport, as
of 31 December 2020, 193 cities worldwide have implemented 731 urban rail lines, cov-
ering more than 17000 kilometers in total1. These systems facilitate transportation and
significantly reduce urban congestion and pollution, emphasizing their importance in
sustainable urban development and economic prosperity. With the rapidly growing pas-
senger demands and the increasing scale of urban rail networks, reliable urban rail tran-
sit systems have become increasingly important for the competitiveness of national and
regional economies.

Urban rail transit systems primarily focus on ensuring that trains operate safely and
efficiently to deliver high-quality service to passengers. Generally speaking, there are
three key elements for train operations in urban rail transit networks, namely, passenger
flows, timetables, and train speeds. In principle, the planning, management, and control
of train operations in urban rail transit systems should incorporate these elements to
achieve a high standard of reliability and efficiency, thereby ensuring that passengers
receive satisfactory service while reducing operational costs.

The operation of trains in urban rail transit systems typically follows a hierarchical
structure, as illustrated in Figure 1.1, consisting of three levels, i.e., strategic schedul-
ing, timetable (re)scheduling, and train speed control [89; 132]. The strategic scheduling
level involves planning according to the general key information in an urban rail tran-
sit network, such as passenger demands, rolling stock circulation, and crew schedul-
ing, thereby determining a strategic timetable to minimize operational costs and to-
tal passenger travel times. In real-time operations of urban rail transit networks, i.e.,
at the timetable (re)scheduling level, this strategic timetable may require rescheduling
to reflect real-time information, i.e., more elaborate passenger demands, disturbances,

1https://www.uitp.org/publications/metro-world-figures-2021/
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Figure 1.1: Hierarchical structure of train operations in urban rail transit systems (adopted from [89; 132]).

disruptions, etc. The objectives of the timetable (re)scheduling level are typically mini-
mizing energy consumption, passenger delays, and train delays, and urban rail systems
can therefore maintain efficient and reliable operations, ensuring they meet both im-
mediate and future transportation needs effectively. Strategic scheduling and timetable
rescheduling generally fall under the scope of traffic management, which is typically
managed by dispatchers in traffic management centers. A comprehensive overview of
railway traffic management approaches can be found in [13; 25].

Train speed control is responsible for implementing a given timetable by regulating
trains running between two stations. Train speed control can be divided into train speed
profile optimization and train speed control, wherein the train speed profile is gener-
ated first, and then the train tracks the profile in real time. The main focus of train speed
control is on safe and efficient train movement on a track under restrictions of signal-
ing systems, i.e., fixed block signaling systems, moving block signaling systems, and vir-
tual coupling systems. Fixed block signaling systems divide the track into several fixed
blocks, and each block can only be occupied by a single train at any given time, providing
a safe distance of at least one block. In urban rail transit systems, trains operate with rel-
atively high frequency, and moving block signaling systems are typically applied, which
determine the distance between two consecutive trains based on the absolute braking
distance, i.e., the distance a train needs to fully stop from its current speed. Recent ad-
vances in vehicle-to-vehicle communication and cooperative control have propelled vir-
tual coupling to the forefront technology of further enhancing line capacity. In a platoon
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of virtually coupled trains, the distance between two consecutive trains is determined
based on the relative braking distance, which takes into account the braking character-
istics of the predecessor train.

1.2. MOTIVATION AND CHALLENGES
Urban rail transit systems prioritize safe and efficient train operations while providing
high-quality service to passengers. As passenger demands and the scale of urban rail
networks continuously increase, how to realize flexible, highly efficient, and intelligent
control of urban rail transit operations has become an emerging research topic in recent
years. Urban rail transit systems operate under strict restrictions, such as infrastructure
restrictions, timetabling rules, and train capacity limitations, which make real-time con-
trol problems in urban rail transit systems challenging.

Model predictive control (MPC) [46; 92; 104] has been widely adopted in the industry
for its conceptual simplicity and its ability to handle multivariable constrained control
problems. In the MPC scheme, the control action is obtained by solving an optimization
problem over a finite-horizon window yielding a control sequence, and only the first
control action is implemented in the real system. At the next control step, the optimiza-
tion is conducted again using updated state information with a shifted finite-horizon
window. This moving horizon optimization procedure is repeated until the end of the
overall control period. The framework of MPC demonstrates its promising application
prospects in urban rail transit systems. However, several issues exist, as outlined below.
The first three items pertain to computational complexity, while the fourth item relates
to communication limitations.

1. As a model-based approach, the performance of MPC significantly depends on the
model accuracy and model complexity. There are three key elements for train op-
eration in urban rail transit networks, i.e., passenger flows, timetables, and train
speeds. In particular, passengers have different origins and destinations in urban
rail transit networks, and passenger flows typically show time-varying characteris-
tics. There is a trend to develop more elaborate models for traffic management to
provide more effective control decisions. However, including too many details will
significantly increase the computational complexity, thereby influencing the real-
time feasibility of control approaches. Therefore, it is challenging to develop an
efficient model for urban rail transit networks that can make a balanced trade-off
between model accuracy and computational efficiency.

2. The traffic management and train control problem in urban rail transit networks
is challenging because of its problem scale and network complexity. On the one
hand, the online computation complexity of MPC is significantly influenced by the
scale of the problem. For urban rail transit networks, the problem scale increases
rapidly as the network expands, rendering centralized MPC difficult to implement
in real-life networks due to its computational demands. On the other hand, the
real-life communication topologies in urban rail transit networks may also pose
challenges for implementing the centralized MPC approach. These factors high-
light the increasing urgency of leveraging the inherent structure of the considered
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traffic management problem and developing effective non-centralized MPC ap-
proaches.

3. Formulating the traffic management problem results in a mixed-integer program-
ming problem, which is typically large-scale, NP-hard, and non-convex. This type
of programming problem commonly encounters computational challenges, with
complexity significantly influenced by the number of integer variables involved.
As an optimization-based control approach, MPC should solve the mixed-integer
programming problem at every control step, posing a notable challenge in man-
aging the online computational burden. Despite efforts using various approaches,
such as branch-and-bound [64] or Benders decomposition [8; 107], to relax integer
variables and to reduce problem complexity, the enumeration or iteration process
usually cannot guarantee a satisfactory solution within a given time. Therefore,
efficiently obtaining a satisfactory solution for mixed-integer programming prob-
lems remains a challenge in the MPC scheme.

4. Virtual coupling is regarded as an efficient way to improve the line capacity of rail
transportation systems by reducing the spacing between consecutive trains. Vir-
tual coupling relies on vehicle-to-vehicle communication and cooperative train
control schemes. However, as an emerging technology, a comprehensive compar-
ison and assessment considering different models and different control schemes
for virtually coupled trains is still unaddressed in the existing literature. Further-
more, due to communication and computational power limitations, the real-time
application of distributed MPC may terminate its iteration before reaching the op-
timal solution, thereby resulting in inexact minimization. The inexact optimiza-
tion can result in constraint violation issues and pose a risk to stability as feasi-
bility and stability are typically defined considering the optimal solution. In this
context, constraint satisfaction and stability of distributed MPC approaches for
virtually coupled trains are still challenging issues.

1.3. RESEARCH QUESTIONS
According to the motivation and challenges, one main research question and six sub-
questions will be answered in this thesis. The main research question is

How can model predictive control benefit flexible, highly efficient, and passenger-oriented
urban rail transit network operations?

Six subquestions are given as follows:

1. How to realize the integration of passenger flows, timetables, and train speeds in
urban rail transit networks?

2. How to apply model predictive control in passenger-oriented real-time train schedul-
ing?

3. How to achieve efficient train rescheduling for large-scale urban rail transit net-
works?
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4. What are efficient modeling and control methods for handling time-varying pas-
senger demands in real-time train scheduling?

5. How to reduce the online computational burden of model predictive control in
train rescheduling problems?

6. What are effective control approaches for virtually coupled trains considering com-
munication topologies and heterogeneous trains?

1.4. CONTRIBUTIONS
The main contributions of the thesis are introduced next:

1. We develop a bi-level model for the integration of passenger flows, timetables,
and train speeds. At the higher level, we develop a passenger absorption model
to determine train departure frequencies that explicitly includes time-dependent
passenger origin-destination demands in urban rail transit networks, where the
term “absorption” refers to passengers boarding trains. The lower-level model is a
timetable scheduling model including detailed timetables and train speed profiles.
Then, a bi-level MPC approach is proposed to reduce the total passenger travel
time and train energy consumption. Furthermore, we show that the optimization
problems of both levels of the bi-level MPC approach can be converted into mixed-
integer linear programming (MILP) problems, which enables us to solve them with
existing MILP solvers.

2. We propose a distributed MPC approach for train departure frequency optimiza-
tion in urban rail transit networks to deal with the computational burden and the
communication restrictions. In the proposed distributed MPC approach, a cost-
to-go function is designed to reduce the prediction horizon of the original MPC
approach while taking into account the control performance. Furthermore, we
incorporate a scenario-based distributed control scheme into the developed dis-
tributed MPC approach to handle uncertain passenger flows in large-scale urban
rail transit networks.

3. We develop a passenger-oriented model for timetable rescheduling. By discretiz-
ing the planning time window into several time intervals of equal length, every
time interval includes one departure of a train at the same platform. The time-
varying passenger demands are approximated as piecewise constant functions in
the model to achieve a trade-off between model accuracy and computation speed.
A centralized MPC approach is then developed where a mixed-integer program-
ming problem should be solved in each control step. Furthermore, we develop
a learning-based MPC approach to reduce the online computational burden of
MPC. In the proposed learning-based MPC approach, we obtain the integer vari-
ables by deep learning, and then the MPC optimizer only needs to solve a contin-
uous nonlinear optimization problem with fewer variables than the original prob-
lem at each control step, thereby reducing computational complexity.

4. We compare and assess cooperative distributed MPC, serial distributed MPC, and
decentralized MPC for virtually coupled trains. Relaxed dynamic programming
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Figure 1.2: Outline of the thesis.

is a technique used to assess the stability of optimal control under suboptimal-
ity estimates. Furthermore, we are the first to incorporate the relaxed dynamic
programming approach into the train control field. Moreover, a stopping crite-
rion under the distributed MPC scheme with a stability guarantee is developed for
the cooperative distributed MPC approach. Moreover, we explicitly consider the
changes in train masses when designing MPC approaches, and we illustrate the
impact of incorporating train masses in the control design through simulations.

1.5. THESIS OUTLINE

This thesis consists of seven chapters, and the thesis structure is illustrated in Figure 1.2.
Chapter 2 to Chapter 6 are a collection of published or submitted journal papers. As
different chapters focus on different aspects in urban rail transit networks, the mathe-
matical notations are defined for each chapter separately.

The main contents from Chapter 1 to Chapter 7 are briefly introduced as follows.
Chapter 1 provides a general introduction to urban rail transit networks and to the thesis.
Chapter 2 develops a bi-level model and a bi-level MPC approach for the integration of
passenger flows, timetables, and train speeds. In Chapter 3, a distributed MPC approach
is presented to determine train departure frequencies in urban rail transit networks, and
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MPC
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Figure 1.3: Categorization of the contents for the main chapters.

a scenario-based approach is applied to handle uncertain passenger demands. Chap-
ter 4 develops a model with a centralized MPC approach to adjust timetables based on
real-time passenger demands. In Chapter 5 a learning-based MPC approach is proposed
for timetable rescheduling considering real-time passenger demands and train com-
position optimization. Chapter 6 investigates cooperative distributed MPC, serial dis-
tributed MPC, and decentralized MPC for virtually coupled trains. Chapter 7 concludes
the whole thesis and provides an outlook for future work.

Apart from the outline figure, we also categorize the contents of the main chapters
in Figure 1.3. The categorization is from both the MPC side (bi-level MPC/ distributed
MPC/ centralized MPC/ learning-based MPC) and the elements side (passenger flows/
timetables/ train speeds). The arrows in Figure 1.3 represent the categorization of the
chapters.





2
INTEGRATION OF TIMETABLES,
PASSENGER FLOWS, AND TRAIN

SPEED PROFILES

This chapter deals with the train scheduling problem for urban rail transit networks tak-
ing into account time-dependent passenger origin-destination demands and train speed
profiles. The aim is to adjust train schedules online according to time-dependent passen-
ger demands so that passenger satisfaction and operational costs are jointly optimized.
A passenger absorption model that explicitly includes time-dependent passenger origin-
destination demands is developed, where the term “absorption” refers to passengers board-
ing trains. Then, the passenger absorption model is extended to a bi-level framework,
where passenger demands and rolling stock availability are considered at the higher level,
and detailed timetables and train speed profiles are included at the lower level. A bi-level
model predictive control (MPC) approach is developed for the integrated problem. The
optimization problems of both levels of the bi-level MPC approach can be converted into
mixed-integer linear programming (MILP) problems, which enables us to solve them with
existing MILP solvers. We then show that the recursive feasibility of both the higher-level
and the lower-level optimization problems can be guaranteed. In this way, we can achieve
real-time train scheduling for the urban rail transit system. Numerical experiments, based
on real-life data from the Beijing urban rail transit network, illustrate the effectiveness of
the extended passenger absorption model and the proposed bi-level MPC approach.

This chapter is based on [74] and [79].

9
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2.1. INTRODUCTION
As a safe, efficient, and eco-friendly transportation mode, the urban rail transit system
plays a prominent role in public transportation. Real-time train scheduling is recog-
nized as a valuable method for improving passenger satisfaction and energy efficiency
under infrastructure limitations. As urban rail transit systems continue to expand to
large-scale and networked systems, it becomes increasingly challenging to achieve real-
time train scheduling while taking time-varying passenger flows and operational costs
into account [51; 136].

Generally speaking, there are three key elements for train operation in urban rail
transit networks, i.e., passenger flows, timetables, and train speeds. Some data-driven
approaches can be applied to predict the near future passenger flow information in real
time, which can be represented by time-dependent origin-destination (OD) matrices,
thereby facilitating timetable scheduling [98]. An efficient passenger-oriented timetable
should properly address time-dependent passenger OD demands [136]. Train speeds are
closely related to operation time and energy consumption [86; 152]. As train speed con-
trol between two stations is usually conducted under the guidance of a recommended
train speed profile, a well-designed speed profile is crucial for effective train speed con-
trol [51]. The integration of timetables, passenger flows, and train speed profiles is de-
sired to generate efficient timetables that can jointly consider passenger satisfaction and
operational costs in urban rail transit networks.

Real-time train scheduling considering passenger flows and train speed profiles is
challenging due to its complexity and scale. Many studies include passenger flows in
train scheduling problems while also considering stopping patterns of trains [14], short-
turning [158], and rolling stock circulation [47; 156], but without time-dependent pas-
senger origin-destination demands. Furthermore, train speed profiles are not included
in these studies, and thus train speed-related objectives, e.g., the energy consumption of
trains, cannot be directly included in the passenger-oriented train scheduling problem.
Several papers consider the integration of timetables, passenger flows, and train speeds
[93; 135; 136; 152]. However, most existing studies that consider both passenger OD de-
mands and train speed profiles, are limited to a single line because of the computational
complexity issues arising from the integrated problem. This chapter therefore focuses
on the integration of timetables, passenger flows, and train speed problems for urban
rail transit networks.

To reduce the computational burden of including many microscopic details of the
network, some studies develop macroscopic models to handle passenger OD demands
by optimizing departure frequencies [19; 49; 66]. The train departure frequency (i.e.,
the number of trains departing from a platform per time unit) is crucial for passenger
satisfaction since it determines the maximum transport capacity of each line. The de-
parture frequency should be adjusted properly to match time-varying passenger flows,
e.g., compared with off-peak hours, higher departure frequencies are required during
peak hours to address the large passenger demands. Furthermore, the departure fre-
quency should be linked with specific departure and arrival times for a practically im-
plementable timetable. Therefore, effective model formulations and control approaches
are required to integrate train departure frequencies and train timetables in urban rail
transit networks.
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This chapter contributes to the state of the art as follows.

1. A passenger absorption model is developed that determines train departure fre-
quencies in urban rail transit networks by explicitly including time-dependent
passenger origin–destination demands.

2. A bi-level model predictive control (MPC) approach is proposed for real-time train
scheduling considering passenger flows, rolling stock circulations, and train speed
profiles. Passenger flows are included at the higher level based on the novel ex-
tended passenger absorption model, and detailed timetables and train speed pro-
files are incorporated at the lower level taking into account the detailed rolling
stock circulation. The MPC optimization problems of both levels are exactly con-
verted to mixed-integer linear programming problems, and we show that the re-
cursive feasibility of both levels can be guaranteed.

The remaining part of the chapter is arranged as follows: Section 2.2 reviews the re-
lated works. Section 2.3 provides the problem statement and assumptions for this chap-
ter. Section 2.4 introduces the developed passenger absorption model and the corre-
sponding bi-level modeling framework. Section 2.5 introduces the developed bi-level
MPC approach. Section 2.6 shows the effectiveness of the developed approach through
numerical experiments, and conclusions are provided in Section 2.7.

2.2. STATE OF THE ART

2.2.1. PASSENGER-ORIENTED REAL-TIME TIMETABLE SCHEDULING
There exists a considerable body of research on passenger-oriented timetable schedul-
ing problems. Cury et al. [27] presented an analytical model to describe the movement of
trains and passengers; then, the optimal schedule is generated considering operational
costs and the average delay of passengers. Wang et al. [135] developed an iterative algo-
rithm to reduce the total passenger travel time on an urban rail transit line while consid-
ering the energy efficiency of trains, where train speeds in each segment were simplified
via three stages, i.e., acceleration stage, cruising stage, and deceleration stage. Wang et
al. [133] realized real-time train scheduling for an urban rail transit line by integrating
passenger demands and rolling stock circulation, and the aim is to ensure service qual-
ity while reducing operational costs. Hou et al. [51] considered unexpected disturbances
in an urban rail transit system and solved a mixed-integer linear programming (MILP)
problem to reduce train delays, energy consumption, and the number of stranded pas-
sengers, where train speeds were also limited to a finite set of different speed levels. Con-
sidering train loading capacity constraints, Mo et al. [93] formulated an MILP problem to
maximize the utilization of regenerative energy, where rolling stock circulation was also
incorporated into the resulting train scheduling problem. However, these studies do not
include passenger origin-destination (OD) demands, indicating the possibility of further
improving passenger satisfaction.

Real-time train scheduling with detailed passenger OD demands has received much
attention in recent years. Niu et al. [97] formulated a mixed-integer nonlinear program-
ming (MINLP) problem for train scheduling in a rail corridor to reduce passenger waiting
time taking into account time-dependent passenger demands. A space-time network
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was used in [152] to describe the movement of trains on an urban rail transit line, where
the train operation in a segment is considered for different speed levels; a Lagrangian
relaxation-based method was then presented to optimize the total passenger waiting
time and operational costs. Qi et al. [103] optimized train stopping plans and timeta-
bles of a high-speed railway line considering time-dependent passenger OD demands.
The aim of [103] is to find a solution that satisfies passenger preferences for departure
times and that ensures trains operate within capacity limits; the given problem was for-
mulated as an MILP problem. Bešinović et al. [9] integrated passenger flow control and
train rescheduling under disruptions, and applied an iterative matheuristic approach to
reduce the passenger waiting time and the time of recovering from disruptions. Never-
theless, these papers only include passenger OD demands on a single railway line, and
further research is still required for the railway network.

Considering passenger OD demands in railway networks, Wang et al. [136] presented
an event-based model that explicitly includes time-dependent passenger OD demands
intending to minimize the total passenger travel time and the energy consumption of
trains. Train arrival, train departure, and passenger arrival rate changes were formu-
lated as three different classes of events in [136] to describe the movement of passen-
gers and trains. Yin et al. [150] formulated a graph-based model to describe feasible
passenger travel paths in an urban rail transit network; then, a decomposition-based
adaptive large-neighborhood search approach is presented to minimize station crowd-
edness. Zhu & Goverde [158] developed a timetable rescheduling approach for disrup-
tions in a railway network based on an event-activity model, where passenger OD de-
mands and passenger paths are included and used to determine weights of different ob-
jectives. Corman [23] investigated the interactions between train schedules and passen-
ger route choices, and presented a game theory-based approach to investigate the equi-
librium point between them. Luan & Corman [84] formulated the train schedules and
passenger routing process in an integrated model, and the resulting MINLP formulation
is reformulated as an MILP formulation to minimize passenger disutility (i.e., the num-
ber of stranded passengers, the passenger delays, and the passenger travel time) and the
total train delay. However, these studies typically encounter computational issues be-
cause more details about passenger demands and railway networks should be included.
Therefore, efficient model and solution approaches are required for passenger-oriented
train scheduling.

2.2.2. PASSENGER-ORIENTED TRAIN DEPARTURE FREQUENCY OPTIMIZATION

The studies introduced in Section 2.2.1 aim to build elaborate models for detailed pas-
senger dynamics and infrastructure information. These studies can generate directly
implementable arrival and departure times of trains; however, the computational bur-
den increases as many details related to passenger dynamics are included using such
detailed microscopic models. In order to obtain a balanced trade-off between model ac-
curacy and computational efficiency, another research direction develops macroscopic
models to handle passenger OD demands by optimizing departure frequencies [19; 66;
74], considering the periodic characteristic of train departures.

Optimizing the departure frequency determines the maximum transport capacity
and is essential for handling passenger demands in urban public transport systems, e.g.,
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city bus systems [65] and urban rail transit systems [49]. In general, higher departure
frequencies typically result in higher operational costs while providing a better chance
of boarding trains for passengers. The urban rail transit system, however, is quite dif-
ferent from other urban public transport systems, e.g., the braking distance of trains
is relatively long, and the signaling system imposes an upper bound on the line fre-
quency. Thus, effective departure frequency control approaches are required for urban
rail transit networks to address time-dependent passenger OD demands considering op-
erational costs and infrastructure constraints. Canca et al. [19] solved an MINLP prob-
lem to optimize train capacities and line frequencies for each line of urban rail transit
networks considering both track allocations and passenger assignments, where train ca-
pacities were considered as soft constraints. Li et al. [66] developed a bi-level strategy
to optimize the train departure frequencies at the upper level while a passenger assign-
ment problem was considered at the lower level to balance operational cost and service
quality. These studies aim to generate static and published train departure frequencies
and schedules at the tactical planning stage based on periodic passenger flows, leaving
an open gap in optimizing departure frequencies online based on real-time observed
passenger demand.

Adjusting departure frequency online is also regarded as an effective way to accom-
modate time-dependent passenger demand [42]. Pu & Zhan [102] developed a two-stage
method for railway line planning problems where the first stage generates a line plan
with deterministic passenger demands and the second stage adjusts the line plan to
accommodate real-life passenger demands. Liu et al. [74] presented a passenger flow
model to determine departure frequencies of urban rail transit systems in real time.
However, that paper does not lead to a directly implementable timetable, i.e., specific
arrival and departure times are not considered, and the case when different lines use
the same physical track and/or physical platforms is also not involved. In summary, the
above-mentioned studies only optimize the departure frequency of trains, which does
not directly lead to practically executable timetables. Moreover, more detailed passen-
ger flows, rolling stock circulation plans, and operational costs can be included to further
improve operational performance.

2.2.3. MPC FOR REAL-TIME RAILWAY TRAIN SCHEDULING

The studies introduced in Section 2.2.1 and Section 2.2.2 are summarized in Table 2.1
based on the railway network details, passenger demands, and objectives. The train
scheduling problem is a typical control problem with input and state constraints. From
Section 2.2.1 and Section 2.2.2, we can conclude that efficient modeling frameworks and
control approaches for the integration of timetables, passenger flows, and train speeds
in urban rail transit networks are urgently needed to achieve passenger-oriented train
scheduling.

Model predictive control (MPC) is regarded as an efficient control methodology for
real-time control of constrained systems [92]. MPC has also been implemented in real-
time train scheduling problems. Van den Boom et al. [125] applied MPC to minimize the
delay of trains and the costs of changing train orders and braking connections by devel-
oping a switching max-plus-linear model. Caimi et al. [15] applied the MPC framework
and proposed a scheduling assistant method for complex station areas considering in-
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frastructure constraints and passenger satisfaction. Li et al. [69] proposed a state space
model to represent the dynamics of the train capacity and departure times on an urban
rail transit line and an MPC approach was then developed to minimize the headway and
timetable deviations by adjusting timetables and train capacity. Liu et al. [76] applied
MPC to passenger-oriented urban rail transit networks to adjust a given timetable based
on real-time passenger demands with the aim of minimizing the total travel time of pas-
sengers.

In addressing large-scale systems, many studies have focused on the development of
non-centralized MPC methodologies, solving the problem in decentralized, distributed,
or hierarchical manners to obtain efficient solutions for the overall system [56; 62; 90].
Such approaches have found application in railway train scheduling problems as well.
Kersbergen et al. [55] introduced various distributed MPC techniques for optimizing rail-
way traffic management, encompassing the collective optimization of arrival and depar-
ture times, infrastructure connections, and train sequencing within the railway network.
Luan et al. [85] employed three distributed optimization methodologies, i.e., the alter-
nating direction method of multipliers, a priority-rule-based approach, and the coopera-
tive distributed robust safe but knowledgeable (CDRSBK) algorithm, for real-time traffic
management in railway networks. Through numerical simulations, it was demonstrated
that the CDRSBK approach, utilizing train-based decomposition, outperforms the other
approaches in terms of feasibility, optimality, and computational efficiency. Wang et
al. [138] introduced a hierarchical MPC framework to integrate railway delay manage-
ment and train control, which can realize real-time control and reduce delays effectively.
Cavone et al. [22] applied MPC to address disruptions and disturbances in railway net-
works, where an MILP problem is formulated under a bi-level structure by dividing the
model into macroscopic and mesoscopic levels. The successful applications of the afore-
mentioned centralized and non-centralized MPC approaches have motivated us to de-
sign an efficient MPC approach to realize real-time train scheduling.

We therefore develop a bi-level MPC approach for real-time train scheduling while
considering time-dependent passenger OD demands and train speed profiles in urban
rail transit networks. A bi-level model is developed to reduce the computational com-
plexity of the integrated problem, and then the corresponding bi-level MPC approach
is proposed. The higher-level controller is conducted with relatively slow dynamics to
optimize departure frequencies (i.e., the number of trains departing from a platform per
time unit), while the lower-level controller calculates detailed timetables with fast dy-
namics considering train scheduling constraints. The MPC optimization problems of
both levels are transformed exactly into MILP problems, which enables us to solve them
with existing MILP solvers.
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Publications Infrastructure
Passenger
demands

Train capacity
Rolling stock
circulation

Train
order

Train speed Objective (s)

Cury et al. (1980) [27] bi-directional line OD-independent no no no no
minimize passenger delays and
total number of trains

Niu et al. (2015) [97] uni-directional line OD-dependent hard constraint no no no
minimize the total passenger waiting
time at stations

Wang et al. (2015) [135] uni-directional line OD-independent hard constraint no no continuous speed
minimize train energy consumption
and total passenger travel time

Wang et al. (2015) [136] network OD-dependent hard constraint no no continuous speed
minimize total passenger travel time
and train energy consumption

Canca et al. (2016) [19] network OD-dependent soft constraint yes no no
minimize total passenger travel time
and operational costs

Yin et al. (2017) [152] bi-directional line OD-dependent hard constraint no no speed levels
minimize total passenger waiting time
and train energy consumption

Li et al. (2018) [66] uni-directional line OD-dependent hard constraint no no no
optimizing departure frequency to balance
operational cost and service quality

Wang et al. (2018) [133] bi-directional line OD-independent soft constraint yes no no
minimize load factor variation, headway
variation, and entering depot operations

Hou et al. (2019) [51] uni-directional line OD-independent hard constraint no no speed levels
minimize train delays, energy consumption,
and number of stranded passengers

Zhu and Goverde (2019) [158] network OD-dependent no yes yes no
minimize passenger delays and impacts of
cancelling trains and skipping stops

Mo et al. (2020) [93] bi-directional line OD-independent hard constraint yes no no maximize utilization of regenerative energy

Corman (2020) [23] network OD-dependent no no yes no
analyse equilibrium point between train
schedules and passenger route choices

Pu and Zhan (2021) [102] uni-directional line OD-dependent hard constraint no no no
minimize operational costs and total
passenger travel time

Yin et al. (2021) [150] network OD-dependent hard constraint no no no minimize station crowdedness

Qi et al. (2021) [103] uni-directional line OD-dependent hard constraint no yes no
minimize passenger waiting time and
deviation from original timetable

Bešinović et al. (2022) [9] bi-directional line OD-dependent hard constraint yes no no
minimize the running time of trains
from origin station the terminal station

Luan and Corman (2022) [84] network OD-dependent hard constraint no yes no
minimize passenger disutility and total
train delay

Chapter 2 network OD-dependent hard constraint yes yes speed levels
minimize total passenger travel time and
train energy consumption

Table 2.1: Summary of the relevant studies on passenger-oriented timetable scheduling.
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2.3. PROBLEM STATEMENT AND ASSUMPTIONS

2.3.1. PROBLEM STATEMENT

In urban rail transit systems, train schedules should be adjusted throughout the day to
accommodate time-varying passenger flows while taking operational costs into account.
A pre-determined timetable cannot include time-dependent passenger demands infor-
mation and, in general, may be far from optimal. This chapter focuses on adjusting
train schedules online based on time-dependent passenger origin-destination demands
while taking into account train capacity, rolling stock circulation, train speed profiles,
and train orders. As discussed in Section 2.2, the time-dependent passenger-oriented
train scheduling problem typically has computational issues. We therefore handle the
problem in a bi-level framework to achieve a balanced trade-off between model accu-
racy and computational burden.

Recommended 

departure frequency

Metro network

Passenger demands

Departure frequency optimization

Passenger flows,

rolling stock circulation,

train capacity

Higher-level: passenger absorption model

Minimize energy and 

implement departure frequency

Departure time, arrival time,

rolling stock circulation,

train speed profile,

train order

Lower-level: train scheduling model

Time

Station

Time

1

2

3

4

5

6

Distance

Speed

0

Time

Figure 2.1: Illustration of the bi-level framework.

The general idea of the bi-level framework is illustrated in Fig. 2.1. The train depar-
ture frequency determines the upper bound of the transport capacity and is included
at the higher level to address the time-dependent passenger OD demands based on the
developed passenger absorption model. As the departure frequency is restricted by the
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availability of rolling stock, the rolling stock circulation is also considered at the higher
level. The lower level focuses on generating a practically implementable timetable to
fulfill the departure frequency while considering detailed rolling stock circulation, train
speed profiles, and train orders.

2.3.2. EXPLANATIONS AND ASSUMPTIONS

Some general explanations and assumptions about the problem are listed as follows:

(1) A line in the urban rail transit network is typically defined as the route of one
certain class of train services; these train services thus visit identical stations in each
run. The assigned platforms for trains of each line are fixed.

(2) Passenger OD demands (i.e., the number of passengers choosing the urban rail
transit for their travel, their origins, and their destinations) are not influenced by the
departure frequencies. Time-dependent passenger OD demands are approximated as
piece-wise constant functions.

(3) As passenger route choices observed from urban rail transit data collection sys-
tems typically exhibit consistent patterns [98], we assume that the fractions of passen-
gers choosing each route are given a priori, and that passengers do not change their
route once they have entered the urban rail transit network.

(4) As we assume that passengers do not change their routes once they have entered
the urban rail transit network, we define a lower bound for the departure frequency, so
that the time interval between the departures of two consecutive trains is always shorter
than a given threshold. In this way, the maximum waiting time for passengers should
still be acceptable in case the departure frequency and/or departure times change with
respect to the original timetable.

2.4. MATHEMATICAL MODEL

Based on the bi-level framework, a bi-level model is presented for the passenger-oriented
train scheduling problem, where (1) a macroscopic model, i.e., passenger absorption
model, is included at the higher level considering time-independent passenger OD de-
mands, rolling stock circulation, and train departure frequencies, and (2) a train schedul-
ing model is included at the lower level considering the detailed timetable, detailed
rolling stock circulation, train speed profiles, and train orders. In this section, we first
provide the notations for the mathematical models. Then, the passenger absorption
model and the train scheduling model are introduced respectively.

2.4.1. NOTATIONS

Tables 2.2, 2.3, and 2.4 respectively list the indices and input parameters, decision vari-
ables, and output variables for the model formulations. Noting that in Table 2.3 the de-
cision variables for the higher level are the departure frequency uℓ(k) for all lines while

the arrival time ai ,p , departure times di ,p , d depot
i ,ℓ , and speed profile option xi ,p,b for all

trains at all line platforms are the decision variables for the lower level.
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Notations Definition
i , j Index of trains
p, q Index of line platforms, p ∈P , q ∈P , P is the set of line platforms
ℓ Index of lines, ℓ ∈L , L is the set of lines
s, e Index of stations, s,e ∈S , S denotes the set of stations, sp is the station

corresponding to line platform p
z Index of depots, z ∈Z , Z denotes the set of depots
k Index of phases
T Length of a phase
ptra
ℓ

(i ) Preceding train of train i at line ℓ

ppla (
p

)
Preceding line platform of line platform p

ρstation
s,e (k) Passenger arrival rate at station s with destination e during phase k

ρp,e (k) Passenger arrival rate at line platform p with destination e during phase k
λs,p,e (k) Proportion of passengers at station s that are assigned to line platform p

for their travel to destination e during phase k
αp,e (k) Proportion of passengers absorbed by trains at line platform p with destination e

during phase k
Ctrain Maximum capacity of a train
χp,q,e Proportion of passengers transferring from line platform p to q with destination e
cop(p) The set of line platforms located at the identical station as line platform p
in(z) The set of platforms related to the entering link of depot z
out(z) The set of lines corresponding to the output link of depot z
N train

z The number of available trains at depot z
t transfer

p,q Average time for passengers transferring from line platform p to line platform q

hmin
p Minimum departure-arrival headway at line platform p

τmin
p Minimum dwell time of train at line platform p
τmax

p Maximum dwell time of train at line platform p

r min
p Minimum running time of train from line platform p to its succeeding line platform

r max
p Maximum running time of train from line platform p to its succeeding line platform

Bi ,p Speed profile options set for train i from line platform p to its succeeding line platform
ri ,p,b Running time of train i from line platform p to its succeeding line platform

with speed profile b, b ∈Bi ,p
σp,p′ Binary parameter; if line platforms p and p ′ correspond to the same physical platform,

σp,p′ = 1; otherwise, σp,p′ = 0

Table 2.2: Indices and input parameters.

Notations Definition
uℓ(k) The departure frequency from the depot corresponding to line ℓ during period k
ai ,p Arrival time of train i at line platform p
di ,p Departure time of train i at line platform p

d
depot
i ,ℓ

Departure time of train i from the depot corresponding to line ℓ

xi ,p,b Binary variable indicating whether train i from line platform p selects speed profile b

Table 2.3: Decision variables.

2.4.2. PASSENGER ABSORPTION MODEL

This section presents a macroscopic model to determine train departure frequencies
based on the time-dependent passenger OD demands. In the passenger absorption
model, the planning time window is divided into several phases, and in each phase,
the time-dependent passenger demands at each platform are considered to be constant.
The train departure frequency during each phase can be optimized while taking into ac-
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Notations Definition
τi ,p Dwell time of train i at line platform p
ri ,p Running time of train i from line platform p to its succeeding line platform
r̄p Average running time of trains from line platform p to its succeeding line platform
γp (k) Average time for a train from the first line platform to line platform p at phase k

βp (k) The largest integer less than or equal to
γp (k)

T

φp (k) The remainder of
γp (k)

T
np,e (k) Number of passengers at line platform p with destination station e at the start of phase k
nabsorb

p,e (k) Number of passengers absorbed by trains at line platform p with destination station e
during phase k

Cp (k) Total remaining capacity of trains visiting line platform p during phase k
nwant

p (k) Total number of passengers who want to board trains at line platform p during phase k

non−board
p,e (k) Number of passengers on board when trains arrive at line platform p with destination e

during phase k

n
alight
p,e (k) Number of passengers alighting from trains at line platform p with destination station e

during phase k
ntransfer

p,q,e (k) Number of passengers transferring from line platform p to line platform q
with destination e during phase k

ntrans,arrive
p,e (k) Number of transfer passengers arriving at line platform p with destination station e

during phase k

n
depart
p,e (k) Number of passengers departing from line platform p with destination station e

during phase k
fp (k) Number of trains departing from line platform p during phase k
θz (k) The total number of trains available at depot z at the end of phase k
yi , j ,ℓ,p Binary variable; if train j departs from line platform p before train i departs

from the depot related to line ℓ, yi , j ,ℓ,p = 1; otherwise, yi , j ,ℓ,p = 0
ξi ,i ′ ,p,p′ Binary variable; if train i arrives at line platform p earlier than train i ′ at line platform p ′,

ξi ,i ′ ,p,p′ = 1; otherwise, ξi ,i ′ ,p,p′ = 0

Table 2.4: Output variables.

count passenger OD demands. The variables and parameters related to the number of
passengers for the passenger absorption model are listed in Table 2.4. To illustrate the
above variables, a general overview of these variables is presented in Fig. 2.2, which fea-
tures a station with two line platforms, i.e., line platform p and line platform q . More
details about the variables are introduced below.

A matrix is typically used to describe time-dependent passenger OD demands. Each
entry of the matrix is represented by ρstation

s,e (t ) where s and e are the origin and desti-
nation stations, respectively, and t represents time. Generally, ρstation

s,e (t ) is a nonlinear
time-varying function, and it would significantly increase the computational complex-
ity of including passenger flows in train scheduling problems. Considering the periodic
characteristic of passenger flows in urban rail transit systems, the planning time window
is divided into a sequence of phases with length T , and each phase has constant passen-
ger demands. The illustration for approximating time-dependent passenger arrival rates
in the passenger absorption model is given in Fig. 2.3.

In urban rail transit networks (especially in large cities, such as London, Barcelona),
different lines may use the same physical track and/or the same physical platforms to
maximize the utilization of the infrastructure. To distinguish platforms for different lines
and different directions, we introduce the definition of “(virtual) line platform”, where
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Figure 2.3: Illustration for approximating time-dependent passenger arrival rates.

each line platform is exclusively linked with one direction of one line. For example, in
Fig. 2.4, Line 1 and Line 2 share the same physical platform B, and we regard platform
B as two different line platforms. The safe operation at the line platforms is ensured by
constraints (2.17), (2.28)-(2.31) below.

The arrival rate ρp,e (k) for passengers at line platform p ∈P with destination station
e ∈S in phase k is computed by

ρp,e (k) =λsp ,p,e (k)ρstation
sp ,e (k) , (2.1)
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Figure 2.4: Illustration for the line platform concept.

where sp represents the station corresponding to line platform p; note that each line
platform p is corresponding to only one station sp ; λsp ,p,e (k) denotes the splitting rate
of passengers at station sp who choose line platform p for their travel to destination
e; ρstation

sp ,e (k) denotes passenger origin-destination demand at phase k with sp and e as
the origin and destination stations, respectively; P represents the set collecting all line
platforms; S is the set collecting all stations in the network.

At each line platform, the number of passengers evolves as:

np,e (k +1) = np,e (k)+ρp,e (k)T +ntrans,arrive
p,e (k)−nabsorb

p,e (k) , (2.2)

where np,e (k) denotes the number of passengers stranded at line platform p with desti-

nation e at the start of phase k; ntrans,arrive
p,e (k) is the number of transfer passengers arriv-

ing at line platform p with destination e during phase k; nabsorb
p,e (k) denotes the number

of passengers absorbed by trains at line platform p with destination e during phase k.
The variable nabsorb

p,e (k) is estimated by

nabsorb
p,e (k) =αp,e (k)nabsorb

p (k) , (2.3)

where αp,e (k) is the relative fraction of passengers boarding trains at line platform p
during phase k in order to reach their destination station e, andαp,e (k) can be estimated
through the historical data; nabsorb

p (k) denotes the total number of passengers boarding
trains at line platform p during phase k, and we have

nabsorb
p (k) = min

(
Cp (k) , nwant

p (k)
)

, (2.4)

where Cp (k) denotes the total remaining capacity provided by trains that visit line plat-
form p during phase k, nwant

p (k) is the total number of passengers that want to board
trains at line platform p during phase k. Thus, we have

nwant
p (k) = np (k)+ρp (k)T +ntrans,arrive

p (k) , (2.5)

with

np (k) = ∑
e∈S

np,e (k), ρp (k) = ∑
e∈S

ρp,e (k), ntrans,arrive
p (k) = ∑

e∈S
ntrans,arrive

p,e (k). (2.6)
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The total remaining capacity of trains Cp (k) at line platform p during phase k is de-
termined by the maximum capacity of the trains, the number of passengers already on
board the train, and the number of passengers alighting from the trains:

Cp (k) = fp (k) ·Ctrain −
∑

e∈S

non−board
p,e (k)+

∑
e∈S

nalight
p,e (k), (2.7)

where fp (k) denotes the number of trains departing from line platform p during phase
k, and fp (k) is the decision variable of the absorption model; Ctrain represents the max-
imum capacity of a train; non−board

p,e (k) denotes the number of passengers with desti-
nation station e already on board the train when trains arrive at line platform p during

phase k; nalight
p,e (k) represents the number of passengers with destination station e alight-

ing from trains at line platform p during phase k.
We define ppla(p) as the preceding line platform of line platform p, and r̄ppla(p) as

the mean running time for trains from line platform ppla(p) to p. Then, the variable
non−board

p,e (k) in (2.7) is the number of passengers transported by trains from line platform

ppla(p) to p during phase k with destination station e. As the length of the time step for
the absorption model is T , and passengers departing from line platform ppla(p) require
time r̄ppla(p) to reach line platform p, we have

non−board
p,e (k)=

T −r̄ppla(p)

T
ndepart

ppla(p),e
(k)+

r̄ppla(p)

T
ndepart

ppla(p),e
(k−1) , (2.8)

where ndepart

ppla(p),e
(k) represents the number of passengers departing from line platform

ppla(p) with destination e during phase k, and T and r̄ppla(p) are parameters of the model.
As the developed model aims to address passenger demands within a relatively long
time, we typically set T ≫ r̄ppla(p). Note that if p is the first line platform of the line,

we set non−board
p,e (k)= 0, which means the train is empty when arriving at the first line

platform of a line.
The number of passengers ntransfer

p,q,e (k) transferring from line platform p to line plat-
form q with destination e during phase k, is calculated by

ntransfer
p,q,e (k) =χp,q,e non−board

p,e (k),∀q ∈ cop(p)\{p}, (2.9)

where cop(p) defines a set collecting all line platforms located at the identical station
as line platform p, χp,q,e refers to the proportion of passengers1 transferring from line
platform p to line platform q with destination e, which can be estimated according to
the historical data, and

∑
q∈cop(p)

χp,q,e = 1.

At each line platform, passengers that either have transfer connections or have reached

their destinations will alight from trains. Thus, the number of alighting passengers nalight
p,e (k)

is computed by

nalight
p,e (k)=


∑

q∈cop(p)
ntransfer

p,q,e (k) , if e ∈S \{sta(p)},

non−board
p,e (k) , if e = sta(p),

(2.10)

1χp,p,e represents the proportion of passengers remaining on trains at platform p.
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where sta(p) refers to the station corresponding to line platform p.

The number of departing passengers ndepart
p,e (k) is computed by

ndepart
p,e (k) = non−board

p,e (k)−nalight
p,e (k)+nabsorb

p,e (k) , (2.11)

which means that, at each line platform, some passengers will alight from trains while
passengers waiting at the platform will board the trains before the trains depart from the
platform.

As the basic time unit of the model is T , and the transfer passengers require time
t transfer

q,p to reach line platform p, the number of transfer passengers arriving at line plat-

form p. Then, ntrans,arrive
p,e (k) can be computed by

ntrans,arrive
p,e (k)=

∑
q∈cop(p)\{p}

(T − t transfer
q,p

T
ntransfer

q,p,e (k)+
t transfer

q,p

T
ntransfer

q,p,e (k −1)
)
, (2.12)

where t transfer
q,p denotes the mean time of transferring from line platform q to line plat-

form p.
In this chapter, we address the train scheduling problem without disruptions. Thus,

for each line, all trains will visit every pre-determined station along the line with the
same stopping pattern. Let’s define γp (k) as the mean time of trains from a depot to line
platform p. Define ⌊x⌋ as the greatest integer less than or equal to x; then, we define

βp (k) =
⌊
γp (k)

T

⌋
, (2.13)

φp (k) = γp (k)−βp (k)T, (2.14)

whereφp (k) denotes the remainder of
γp (k)

T with 0 ≤φp (k) < T . In this context, βp (k) ≥ 0
determines the number of phases required for trains from the depot to line platform p.

The departure frequency fp (k) of line platform p is determined by the departure fre-
quency from the output link of the depot. As trains typically depart from depot and
require γp (k) to reach line platform p, fp (k) is determined by

fp (k) = T −φp (k)

T
uℓ

(
k −βp (k)

)+ φp (k)

T
uℓ

(
k −βp (k)−1

)
, p ∈Pℓ, (2.15)

where uℓ(k) defines the departure frequency from the depot corresponding to line ℓ

during period k; Pℓ denotes set of line platforms of line ℓ.
The departure frequency determines the time interval between the departure times

of two consecutive trains, thereby influencing the maximum waiting time of passengers.
We define a lower bound for the departure frequency:

fp (k) ≥ fmin, (2.16)

where fmin represents the minimum departure frequency. In this way, the time interval
between the departures of two consecutive trains is always shorter than a given thresh-
old. Thus, the maximum waiting time for passengers should still be acceptable in case
the departure frequency and/or departure time change.
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Remark 2.1. We assume that rolling stock resource is such that the minimum de-
parture frequency constraint can always be satisfied. However, in case this assumption
is dropped and the rolling stock resource is so limited that the minimum departure fre-
quency constraint can be violated, then we can turn the minimum departure frequency
constraint into a soft constraint.

To ensure safe operation, the number of trains departing from line platform p during
phase k is constrained by ∑

p ′∈phy(p)
fp ′ (k)

(
hmin

p +τmin
p

)≤ T, (2.17)

where phy
(
p

)
represents the set of line platforms using the same physical platform as

line platform p; hmin
p and τmin

p are the minimum departure-arrival headway and the min-
imum dwell time at line platform p, respectively.

The rolling stock circulation determines the availability of trains for each line, which
should be included in the optimization of train departure frequencies. In this chapter,
we only consider the case that the depot is located at the end of each line, and the con-
straints for rolling stock circulation are

θz (k) = θz (k −1)+ ∑
p∈in(z)

fp (k)− ∑
ℓ∈out(z)

uℓ(k),∀z ∈Z (2.18)

θz (k) ≥ 0,∀z ∈Z , (2.19)

where z is the depot index, Z is the set of depots, θz (k) represents the total number of
trains available at depot z at the end of phase k,

∑
p∈in(z)

fp (k) calculates the total number

of trains entering depot z during phase k, in(z) defines the set of line platforms cor-
responding to the entering link of depot z,

∑
ℓ∈out(z)

uℓ(k) calculates the total number of

trains leaving depot k during phase k, and out(z) defines the set of lines corresponding
to the output link of depot z, θz (0) = N train

z is a parameter representing the number of
trains available at depot z.

Remark 2.2. Note that if θz (k) = 0, depot z may need to wait for new arrivals. This
effect is not included in the higher-level problem and may thus result in suboptimality
for the final solution produced by the lower-level optimization problem.

2.4.3. TRAIN SCHEDULING MODEL

As indicated before, the upper level of the proposed bi-level framework determines the
number of trains departing from the lines in the urban rail transit network. However, the
exact departure and arrival times should be determined to obtain a practically imple-
mentable timetable. Therefore, a train scheduling model is introduced for the detailed
timetable (including departure/arrival time and train orders), detailed rolling stock cir-
culation, and train speed profiles.

There are typically three groups of constraints corresponding to the train operation,
i.e., departure/arrival constraints, rolling stock circulation constraints, running time con-
straints, and headway constraints.
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DEPARTURE/ARRIVAL CONSTRAINTS

The departure time di ,p of train i at line platform p is determined by:

di ,p = ai ,p +τi ,p , (2.20)

where ai ,p and τi ,p respectively denote arrival time and dwell time of train i at line plat-
form p, and τi ,p should satisfy

τmin
p ≤ τi ,p ≤ τmax

p , (2.21)

where τmin
p and τmax

p denote the minimum and the maximum dwell times for trains at
line platform p, respectively.

Define ppla(p) as the preceding line platform of line platform p, the arrival time ai ,p

of train i at line platform p is determined by:

ai ,p = di ,ppla(p) + ri ,ppla(p), (2.22)

where di ,ppla(p) denotes the departure time of train i at line platform ppla(p), ri ,ppla(p) is

the running time of train i from line platform ppla(p) to line platform p.
Remark 2.3. If p is the first line platform of the line, for completeness, we set di ,ppla(p) =

d depot
i ,ℓ , where d depot

i ,ℓ represents the departure time of train i from the depot correspond-

ing to line ℓ, and r depot
i ,ℓ is the running time of train i from the depot to the first line

platform of the line, p ∈Pℓ.

ROLLING STOCK CIRCULATION CONSTRAINTS

Before sending a train from a depot, the availability of trains in the depot should be taken

into account. Let us define a binary variable yi , j ,ℓ,p based on the departure time d depot
i ,ℓ

of train i from the depot corresponding to line ℓ:

yi , j ,ℓ,p =
{

1, if d j ,p ≤ d depot
i ,ℓ ;

0, otherwise.
(2.23)

Then, the rolling stock circulation constraint at the lower level is∑
ℓ′∈out(z)

∑
j∈Jℓ′

yi , j ,ℓ,pℓ′ −
∑

p∈in(z)

∑
j∈Ip

yi , j ,ℓ,p ≤ N train
z , (2.24)

where Jℓ′ defines the set of trains departing from the output link of the depot corre-
sponding to line ℓ′ with pℓ′ being the corresponding departure platform, and Ip defines
the set of trains that depart from line platform p. In (2.24), the first term represents the
total number of trains that have left depot z before train i departs, while the second term
accounts for the total number of trains that have entered depot z prior to the departure
of train i from the same depot.

RUNNING TIME CONSTRAINTS

Considering the operational requirement and speed limits, the running time constraint
is

r min
p ≤ ri ,p ≤ r max

p , (2.25)
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where r min
p and r max

p are the minimum and maximum running times from line platform
p to its succeeding line platform, respectively.

In general, ri ,p is determined by train running speeds. In real life, train speeds and
train running time between two stations are usually adjusted through an on-board train
operation system, where different operation levels are defined, and each level corre-
sponds to one speed profile option [152]. Therefore, we consider different train speed
profile options for trains between two stations, and each option is related to a specific
running time and a value of energy cost. In this context, the running time ri ,p for train i
is determined by

ri ,p = ∑
b∈Bi ,p

xi ,p,b ri ,p,b , (2.26)

where b denotes the train speed profile option index, Bi ,p represents the set of speed
profile options for train i at line platform p (for example, speed profile options in Fig. 2.5);
ri ,p,b denotes the running time corresponding to speed profile option b; xi ,p,b represents
a binary variable indicating whether a speed profile is selected, i.e., xi ,p,b = 1 if speed
profile option b is selected for train i at line platform p, otherwise, xi ,p,b = 0.

Distance

Speed

0

Option 1

Option 2

Option 3

Option 4

Option 5

Accelerating

Cruising

Coasting

Braking

Figure 2.5: Illustration of different train speed profile options in a segment.

In order to ensure only one option can be selected, xi ,p,b should satisfy∑
b∈Bi ,p

xi ,p,b = 1. (2.27)

In this chapter, different speed profiles can be calculated offline, and we only need
to select one speed profile among different speed profile options in real time.

HEADWAY CONSTRAINTS

Headway is crucial for the safety of two consecutive trains, and for trains in the same line
(see Fig. 2.6 (a)) we have:

ai ,p ≥ dptra
ℓ

(i ),p +hmin
p , (2.28)

where ptra
ℓ

(i ) represents the preceding train of train i at line ℓ, and hmin
p represents the

minimum departure-arrival headway at line platform p.
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Figure 2.6: Different lines may use the same physical platform.

In urban rail transit networks (especially in large cities, such as London, Barcelona),
different lines may use the same physical track and/or physical platforms to maximize
the utilization of infrastructure (see Fig. 2.6 (b)). In this context, headway constraints for
trains on different lines are required. We use a binary variable ξi ,i ′,p,p ′ to represent the
order of trains from different lines:

ξi ,i ′,p,p ′ =
{

1, if ai ,p ≤ ai ′,p ′ ;
0, otherwise.

(2.29)

Then, the headway constraint for train i and train i ′ can be represented as

ai ,p −di ′,p ′ ≥ hmin
p −Ma(1−σp,p ′ +ξi ,i ′,p,p ′ ), (2.30)

where Ma represents a sufficiently large positive value. Eq. (2.30) represents the headway
constraint of trains i and i ′ when line platforms p and p ′ are associated with the same
physical platform, i.e., σp,p ′ = 1; otherwise, σp,p ′ = 0, then (2.30) holds automatically.

Furthermore, the order of trains should also satisfy

ξi ,i ′,p,p ′ +ξi ′,i ,p ′,p = 1, (2.31)

which is employed to keep train order variables consistent, i.e., either ξi ,i ′,p,p ′ = 1 or
ξi ′,i ,p ′,p = 1.

2.5. BI-LEVEL MPC FOR TRAIN SCHEDULING
MPC is an efficient real-time model-based control approach where finite-horizon opti-
mization procedures are conducted repeatedly in a receding horizon scheme [91]. By
dividing the long planning time window into several short time windows, MPC solves
the problem with a short time window in a receding horizon manner to reduce the com-
putational burden, while taking into account the real-time information of the urban rail
transit network. A bi-level MPC approach is proposed to achieve real-time timetable
scheduling in this section. The general introduction and the bi-level structure are in-
troduced in Section 2.5.1. Then, the MPC approaches for both levels are presented in
Section 2.5.2 and Section 2.5.3, respectively.

2.5.1. BI-LEVEL MPC FOR THE INTEGRATED PROBLEM
The bi-level control scheme is illustrated in Fig. 2.7 where passenger flow control and
train scheduling are addressed at two different levels.
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Higher-level MPC:

Passenger absorption model 

Lower-level MPC:

Train scheduling model

Real-life railway network

,i pd,i pa

Optimized

Optimized

,i pd,i pa

Real-life

Real-life
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Time-varying

passenger flow System output

, ( )p en k

Figure 2.7: Bi-level control structure for the integrated problem.

As shown in Fig. 2.7, the higher level aims to address time-dependent passenger
origin-destination (OD) demands by determining the number of trains departing from
each line platform during each phase. The higher-level controller uses the passenger
absorption model of Section 2.4.2. As we approximate time-dependent passenger OD
demands as piecewise constants, the higher-level controller can be handled at every
phase. Therefore, the higher-level controller can be conducted in relatively slow dynam-
ics. Once the higher-level MPC optimization problem is solved, the optimized decision
variables f ∗

p (k) are sent to the lower level. At the lower level, the train scheduling prob-
lem is solved to obtain the optimized arrival time a∗

i ,p and departure time d∗
i ,p for each

train taking train speed profiles into account. The lower-level controller should be ad-
dressed with fast dynamics for real-time train scheduling so that the obtained arrival
times, departure times, and train speed profiles can be implemented into the practical
urban rail transit network.

In the bi-level MPC scheme, at the end of the control interval of the lower-level con-
troller, the planning time window at the lower level will be moved for one step, and the
train scheduling problem is resolved for the next step according to the collected real-
life arrival and departure times (ai ,p and di ,p ). At the end of the control interval of the
higher-level controller (i.e., one phase), the planning time span for the higher level will
be shifted for one phase, and the control problem will be solved again for the next phase
based on the realized r̄p and np,e (k).

2.5.2. HIGHER-LEVEL MPC: DEPARTURE FREQUENCY OPTIMIZATION

The time-dependent passenger OD demands can be addressed by a centralized MPC
approach based on the model presented in Section 2.4.2. As passenger flows usually
change periodically, the control time interval of the higher-level controller is equal to
the length of a phase. The decision variable at the higher level will be the number of
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trains departing from each line platform during each phase.
The total travel time for passengers during phase k is represented by

J pass(k) = ∑
p∈P

(
np (k)T +ndepart

p (k)r̄p +ntrans,arrive
p (k)t transfer

p

)
, (2.32)

where P defines a set collecting all line platforms in the urban rail transit network;

np (k)T denotes the passenger waiting time at line platform p during phase k; ndepart
p (k)r̄p

denotes the total running time for passengers departing from line platform p during
phase k; ntrans,arrive

p (k)t transfer
p is the total transfer time for passengers at line platform p

during phase k, and t transfer
p denotes the average time for passengers transferring to line

platform p.
Although scheduling more trains, running with the minimum headway, can help to

minimize J pass(k), it is typically not acceptable to use too many trains in real life, as it
would significantly increase the total energy consumption. Thus, a penalty term corre-
sponding to train energy consumption is included in the cost function. Then, the MPC
optimization problem for passenger flow control at phase k0 can be represented by

min
u(k)

J high =
k0+N−1∑

k=k0

(
J pass(k)+η ∑

p∈P
fp (k)Ēp

)
+LN (k0)

s.t. (2.1)−(2.12), (2.15)−(2.19),

(2.33)

where N denotes the number of phases in the prediction time span; η represents a
weight; Ēp denotes the average energy consumption for a train running from the line
platform p to its succeeding line platform, since the higher level does not know which
speed profile will be selected at the lower level when solving the high-level optimiza-
tion problem, we use the average value among all speed profile options in the high-level
optimization problem; and u(k) collects the independent decision variables, i.e., the de-
parture frequency at the depot corresponding to each line uℓ(k); LN (k0) is a penalty
term for the passengers that can not board trains at the end of the prediction window,
and in this chapter we set LN (k0) =∑

p∈P np (k0 +N )T . As stated in (2.15), the departure
frequencies of other line platforms are determined by uℓ(k).

In each MPC step, problem (2.33) is a nonlinear nonconvex optimization problem.
By using the properties in [139], we can convert the nonconvex term (2.4) into linear
constraints.

Transformation property 2.4. If we introduce a binary variable δabsorb
k,p and an aux-

iliary real variable f absorb
k,p with f absorb

k,p = nwant
p (k)−Cp (k). Then, if we define mp and

Mp as the minimum and the maximum values of f absorb
k,p , respectively, the expression

δabsorb
k,p = 1 ⇔ f absorb

k,p ≤ 0 is equivalent to{
f absorb

k,p ≤ Mp

(
1−δabsorb

k,p

)
,

f absorb
k,p ≥ ε+ (

mp −ε
)
δabsorb

k,p ,
(2.34)

where ε represents a sufficiently small number. Then, (2.4) can be replaced by

nabsorb
p (k) = δabsorb

k,p nwant
p (k)+

(
1−δabsorb

k,p

)
Cp (k) . (2.35)
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Transformation property 2.5. The multiplication of real variable ỹ and logical vari-
able δ̃ can be replaced by an auxiliary real variable, with

g̃ = ỹ · δ̃. (2.36)

Then, g̃ = ỹ · δ̃ can be exactly transformed into
g̃ ≤ M ỹ δ̃,
g̃ ≥ m ỹ δ̃,
g̃ ≤ ỹ −m ỹ (1− δ̃),
g̃ ≥ ỹ −M ỹ (1− δ̃),

(2.37)

where M ỹ and m ỹ respectively represent the maximum and minimum values of ỹ .
By using the above transformations, problem (2.33) can be exactly converted to an

MILP problem with the following form:

min
x(k),u(k)
δ(k),z(k)

J high :=
k0+N−1∑

k=k0

(
J pass(k)+η ∑

p∈P
fp (k)Ēp

)
+LN (k0)

s.t. x(k +1) = Ak x(k)+B1,k u(k)+B2,kδ(k)+B3,k z(k),
D2,kδ(k)+D3,k z(k) ≤ D1,k u(k)+D4,k x(k)+D5,k ,
k = k0, · · · ,k0 +N −1,

(2.38)

where x(k) collects the output variables in phase k; δ(k) and z(k) collect the auxiliary
binary and auxiliary continuous variables in phase k, respectively; x(k +1) = Ak x(k)+
B1,k u(k)+B2,kδ(k)+B3,k z(k) includes all equality constraints in (2.1)-(2.12), (2.15), and
(2.18); D2,kδ(k)+D3,k z(k) ≤ D1,k u(k)+D4,k x(k)+D5,k includes all inequality constraints.

Remark 2.6 (Complexity Analysis). There are three categories of variables in (2.38),
i.e., continuous variables, binary variables, and auxiliary continuous variables. The con-
straints include linear and nonlinear constraints. The total numbers of variables and
constraints are listed in Table 2.5, where S , P , and L are the set of stations, line plat-
forms, and lines, respectively, and | · | denotes the cardinality of a set.

Table 2.5: Numbers of variables and constraints in problem (2.38)

Variables or constraints Maximal possible total number
Continuous variables (7 · |S |+6) ·N · |P |
Binary variables N · |P |
Auxiliary continuous variables 3 ·N · |P |
Constraints (8 · |S |+16) ·N · |P |

It can be observed from Table 2.5 that the number of variables depends on the scale
of the considered urban rail transit network and the prediction horizon N . The MILP
problem is an NP-hard problem, and the computation time for solving the problem typ-
ically increases rapidly when the number of integer variables increases [40]. In this prob-
lem, the number of binary variables is determined by the number of lines |L |, the num-
ber of line platforms |P |, and the prediction horizon N . A large prediction horizon N can
include more information in the train departure frequency optimization, while the com-
putational burden increases. Therefore, for a given urban rail transit network, choosing
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a proper prediction horizon is important to balance the computation time versus the
performance.

Solving problem (2.38) results in a series of decision variables from phase k0 to k0 +
N−1, and according to the MPC paradigm, only the variables for phase k0 are applied. In
the next phase, the prediction time span is shifted for one phase, and a new optimization
problem can be obtained.

Lemma 2.7 (Recursive Feasibility). If problem (2.38) is feasible at phase k0 with initial
state x(k0), then the feasibility of problem (2.38) at phase k0 +1 can also be ensured.

Proof. The proof is based on finding a feasible solution for phase k0+1. At phase k0 with
initial state x(k0), problem (2.38) can be solved and the optimized decision variables are
collected in U (k0) with

U (k0) = [
(
u∗(k0)

)⊺ ,
(
u∗(k0 +1)

)⊺ , . . . ,
(
u∗(k0 +N −1)

)⊺]⊺, (2.39)

where u∗(k0) is the optimized value of u(k0) for solving problem (2.38). By implementing
the first decision variable u∗(k0), we get

x∗(k0 +1) = Ak0 x(k0)+B1,k0 u∗(k0)+B2,k0δ
∗(k0)+B3,k0 z∗(k0). (2.40)

As we only have input constraint (2.17) at the higher level, and the inequalities con-
straints introduced in Transformation property 2.4 and Transformation property 2.5 are
equivalent transformations for the mixed logical dynamical (MLD) model, a feasible so-
lution for phase k0 +1 can always be found as

U (k0 +1) = [
(
u∗ (k0 +1)

)⊺ , . . . ,
(
u∗(k0 +N −1)

)⊺ , (u(k0 +N ))⊺]⊺, (2.41)

where u∗(k0+1), . . . ,u∗(k0+N−1) are from solution U (k0) at phase k0, and u(k0+N ) can
be any solution that satisfies (2.17), e.g., the corresponding value of the regular timetable.
Hence, the recursive feasibility of the higher-level MPC problem is guaranteed.

2.5.3. LOWER-LEVEL MPC: TRAIN SCHEDULING
Based on the number of trains departing from each line platform obtained from the
higher-level controller, the detailed timetable considering the energy consumption can
be generated at the lower level. The lower level uses the train scheduling model intro-
duced in Section 2.4.3, and the decision variables are departure/arrival times and train
speed profile options of trains. As the lower-level controller aims to generate a prac-
tically implementable timetable considering real-time information of the network, the
lower-level controller should be addressed with relatively fast dynamics.

According to Section 2.4.3, the energy consumption Ei (p) for train i from line plat-
form p to its succeeding line platform is determined by

Ei (p) = ∑
b∈Bi ,p

xi ,p,bEi ,b(p), (2.42)

where Ei ,b(p) denotes the energy consumption of speed profile option b for train i from
line platform p to its succeeding line platform.
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Generally, the energy consumption of a train in a segment is highly related to the
running time, i.e., a longer running time (and thus a lower speed) typically leads to lower
energy consumption. Furthermore, a penalty term has been to ensure consistency be-
tween the desired departure frequency and the departure times of trains, promoting an
even spread of departures as much as possible. We define ϑ as the index for the con-
trol step of the lower level, where the time interval of each step is R. Then, the objective
function for the lower-level controller is defined as

J low = ∑
i∈I (k,ϑ)

∑
p∈Vi

(
Ei (p)+ζ

∣∣∣∣ T

uℓ(k)
− (di ,p −di−1,p )

∣∣∣∣), (2.43)

where I (k,ϑ) denotes the set of indices for trains leaving their first line platforms before
the end of phase k but have not yet reached their destination at time step ϑ, Vi denotes
the set of line platforms that train i will visit, and ζ is a weighting factor.

The optimization problem for train scheduling at the lower level is

min
g(k,ϑ)

J low := ∑
i∈I (k,ϑ)

∑
p∈Vi

(
Ei (p)+ζ

∣∣∣∣ T

uℓ(k)
− (di ,p −di−1,p )

∣∣∣∣),

s.t. (2.20)− (2.31), (2.42), (2.44)

where g (k,ϑ) collects the decision variables for trains in set I (k,ϑ), i.e., ai ,p , di ,p , and
xi ,p,b , ∀i ∈ I (k,ϑ), p ∈ Vi , b ∈ Bi ,p . Problem (2.44) contains piecewise constant (“if-
then”) constraints in (2.29), which can be reformulated by using the property developed
in [7] (see Transformation property 2.8 below). Therefore, Problem (2.44) can also be
transformed into an MILP problem.

Transformation property 2.8. If we define ma and Ma as the minimum and maxi-
mum values of ai ,p , respectively, then (2.29) is equivalent to the following inequalities{

ai ,p −ai ′,p ′ ≤ (
1−ξi ,i ′,p,p ′

)(
Ma−ai ′,p ′

)
,

ai ,p −ai ′,p ′ ≥ ε+ξi ,i ′,p,p ′
(
ma−ai ′,p ′−ε) .

(2.45)

In the MPC scheme, we solve the optimization problem (2.44) in a receding horizon
way, which enables the decision-making process to include real-time information from
the urban rail transit network. Solving problem (2.44) leads to a series of decision vari-
ables for all trains i ∈I (k,ϑ) from their current line platforms to their terminal line plat-
forms. Only the decision variables pertaining to the first interval are executed, following
which the prediction window is shortened by one step, and a new problem is formulated
considering the newly collected information. The procedure is repeated until the last
train in set I (k,ϑ) arrives at its terminal line platform.

In this chapter, the lower-level controller optimizes the timetable of trains that have
not yet reached their destination at phase k. As each train operates from its starting line
platform to its terminal line platform, the MPC optimization is terminated until the last
planned train arrives at its terminal platform. Therefore, the lower-level controller can
be solved in a shrinking horizon manner, i.e., the end of the prediction horizon is fixed
and equal to the arrival time of the last train in set I (k,ϑ) at its terminal line platform.

Lemma 2.9 (Recursive Feasibility). Given a feasible solution of problem (2.44) at time
step ϑ for trains in the set I (k,ϑ) and line platforms in the set Vi , a feasible solution for
time step ϑ+1 can always be found.
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Proof. For trains that have not departed from their depot at the current phase, a feasible
solution of problem (2.44) can always be found by keeping trains at the depot. For trains
that have already departed from their first line platform, a feasible solution for time step
ϑ+1 can be found by keeping the solutions (i.e., ai ,p , di ,p , ri ,p , ∀i ∈ I (k,ϑ),∀p ∈ Vi ) of
the time step ϑ unchanged. In this context, the recursive feasibility of lower-level MPC
can be guaranteed.

In the proposed method, both the higher level and the lower level use centralized
MPC. We define the first step of the lower-level controller is indexed by ϑ0(k) and the
procedure of bi-level MPC for the integration of passenger flows, timetables, and train
speed profiles is shown in Algorithm 1.

Algorithm 1 Bi-level MPC for the integrated problem

Input: kmax, ϑmax(k); initial estimate for the variables γp , r̄p ;
Output: optimized values ai ,p , di ,p

1: k ← k0

2: repeat
3: ϑ←ϑ0(k)
4: solve the higher-level problem (2.38), get uℓ(k) and fp (k)
5: repeat
6: solve problem (2.44), get ai ,p and di ,p

7: implement ai ,p and di ,p to real-life network
8: ϑ←ϑ+1
9: collect real-life value of ai ,p , di ,p , and np,e (k)

10: until ϑ=ϑmax(k)
11: k ← k +1
12: calculate real-life values of γp , r̄p

13: until k = kmax

In the developed bi-level MPC approach, the MPC optimization problems of both
levels can be transformed into MILP problems by using the methods introduced in [7]
and [139]. Therefore, we can derive an MILP problem at each level that is an exact equiv-
alence of the original optimization problem. Furthermore, with existing MILP solvers,
the resulting optimization problems can be solved.

2.6. CASE STUDY

This section involves conducting simulations to demonstrate the efficacy of the pro-
posed passenger absorption model and bi-level control approach. Firstly, we introduce
the urban rail transit network and the basic setup utilized in the case study. Subse-
quently, we evaluate the passenger absorption model based on real-life data from the
Beijing urban rail transit network. Finally, simulations are conducted to assess the per-
formance of the developed bi-level framework and bi-level MPC approach.
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2.6.1. BASIC SETUP

In this chapter, we carry out the case study based on the real-life passenger flow data
from the Beijing urban rail transit network. The network is displayed in Fig. 2.8, which is
generated according to the northern part of the Beijing urban rail transit network. The
network includes six bidirectional lines and 54 stations. Moreover, the network contains
seven transfer stations, i.e., Station ZXZ, Station XEQ, Station HY, Station OP, Station WJX,
Station LSQ, and Station DD, where passengers can transfer from one line to another
to reach their destinations. Transfer passengers are defined as passengers whose route
consists of more than one line.
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Figure 2.8: Layout of the considered urban rail transit network.

The across-line operation is one important way to maximize the utilization of in-
frastructure and to improve passenger satisfaction by reducing the number of transfer
activities in the network (especially in big cities like London, Barcelona, and Beijing2).
Therefore, we add an “Across Line” for the case study to meet the case when different
lines use the same physical track and/or platforms. Some passengers at the Across Line
(e.g. from CPD to PXF) can use the Across Line to reach their destination and transfer
actions are not required anymore, so they are not considered to be transfer passengers.
There are five lines in Fig. 2.8, where Changping Line, Line 8, Line 13, and Line 15 are
the real-life lines, and the Across Line is added in this chapter to simulate the case of

2Beijing Subway plans to achieve the across-line operation among several lines in recent
years, including the across-line operation of Changping Line and Line 8 in Fig. 2.8; see also
http://bj.people.com.cn/n2/2022/0126/c233088-35113072.html
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cross-line operation. The Across Line uses the same physical platforms as Changping
Line from Station CPX to Station GHC, and the same physical platforms as Line 8 from
Station ZXZ to Station OP.

Parameters
Line 8

Line 13 Line 15Changping Line
Across Line

Minimum departure-arrival headway 120 s 120 s 120 s
Regular departure-arrival headway 480 s 180 s 240 s
Maximum dwell time τmax

p 360 s 360 s 360 s

Minimum dwell time τmin
p 30 s 30 s 30 s

Regular dwell time τi ,p 60 s 60 s 60 s
Maximum capacity of a train Ctrain 2400 persons 2400 persons 2400 persons
Average transfer time t transfer

p 60 s 60 s 60 s
Phase time T 1800 s 1800 s 1800 s
Number of speed profile options 8 options 8 options 8 options

Table 2.6: Parameters for the simulations

The passenger OD data are generated according to the real-life passenger flow data,
i.e., the entering and exiting flow data of the Beijing urban rail transit network. This in-
formation is updated every 30 minutes. The data we use is for the morning peak hours
from 7:00AM. The prediction time window is 1 hour. In the case study, we include the
case when different lines use the same physical platforms, and the order of trains from
different lines at the same physical platform can be adjusted. Table 2.6 presents the
main parameters for the simulation. The parameters are generated based on the real-
life timetable of the Beijing urban rail transit network. For the different speed profile op-
tions, we calculate the speed profile according to the method in [135] with the maximum
acceleration of 0.8 m/s2, the maximum deceleration of 0.75 m/s2, and cruising speeds
as 8 equidistant values in [65, 79] km/h, i.e., 65 km/h, 67 km/h, 69 km/h, 71 km/h, 73
km/h, 75 km/h, 77 km/h, 79 km/h, respectively. The length between every two con-
secutive stations is openly accessible on the website of Beijing Subway3. As the Across
Line is not yet included in the historical data, in the basic timetable, trains of the Across
Line and trains of Changping Line (or Line 8) depart alternately, which means part of the
transport capacity that was originally performed by Changping Line (or Line 8) is taken
over by the Across Line to reduce the number of transfer actions of passengers, and that
change does not affect the total transport capacity or the number of trains needed for
the basic timetable. Thus, the original OD demand is divided equally over two lines, so
for the basic timetable, half of the departures of the original timetable is then arranged
to Changping Line (or Line 8), while the other half is arranged to Across Line. This also
means that the total number of trains in the network and the depot does not have to
be changed compared with the original timetable. The simulation is coded using MAT-
LAB (R2019b) on an Intel Xeon W2223 CPU (3.60 GHz) with 8GB RAM. In this chapter,
we assume passengers’ route choices are given a priori, and we consider passengers will
choose the route with the shortest travel time for their travel.

3https://www.bjsubway.com/station/zjgls/
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As far as we know, there is no well-recognized micro-simulator currently available
that includes timetables, passenger OD demands, and train speeds. The model devel-
oped by [136] is the most elaborate model we noticed in the literature; thus, we use
the model of [136] as the “accurate model” of the practical passenger dynamics in the
railway network. The passenger absorption model combined with the train scheduling
model presented in Section 2.4 are used as prediction models for the train scheduling
problem. The basic timetable is generated by using the regular headway and the regular
dwell time given in Table 2.6.

2.6.2. ASSESSMENT OF THE ABSORPTION MODEL

As mentioned in Section 2.6.1, we select the “accurate model” developed by [136] as the
benchmark to assess the passenger absorption model. Instead of focusing on the specific
times of train arrivals and departures, the passenger absorption model deals with the
train departure frequencies in each phase. Thus, we regard the number of passengers as
a function of the phase index rather than as a function of time.

The accumulated number of waiting passengers (AWP) and the accumulated num-
ber of boarding passengers (ABP) in each line are two main variables in passenger-oriented
urban rail transit networks. In particular, AWP reflects whether passengers can board
trains in time, since if passengers are unable to board trains in the current phase, they
should wait for trains in the next phase. ABP reflects the transport capacity of trains.

The simulations are conducted on the network in Fig. 2.8 based on both the devel-
oped model and the “accurate model” of [136]. We perform the simulation from 7:00
to 15:00 which includes both peak and off-peak hours. We collect the AWP and ABP
values in each phase. The required simulation time for the developed model and the
accurate model are 2.10 s and 84.24 s, respectively. The relative differences between the
absorption model and the “accurate model” for AWP and ABP of each line are displayed
in Table 2.7. The simulation contains 16 phases, and we select the minimum, maximum,
and final values of the relative difference among the phases at each line.

Table 2.7: Relative differences of variables for each line

min max average
AWP ABP AWP ABP AWP ABP

Changping Line 1.91 % 5.12% 7.74 % 19.38% 4.76 % 7.69%
Line 13 0.50 % 0.13% 22.15 % 25.79% 7.81 % 3.78%
Line 8 1.24 % 4.28% 20.48 % 33.55% 8.73 % 8.66%

Across Line 0.09 % 6.32% 17.82 % 17.54% 3.53 % 9.14%
Line 15 0.61 % 0.16% 27.71 % 32.19% 5.61 % 5.12%
Line 5 0.07 % 6.01% 17.12 % 19.76% 2.99 % 8.96%

It can be observed from Table 2.7 that Line 8 has the largest average relative differ-
ence for AWP, while the largest average relative difference for the ABP value occurs in
Line 15. We select Line 8 and Line 15 for visualization, and the corresponding values for
AWP and ABP at each time step are respectively depicted in Fig. 2.9 and Fig. 2.10.

Compared with the accurate model, the passenger flows can be modeled by the ab-
sorption model with the largest final error of about 10% and the required simulation
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Figure 2.9: Accumulated number of passengers waiting at the platforms in each phase (AWP).
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Figure 2.10: Accumulated number of boarding passengers in each phase (ABP).

time drops with a factor of around 40. Hence, we can conclude that with an acceptable
accuracy loss, the absorption model can simulate passenger flows much more efficiently
with time-dependent passenger OD demands, which allows more efficient methods for
passenger-oriented train scheduling problems. The major loss is that the developed
model does not include detailed arrival and departure times of trains, and thus a train
scheduling model in the lower level is required to determine the specific departure and
arrival times of trains.
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2.6.3. BI-LEVEL OPTIMIZATION BASED ON THE ABSORPTION MODEL

We first perform simulations of sequentially solving optimization problems at both lev-
els based on the developed model. We also use the single-level optimization approach to
solve the integrated problem in a centralized manner. Then, we compare the single-level
approach with the proposed bi-level approach based on solution quality and solution
time. The single-level optimization problem is a nonlinear nonconvex problem con-
taining integer variables. Compared with the bi-level optimization problem, the single-
level counterpart introduces an additional nonlinear term, namely T

uℓ(k) , in (2.43). The
single-level optimization problem can also be converted to an MILP problem by using
the method in [139]. We use the gurobi to solve all MILP problems. For the single-level
approach, the nonlinear function T

uℓ(k) is approximated as a piecewise linear function by
setting several breakpoints. However, setting more breakpoints can lead to a more accu-
rate approximation of the nonlinear term, while more computation time is required for
solving the resulting MILP problem. Therefore, in the case study, we use both one break-
point and four breakpoints for the approximation of the nonlinear term in the single-
level optimization problem, and for simplicity, the corresponding approaches are called
single-level-1-brk and single-level-4-brk, respectively.

Table 2.8: Simulation results of different approaches in two cases

Case Method Objective function CPU time (s)

Unsaturated case

Basic timetable 8.3925 ·103 -
Single-level-1-brk 7.5520 ·103 3106.1
Single-level-4-brk 7.5339 ·103 7200.0
Bi-level approach 7.5903 ·103 40.5

Over-saturated case

Basic timetable 9.5186 ·103 -
Single-level-1-brk 9.1386 ·103 5250.7
Single-level-4-brk 9.1027 ·103 7200.0
Bi-level approach 9.1119 ·103 87.0

We evaluate the developed approach in both the over-saturated (i.e., peak hours)
and the unsaturated (i.e., off-peak hours) cases. For comparison, both single-level-1-brk
and single-level-4-brk are also applied to solve the optimization problem. As our aim is
to generate a timetable online, it is required to check whether an approach is real-time
implementable. In the case study, the time limit for each method is set to be 7200 s,
which is larger than the length of a step (1800 s) because we want each method to have
sufficient time to find its solution, and we can compare the relative time of different
methods. By using the regular dwell time and departure-arrival headway in Table 2.6, we
can obtain a basic timetable.

The simulation results and CPU times of solving the problem for one step are pre-
sented in Table 2.8. The objective for comparison is the weighted sum of the total pas-
senger travel time and the total energy consumption based on the simulation model.
In both the unsaturated case and the over-saturated case, the simulation results indi-
cate that single-level-4-brk performs slightly better than single-level-1-brk with regard
to the objective function value. However, the CPU time of single-level-4-brk increases
significantly as more integer variables are introduced when adding more breakpoints.
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As real-time feasibility is important for real-time train scheduling, single-level-1-brk is
more suitable for real-life applications than single-level-4-brk.

Compared to the basic timetable, the single-level-1-brk approach, single-level-4-brk
approach, and bi-level approach exhibit a performance improvement of 10.01%, 10.23%,
and 9.56%, respectively, in the unsaturated case, while the improvement for the over-
saturated case is 3.99%, 4.37%, and 4.27%, respectively. The bi-level approach can find
its optimal solution very quickly. The CPU times of single-level-1-brk and single-level-
4-brk are much larger than the bi-level approach, which implies that single-level opti-
mization may not be a suitable option for real-time train scheduling of large-scale urban
rail transit networks. The results thus show that the bi-level optimization approach can
achieve a balanced trade-off between the solution quality and the computation time.

2.6.4. BI-LEVEL MPC FOR REAL-TIME TRAIN SCHEDULING
In this section, we conduct the case study under the MPC scheme to illustrate the closed-
loop performance and the real-time feasibility of the developed approach. The predic-
tion time window of MPC is one hour.

As shown in Section 2.6.3, the single-level-1-brk approach requires less computa-
tion time than single-level-4-brk with an acceptable sacrifice of performance. Consid-
ering the real-time feasibility of approaches, we select the single-level-1-brk approach
to solve the optimization problems of single-level MPC. The maximum solution time for
the MPC optimization problem in each step is set to be 7200 s. The simulation results of
single-level MPC and bi-level MPC are displayed in Table 2.9 and Fig. 2.11, where the ob-
jective function value means the accumulated objective function value for all included
simulation times. The performance of the basic timetable is also given for comparison.

Table 2.9: Comparison of different approaches for real-time train scheduling

Method Objective function
CPU time (s)

tavrg tmax

Basic timetable 1.4859 ·105 - -
Single-level MPC 1.2451 ·105 3181.5 7200.0

Bi-level MPC 1.1815 ·105 42.4 95.9

The simulation results indicate that, compared with the basic timetable, bi-level MPC
can improve the overall performance, i.e., the objective function value, by 20.49%, while
the improvement of single-level MPC is 16.21%. The average computation time for single-
level MPC is 3181.5 s. Due to the time limit, single-level MPC cannot always obtain its
optimal solution within the given maximum solution time in every MPC step, which in-
fluences the solution quality of single-level MPC. The average and maximum solution
times of bi-level MPC are 42.4 s and 95.9 s, respectively. Simulation results indicate that
bi-level MPC can compute its optimal solution within an acceptable time. However,
single-level MPC is not efficient in terms of computation time, and as a result, single-
level MPC may not be suitable for real-time implementation in large-scale networks.

For further illustration, the number of trains departing from the first line platform of
Line 5 (down direction) is shown in Fig. 2.12 as an example. As time steps 1-6 correspond
to the morning peak hours from 7:00AM - 10:00AM, compared with the basic timetable,



2

40 2. INTEGRATION OF TIMETABLES, PASSENGER FLOWS, AND TRAIN SPEED PROFILES

1 2 3 4 5 6 7 8 9 10

Time step

0.5

1

1.5

2

2.5

T
h
e
 v

a
lu

e
 o

f 
o
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

104

Basic Timetable

Single-Level MPC

Bi-Level MPC

Figure 2.11: Comparison of different approaches for real-time train scheduling.

more trains are scheduled with the single-level and the bi-level MPC approaches to ad-
dress the large passenger demand, which indicates that bi-level MPC is able to optimize
the number of trains departing from each line according to the time-dependent passen-
ger demands.
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Figure 2.12: Number of trains departing from the first line platform of Line 5 (down direction) at each time
step.

We select Line 5 (down direction) as a representative line to show the timetables
generated by different approaches. The basic timetable of the morning peak hour from



2.6. CASE STUDY

2

41

8:00 8:10 8:20 8:30 8:40 8:50 9:00

Time

TYB

TTY

TYN

LSQ

LSN

BYB

DD

HXB

HXN

HX

S
ta

ti
o
n

Figure 2.13: Basic timetable from station TYB to HX (the line thickness represents the number of passengers
on board the train).
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Figure 2.14: Timetable obtained by single-level MPC from station TYB to HX (the line thickness represents the
number of passengers on board the train).

8:00AM to 9:00AM is shown in Fig. 2.13. The timetables generated by single-level MPC
and bi-level MPC from 8:00AM to 9:00AM are respectively exhibited in Fig. 2.14 and
Fig. 2.15. The time window 8:00AM to 9:00AM corresponds to time steps 3 and 4 in
Fig. 13. The above simulation results indicate that the bi-level MPC approach based on
the absorption model can generate practically implementable timetables online, which
means the bi-level MPC approach can be implemented for real-time train scheduling of
urban rail transit networks. Furthermore, the line thickness now indicates the number of
passengers on board the current train. Then, it can be observed from Figures 2.13, 2.14,
and 2.15 that compared with the basic timetable the optimized timetables allow more
trains to transport more passengers so that passenger satisfaction can be improved.
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Figure 2.15: Timetable obtained by bi-level MPC from station TYB to HX (the line thickness represents the
number of passengers on board the train).

2.7. CONCLUSIONS
In this chapter, we have investigated the real-time train scheduling problem considering
time-dependent passenger OD demands and train speed profiles in urban rail transit
networks. We have proposed a passenger absorption model to handle time-dependent
passenger OD demands and rolling stock circulation in urban rail transit networks. The
planning time window is divided into several phases, where the train departure fre-
quency of each platform during each phase is considered. The passenger absorption
model has been extended to a bi-level model where detailed timetables, detailed rolling
stock circulation, train speed profiles, and train orders are also included. A bi-level
MPC approach has been developed for real-time train scheduling of urban rail transit
networks. The MPC optimization problems in both levels have been transformed into
small-scale MILP problems, which enables us to solve them with existing MILP solvers.
Numerical experiments show that the developed bi-level MPC approach yields a bal-
anced trade-off between computation time and solution quality, which indicates that
the developed model and the proposed bi-level MPC approach can be implemented for
real-time train scheduling of urban rail transit networks.

The future work includes extending the bi-level framework to include more details
of the urban rail transit system, e.g., flexible coupling of trains, regenerative braking,
etc. Furthermore, uncertain passenger origin-destination demands and stochastic con-
trol approaches to deal with these uncertainties will also be a topic of future research.
As the current chapter only considers time-varying passenger demands, the dynamic
interactions between departure frequencies and passenger route choices still ask for
further research. Moreover, some learning-based approaches, that integrate learning-
based strategies to learn integer variables, can also be studied to solve the resulting op-
timization problem efficiently while ensuring constraint satisfaction.



3
TRAIN DEPARTURE FREQUENCY

OPTIMIZATION WITH UNCERTAIN

PASSENGER FLOWS

Real-time train scheduling is essential for passenger satisfaction in urban rail transit net-
works. This chapter focuses on real-time train scheduling for urban rail transit networks
considering uncertain time-dependent passenger origin-destination demands. First, a
macroscopic passenger flow model we proposed before is extended to include rolling stock
availability. Then, a distributed-knowledgeable-reduced-horizon (DKRH) algorithm is
developed to deal with the computational burden and the communication restrictions
of the train scheduling problem in urban rail transit networks. For the DKRH algorithm,
a cost-to-go function is designed to reduce the prediction horizon of the original model
predictive control approach while taking into account the control performance. By apply-
ing a scenario reduction approach, a scenario-based distributed-knowledgeable-reduced-
horizon (S-DKRH) algorithm is proposed to handle the uncertain passenger flows with
an acceptable increase in computation time. Numerical experiments are conducted to
evaluate the effectiveness of the developed DKRH and S-DKRH algorithms based on real-
life data from the Beijing urban rail transit network. The simulation results indicate that
DKRH can be used to achieve real-time train scheduling for the urban rail transit network,
while S-DKRH can handle the uncertainty in the passenger flows with an acceptable sac-
rifice in computation time.

This chapter is based on [75] and [77].
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3.1. INTRODUCTION
Urban rail transit plays an increasingly prominent role in public transportation of big
cities due to its stability, high transport capacity, and energy efficiency. Real-time train
scheduling is recognized as an effective way to improve passenger satisfaction and to re-
duce the operational costs under the infrastructure limitations of urban rail transit net-
works. With the rapid expansion of network scale and the growing passenger demands in
urban rail transit systems, it becomes increasingly challenging to achieve real-time train
scheduling while considering uncertain time-dependent passenger origin-destination
(OD) demands and operational costs.

3.1.1. PASSENGER-ORIENTED TRAIN SCHEDULING FOR A SINGLE LINE
Several methods are reported in the literature to optimize arrival and departure times of
trains at each platform in a single line. One important trend is to develop more practi-
cally implementable train scheduling strategy by including more attributes of train oper-
ation and infrastructure restrictions, e.g., train speed profiles [51; 135], rolling stock cir-
culation [93; 133], train stopping plan [53]. Wang et al. [135] explored the train schedul-
ing problem of a metro line while taking train capacity and speed profiles into account,
and then an iterative convex programming approach is proposed to solve the resulting
nonlinear noncovex optimization problem. Shi et al. [111] investigated a flexible train
capacity allocation strategy for a metro line where carriages are reserved for different
stations based on time-dependent passenger demands, and the resulting nonlinear inte-
ger programming problem is solved through a variable neighborhood search algorithm.
Zhou et al. [157] incorporated rolling stock circulation into the train scheduling problem
considering passenger demands on a tidal oversaturated metro line, so that passenger
demands in different phases can be satisfied.

The above studies are limited to passenger-oriented train scheduling problems of a
single line. For an urban rail transit network, different lines typically interact with each
other through transfer passengers. Therefore, train scheduling considering detailed pas-
senger origin-destination (OD) demands in urban rail transit networks is regarded as an
important direction to further improve passenger satisfaction [19].

3.1.2. PASSENGER-ORIENTED TRAIN SCHEDULING FOR NETWORKS
Train scheduling in urban rail transit networks with time-dependent passenger OD de-
mands is challenging due to the requirement for network coordination and the scale of
the resulting problem. In order to minimize the energy consumption of trains and the
total travel time of passengers, Wang et al. [136] formulated time-dependent passenger
OD demands in an urban rail transit network by an event-driven model, where arrival
events, departure events, and passenger arrival rates change events are proposed to de-
scribe the movement of trains and passengers. Yin et al. [150] proposed a mixed-integer
linear programming (MILP) formulation to handle the over-crowdedness of stations in
an urban rail transit network, and a decomposition-based adaptive large neighborhood
search approach was developed to improve the computational efficiency. Luan and Cor-
man [84] included the train scheduling and passenger routing process in an integrated
model, and the resulting mixed-integer nonlinear programming (MINLP) problem is re-
formulated as an MILP problem to minimize passenger disutility (i.e., passenger delay,
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travel time, and the number of stranded passengers) and total train delay.

Considering the computational complexity of explicitly integrating departure and ar-
rival times in an urban rail network with time-dependent passenger OD demands, op-
timizing train departure frequencies of each line has become a promising direction in
passenger-oriented train scheduling [19; 30]. Canca et al. [19] optimized line frequencies
and capacities by solving an MINLP problem. Liu et al. [74] developed a novel passen-
ger flow model to determine train departure frequencies, i.e., the number of trains per
unit time in each line, where time-dependent passenger OD demands and train capac-
ities are included. The resulting optimization problem can be exactly transformed into
an MILP problem, which can be solved efficiently by state-of-the-art MILP solvers [74].
Nevertheless, most existing studies in passenger-oriented train scheduling of urban rail
networks do not include rolling stock availability due to the computational complexity
issue, leaving an open gap for generating a practically implementable timetable.

3.1.3. MPC FOR REAL-TIME RAILWAY TRAFFIC MANAGEMENT

The train scheduling problem is a typical constrained control problem [76]. Model pre-
dictive control (MPC) is a methodology for addressing real-time constrained control
problems [52; 92]. Based on a switching max-plus-linear model, a real-time train schedul-
ing method was developed in [125] to minimize train delays and operational costs. Caimi
et al. [15] dealt with train rescheduling problems for complex railway station areas by us-
ing MPC. However, as it is an optimization-based control approach, centralized MPC can
be difficult to implement in real-life railway networks because of its computational com-
plexity and global information requirements. These issues become more challenging in
the case of large-scale networks.

For general large-scale systems, many researchers have developed non-centralized
methods that coordinate subsystems in a decentralized, distributed, or hierarchical man-
ner to achieve fast and effective solutions for the overall system [56; 62; 90]. Furthermore,
non-centralized control methods have also been used in railway train scheduling prob-
lems. Kersbergen et al. [55] developed several distributed MPC methods for the railway
traffic management problem where the arrival and departure times, breaking connec-
tions, and train orders in the railway network were jointly optimized. Luan et al. [85]
applied three distributed optimization approaches, i.e., an alternating direction method
of multipliers approach, a priority-rule-based approach, and a cooperative distributed
robust safe but knowledgeable (CDRSBK) algorithm for real-time traffic management of
railway networks. Numerical experiments show that the CDRSBK approach with train-
based decomposition performs best on the basis of feasibility, optimality, and computa-
tional efficiency.

The train scheduling of urban rail transit networks with time-dependent passenger
OD demands is challenging because of the large computational burden. The advanced
non-centralized control methods [56; 62; 90] and their successful applications in railway
[55; 85] have open opportunities to develop a new efficient distributed MPC method for
passenger-oriented train scheduling problems.
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3.1.4. TRAIN SCHEDULING UNDER UNCERTAINTIES

There are many uncertain attributes in railway networks, e.g., uncertain passenger flows
and uncertain delays, that could influence the performance of train schedules. Cacchi-
ani et al. [14] developed three different MILP formulations based on light robustness
(where uncertainty is handled by inserting different protection levels) to reduce passen-
ger inconvenience caused by uncertain passenger demands in a high-speed railway line.
The scenario approach [16; 17] is a general data-driven decision-making methodology
that can deal with uncertainties of a system. The scenario approach typically captured
uncertainties by a collection of representative scenarios, and the decision is then made
by considering these representative scenarios. By using different scenarios to capture
the uncertain train operation time in the network, Yang et al. [148] developed a two-stage
stochastic integer programming model to minimize the expected passenger travel time
and transfer activities, where the potential transfer stations are found at the first stage
while the least time paths are provided at the second stage. Gong et al. [43] formulated
an MINLP problem to optimize the operational costs on an urban rail transit line where
passenger distribution is represented via several different scenarios. However, most re-
search only considered uncertain passenger demands for a single line. Passenger de-
mands in urban rail transit networks exhibit highly dynamic and random characteristics
because trains typically operate with high density, and passengers can choose different
routes and different trains to reach their destinations. Therefore, efficient approaches
that can explicitly include uncertain passenger demands in urban rail networks still re-
quire further research.

3.1.5. CHAPTER CONTRIBUTIONS AND STRUCTURE

The current chapter deals with the real-time train scheduling problem considering un-
certain time-dependent passenger origin-destination demands in urban rail transit net-
works. By extending the passenger absorption model developed in [74], the train schedul-
ing problem with rolling stock availability can be addressed by using model predictive
control where the optimization problem at each time step is formulated as a mixed-
integer linear programming problem. Considering the computational issues, we develop
a distributed model predictive control approach where each line is regarded as one sub-
system. Furthermore, as passenger flows generally exhibit some degree of uncertainty, a
scenario-based approach is incorporated into the distributed model predictive control
approach to deal with these uncertainties.

The main contributions of the chapter are as follows:

1. A novel distributed-knowledgeable-reduced-horizon (DKRH) algorithm is devel-
oped for the train scheduling problem, where a new cost-to-go function is pro-
posed considering computational complexity, prediction horizon, and future per-
formance.

2. We incorporate a scenario-based distributed control scheme into the DKRH al-
gorithm, and a scenario-based distributed-knowledgeable-reduced-horizon algo-
rithm is developed to handle uncertain passenger flows in large-scale urban rail
transit networks.



3.2. MATHEMATICAL MODEL

3

47

3. The passenger absorption model of [74] is extended to include rolling stock avail-
ability by taking into account the total number of available trains so as to generate
practically implementable control strategies.

The remaining part of the chapter is organized as follows: Section 3.2 introduces the
mathematical model used in this chapter. In Section 3.3, a distributed knowledgeable-
reduced-horizon algorithm is developed. In Section 3.4, we propose a scenario-based
distributed knowledgeable-reduced-horizon algorithm. In Section 3.5, the effectiveness
of the developed approaches is evaluated based on real-life data from a part of the Bei-
jing urban rail transit network. The chapter is concluded with final remarks in Sec-
tion 3.6.

3.2. MATHEMATICAL MODEL
This section starts with the description of the mathematical model proposed by the au-
thors in [74], followed by an extension of the model to include rolling stock availability.
Some general explanations for the research problem of this chapter are as follows:

1. This chapter aims to adjust train schedules for urban rail transit networks online
based on real-time passenger demands. We assume the routes of passengers are
given a priori. Disturbances and disruptions are not in the scope of this chapter.

2. The current chapter is based on the passenger absorption model developed in [74],
which has been developed to determine train departure frequencies (i.e., the num-
ber of trains departing from each platform per unit time) for urban rail transit net-
works.

3. After obtaining the departure frequency of each platform, a dedicated lower-level
controller [79] can determine the detailed departure and arrival times of trains,
where the departure interval during each phase is determined according to the
corresponding departure frequency.

We start with introducing the notations for the model formulation in Section 3.2.1.
Then, the passenger absorption model is summarized in Section 3.2.2. Section 3.2.3 in-
troduces the constraints for the model and further extends the model to include rolling
stock availability.

3.2.1. NOTATIONS
Tables 3.1, 3.2, and 3.3 respectively list the indices and input parameters, decision vari-
ables, and output variables of this chapter.

3.2.2. PASSENGER ABSORPTION MODEL
In the passenger absorption model, the number of passengers np,e (k) waiting at plat-
form p with station e as their destination at the start of each phase is updated by:

np,e (k +1) = np,e (k)+ρp,e (k)T +ntrans,arrive
p,e (k)−nabsorb

p,e (k) , (3.1)

where ρp,e (k) is the average passenger arrival rate at platform p with station e as their

destination during phase k; T is the length of a phase; ntrans,arrive
p,e (k) is the number
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Notations Definition
s, e Index of stations, o,d ∈S , S is the set of stations
p Index of platforms, p ∈P , P is the set of platforms
k Index of phases
spla (

p
)

Succeeding platform of platform p
ppla (

p
)

Preceding platform of platform p
T Length of a phase
hmin

p Minimum departure-arrival headway at platform p

τmin
p Minimum dwell time of train at platform p

rp Average running time of trains from platform p to its succeeding platform
γp Average time for a train from the first platform of a line to platform p
Ctrain Maximum capacity of a train
αp,e (k) Fraction of passengers absorbed by trains at platform p with destination d during phase k
χp,q,e Proportion of passengers transferring from platform p to q with station d as their destination
t transfer

p,q Average time for passengers walking from platform p to platform q

ρstation
s,e (k) Passenger origin-destination demands with o as origin station and d destination station

during phase k
λs,p,e (k) Proportion of passengers at origin station o choosing platform p for their travel

to destination e

Table 3.1: Indices and input parameters.

Notations Definition
fp (k) The number of trains departing from platform p during phase k

Table 3.2: Decision variables

Notations Definition
ρp,e (k) Passenger arrival rate at platform p with station e as destination during phase k
np,e (k) Number of passengers waiting at platform p with station e as their destination

at the beginning of phase k
nabsorb

p,e (k) Number of passengers at platform p with station e as their destination absorbed by trains
during phase k

Cp (k) Total remaining capacity of trains visiting platform p during phase k
nwant

p (k) Total number of passengers that want to board trains at platform p during phase k

non−board
p,e (k) Number of passengers on board of trains, when trains arrive at platform p, with station e

as their destination during phase k

n
alight
p,e (k) Number of passengers alighting from trains at platform p with station e

as their destination during phase k
ntransfer

p,q,e (k) Number of passengers transferring from platform p to q with station e
as their destination during phase k

ntrans,arrive
p,e (k) Number of transfer passengers arriving at platform p with station e as their destination

during phase k
gp (k) Total number of transfer passengers arriving at platform p during phase k

n
depart
p,e (k) Number of passengers departing from platform p with station e as their destination

during phase k
mp (k) Total number of passengers departing from platform p during phase k

Table 3.3: Output variables

of transfer passengers arriving at platform p with destination e during phase k, and
nabsorb

p,e (k) is the number of passengers at platform p with destination e absorbed by
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trains during phase k. Then, ρp,e (k), ntrans,arrive
p,e (k), and nabsorb

p,e (k) can be computed by

ρp,e (k) =λo,p,e (k)ρstation
o,e (k) ,∀p ∈P sta

o , (3.2)

ntrans,arrive
p,e (k)=

∑
q∈cop(p)\{p}

(
T − t transfer

q,p

T
ntransfer

q,p,e (k)+
t transfer

q,p

T
ntransfer

q,p,e (k −1)

)
, (3.3)

nabsorb
p,e (k) =αp,e (k)nabsorb

p (k) , (3.4)

where ρstation
s,e (k) is passenger origin-destination demands at phase k with s and e as the

origin station and the destination station, respectively; P sta
s defines a set of platforms at

station s; and λs,p,e (k) is the proportion1 of passengers at station s who choose platform
p for their travel to destination e; cop(p) defines a set of platforms located at the same
station as platform p; t transfer

q,p denotes the average transfer time for passengers from plat-

form q to platform p; ntransfer
p,q,e (k) is the number of passengers transferring from platform

p to platform q with station e as their destination during phase k; αp,e (k) is the frac-
tion of passengers absorbed by trains at platform p with destination e during phase k;
nabsorb

p (k) denotes the total number of passengers absorbed by trains at platform p dur-
ing phase k.

For the variable nabsorb
p (k) in (3.4), we have

nabsorb
p (k) = min

(
nwant

p (k) , Cp (k)
)

, (3.5)

nwant
p (k) = np (k)+ρp (k)T + gp (k) , (3.6)

Cp (k)= fp (k) ·Ctrain−
∑

d∈S

(
non−board

p,e (k)−nalight
p,e (k)

)
, (3.7)

with
np (k) = ∑

e∈S
np,e (k), ρp (k) = ∑

e∈S
ρp,e (k),

gp (k) = ∑
e∈S

narrive,transfer
p,e (k),

(3.8)

where nwant
p (k) is the total number of passengers that want to board trains at platform

p during phase k; Cp (k) is the total remaining capacity of trains that visit platform p
during phase k; fp (k) is the number of trains that visit platform p during phase k; Ctrain

is the maximum capacity of a train, S denotes the set of stations in the urban rail transit
network, non−board

p,e (k) is the number of passengers on board of trains at platform p with

destination e during phase k, and nalight
p,e (k) is the number of passengers alighting from

trains at platform p with destination e during phase k.

The number of passengers ndepart
p,e (k) departing from platform p with destination e

during phase k is

ndepart
p,e (k) = non−board

p,e (k)−nalight
p,e (k)+nabsorb

p,e (k) , (3.9)

1As passenger route choices observed from metro data collection systems typically exhibit consistent patterns,
we assume that the proportions of passengers choosing each route are given a priori. Thus, λs,p,e (k) can be
estimated from historical data or obtained according to the shortest paths.
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and we have

non−board
p,e (k)=

T −rppla(p)

T
ndepart

ppla(p),e
(k)+

rppla(p)

T
ndepart

ppla(p),e
(k−1) , (3.10)

nalight
p,e (k)=


∑

q∈cop(p)/{p}
ntransfer

p,q,e (k) , if e ∈S \{sta(p)},

non−board
p,e (k) , if e = sta(p),

(3.11)

ntransfer
p,q,e (k) =χp,q,e non−board

p,e (k), ∀q ∈ cop(p)\{p}, (3.12)

mp (k) = ∑
e∈S

ndepart
p,e (k), (3.13)

where rppla(p) refers to the average running time of trains from the preceding platform

ppla(p) to platform p, and T ≫ rppla(p); sta(p) defines the station of platform p; χp,q,e

is the proportion for passengers transferring from platform p to q ∈ cop(p) with station
e as their destination; cop(p) defines a set of platforms located at the same station as
platform p; mp (k) denotes the total number of passengers departing from platform p
during phase k.

3.2.3. CONSTRAINTS FOR THE ABSORPTION MODEL

DEPARTURE FREQUENCY CONSTRAINTS

In this chapter, we only consider the case that each line has one depot to accommodate
trains. In general, each train at a line will visit every platform of the line before it returns
to deport or starts as a new train service. In this context, the number of trains running on
a line can be determined by the number of trains departing from the depot. Therefore,
the number of trains fp (k) departing from platform p can be calculated by

fp (k)= T −φp

T
ffst(p)

(
k−βp

)+ φp

T
ffst(p)

(
k−βp−1

)
, (3.14)

βp = ⌊
γp /T

⌋
, φp = γp −βp T, (3.15)

where fst
(
p

)
defines the first platform of the line corresponding to platform p, i.e., the

platform connected with the depot of the line, γp denotes the average time for a train
from platform fst

(
p

)
to platform p.

To ensure the safe operation of urban rail transit systems, the number of trains de-
parting from platform p during phase k should be constrained by

fp (k)
(
hmin

p +τmin
p

)
≤ T, (3.16)

where hmin
p and τmin

p are the minimum headway and the minimum dwell time at plat-
form p, respectively.

ROLLING STOCK AVAILABILITY CONSTRAINTS

In real-life operations, the number of trains used for each line is restricted by the total
number of available trains, i.e., the total number of trains running on the line should
be smaller than or equal to the total number of available trains. Therefore, the rolling
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stock availability should be included in order to generate a practically implementable
timetable. Considering p as the platform connected with a depot, the train departing
from platform p typically visits every platform of the line and requires an average time
interval cp to return to the depot, and we define cp as the circulation time. Then, for the
passenger absorption model, the trains departing from a depot during the circulation
time should satisfy

fp (k)+
σp−1∑
i=1

fp (k−i )+ωp

T
fp (k−σp ) ≤ N rs

p , ∀p ∈ dep(p), (3.17)

σp = ⌊
cp /T

⌋
, ωp = cp −σp T, (3.18)

where dep(p) is the set of platforms that use the same depot with platform p; N rs
p is the

total number of available trains for the line corresponding to platform p.

3.3. DISTRIBUTED KNOWLEDGEABLE-REDUCED-HORIZON AL-
GORITHM FOR TRAIN SCHEDULING

Based on the model predictive control (MPC) framework, in this section, we first develop
a knowledgeable-reduced-horizon (KRH) approach where a novel cost-to-go function
is designed to shorten the prediction horizon. A distributed control framework is then
proposed to further reduce the computational burden of solving the MPC optimization
problem, thereby achieving real-time train scheduling in the urban rail transit network.
In the distributed control framework, each local agent generates its control decisions
based on its local information and information from its neighbor agents. Such a frame-
work is in accordance with the real-life situation where global information is typically
not available in large-scale urban rail transit networks.

3.3.1. PROBLEM FORMULATION IN MPC SET-UP
In an urban rail transit network, passenger satisfaction is strongly related to the total
time spent in the network. Based on the absorption model, the total travel time of pas-
sengers in the urban rail transit network during phase k is represented by

J pass(k) = ∑
p∈P

(
np (k)T +mp (k)rp + gp (k)t transfer

p

)
, (3.19)

where np (k)T represents the total waiting time at platform p during phase k, mp (k)rp

denotes the total running time until the next platform for passengers departing from
platform p during phase k, and gp (k)t transfer

p represents the total transfer time of pas-
sengers at platform p during phase k.

The operational cost of an urban rail transit system is highly related to the energy
consumption of trains. Based on the absorption model, the total energy consumption
for trains departing from the platform during phase k is computed by

J roll(k) = ∑
p∈P

fp (k)Ep , (3.20)
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where Ep represents the average energy consumption for a train to run from platform p
to its succeeding platform.

Therefore, the MPC optimization problem PMPC
k0

for real-time train scheduling of ur-
ban rail transit networks is formulated as

min
f(k)

J (k0) :=
k0+N0−1∑

k=k0

(
J pass(k)+ξJ roll(k)

)
,

subject to (3.1)− (3.14), (3.16)− (3.17),
(3.21)

where N0 is the prediction horizon, and ξ is a weight balancing the objectives.
As explained in [74], the nonlinear optimization problem PMPC

k0
can be transformed

into a mixed-integer linear programming (MILP) problem PMILP
k0

with the following form,
which is exactly equivalent to the original optimization problem:

min
x(k), f (k)
δ(k),z(k)

J (k0) :=
k0+N0−1∑

k=k0

(
J pass(k)+ξJ roll(k)

)
(3.22)

subject to

x(k+1) = Ak x(k)+B1,k f (k)+B2,kδ(k)+B3,k z(k), (3.23)

E2,kδ(k)+E3,k z(k) ≤ E1,k f (k)+E4,k x(k)+E5,k , (3.24)

f (k) ≤ D0 +
K∑

i=1
Di f (k − i ), (3.25)

k = k0, . . . ,k0 +N0 −1,

where x(k) and f (k) respectively concatenate the state variables (i.e., the variables re-
lated to the passengers) and decision variables (i.e., the number of trains) of all platforms
in the network in phase k; δ(k) and z(k) respectively represent the vector of auxiliary bi-
nary variables and auxiliary continuous variables in phase k. The compact equation
(3.23) represents the linear and mixed-integer linear formulations of the equations in
(3.1)-(3.14). Constraint (3.24) collects all the linear and mixed-integer linear model con-
straints and operational constraints in a matrix form. Constraint (3.25) collects the con-
straints of decision variables, i.e., (3.14) and (3.17), in a matrix form, where K = max

p∈P
σp .

For detailed information of transforming nonlinear terms of the model into mixed-
integer linear inequalities, we refer the interested readers to [7; 139].

3.3.2. KNOWLEDGEABLE-REDUCED-HORIZON ALGORITHM FOR REAL-TIME

TRAIN SCHEDULING

The computational complexity of solving MILP problem PMILP
k0

increases rapidly with

the prediction horizon N0 due to the increasing number of variables. Solving PMILP
k0

at
every MPC step is not tractable for large prediction horizons because of the real-time
feasibility restriction. Shortening the prediction horizon to reduce the computational
burden; however, a short prediction horizon may negatively affect the performance of
the controller as less future information can be included in the decision-making process.
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Inspired by the robust-safe-but-knowledgeable (RSBK) algorithm proposed in [61;
62], we develop a knowledgeable-reduced-horizon (KRH) algorithm to shorten the pre-
diction horizon of the original MPC controller by a customized cost-to-go function. The
optimization problem PKRH

k0
for the KRH algorithm is defined as

min
x(k), f (k)
δ(k),z(k)

J (k0) :=
k0+N−1∑

k=k0

(
J pass(k)+ξJ roll(k)

)
+LN (k0) (3.26)

subject to

x(k+1) = Ak x(k)+B1,k f (k)+B2,kδ(k)+B3,k z(k), (3.27)

E2,kδ(k)+E3,k z(k) ≤ E1,k f (k)+E4,k x(k)+E5,k , (3.28)

f (k) ≤ D0 +
K∑

i=1
Di f (k − i ), (3.29)

k = k0, . . . ,k0 +N −1,

where LN (k0) denotes the cost-to-go function associated with the terminal states of pas-
sengers at the end of the shortened horizon.

As the target of the controller is to minimize the total travel time of the passengers,
the cost-to-go function is designed to determine the cost associated with the passengers
that remain at the platforms at the end of the reduced prediction window, i.e., a reason-
able estimate of the remaining travel time for passengers waiting at the platforms at the
end of the prediction time window.

The cost-to-go function for the remaining passengers at the platforms is defined as:

LN (k0) = ∑
p∈P

∑
d∈S

(
np,d (k0 +N )

∑
j∈Rp,d

ηp,d , j t total
p,d , j

)
, (3.30)

where Rp,d represents the set of possible routes for passengers from platform p to their
destination d (see Remark 3.1 below for an example of Rp,d ), ηp,d , j is defined as the
percentage of passengers at platform p that will travel to station d through route j , and
we have

ηp,d , j =
∏

(q,q ′)∈P
pair
j

χq,q ′,d ,∀ j ∈Rp,d , (3.31)

where P
pair
j represents the set of platform pairs at a transfer station in route j , andχq,q ′,d

is the proportion for passengers transferring from platform q to q ′. As the route of pas-
sengers can be represented by several pairs of platforms, (3.31) calculates the percentage
of passengers that intend to travel from p to d through route j . Since χq,q ′,d is estimated
based on historical data, ηp,d , j can be calculated offline.

Then, t total
p,d , j represents the average travel time for passengers from platform p to their

destination d through route j , and t total
p,d , j can be calculated offline based on the aver-

age dwell times, the average running times, and the average transfer times related to the
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platforms in route j :

t total
p,d , j = t avrg

p, j + ∑
(q,q ′)∈P

pair
j

(
t transfer

q,q ′ + t avrg
q ′, j

)
,∀ j ∈Rp,d , (3.32)

where t avrg
p, j denotes the average time for passengers from platform p to reach either the

next transfer station or the destination station in route j .

a

Platform of Line 1

Platform of Line 2

Station

Transfer station

Train running

direction

Transfer channel

Line 3

Line 1c1 d

c2

i

j

Platform of Line 3

b1

e

f

b2

Line 2g1 h

g2

Figure 3.1: Example network

The construction of the sets Rp,d and P
pair
j is now illustrated in Remark 3.1 through

an example.
Remark 3.1. An example network is shown in Fig. 3.1. For passengers waiting at

platform a with destination h at the end of the prediction window, there are two possible
routes in the example network of Fig. 3.1. Thus, the set of possible routes for passengers
from platform a with destination h is Ra,h = {a−b1 −b2 − f−g1 −h, a−b1 −c1 −c2 −g2 −
g1 −h}. The set of platform pairs for route a−b1 −b2 − f−g1 −h (named as route 1) is

P
pair
1 = {(b1,b2)}, and the set of platform pairs for route a−b1−c1−c2−g2−g1−h (named

as route 2) is P
pair
2 = {(c1,c2), (g2,g1)}. Then, the corresponding cost-to-go function can

be calculated according to (3.30)-(3.32).
Comparing PKRH

k0
and PMPC

k0
, we can find that the number of variables and constraints

in (3.27) and (3.28) are reduced as the prediction horizon is reduced from N0 to N . Simi-
lar to PMILP

k0
, the optimization problem PKRH

k0
for the KRH algorithm is an MILP problem.

3.3.3. DISTRIBUTED KRH ALGORITHM FOR TRAIN SCHEDULING IN URBAN

RAIL TRANSIT NETWORK

For large-scale urban rail transit networks, it may not be feasible to solve problem PKRH
k0

in a centralized manner due to the computational burden and the communication re-
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strictions for collecting global information. In the urban rail transit network, different
lines typically interact with their neighbor lines through transfer passengers as described
in (3.3). In this section, a distributed-knowledgeable-reduced-horizon (DKRH) algo-
rithm is developed for passenger-oriented real-time train scheduling of urban rail transit
networks.

In urban rail transit networks, we can regard each line as a subsystem, where differ-
ent subsystems interact with each other through transfer passengers. The corresponding
objective functions associated with the travel time and energy consumption of subsys-
tem l during phase k are

J pass
l (k) = ∑

p∈P line
l

(
np (k)T +mp (k)rp + gp (k)t transfer

p

)
, (3.33)

J roll
l (k) = ∑

p∈P line
l

fp (k)Ep , (3.34)

where P line
l is the set of platforms of line l . The cost-to-go functions corresponding to

the terminal states of passengers of subsystem l is

LN ,l (k0) = ∑
p∈P line

l

∑
d∈S

(
np,d (k0 +N )

∑
j∈Rp,d

ηp,d , j t total
p,d , j

)
. (3.35)

The proposed DKRH algorithm is an iterative algorithm. In every control step of the
proposed DKRH algorithm, different subsystems exchange information with their neigh-
bor several times over several iterations. In each iteration, different subsystems solve
their local problems in parallel, and then they exchange the new computed solution for
the next iteration until the stopping criterion is met. At iteration step ϑ, the l -th subsys-
tem calculates its control inputs through the following optimization problem, denoted
as PD

l ,k0
, by setting the variables of other subsystems as the corresponding values of the

last iteration ϑ−1:

min
δl (k), fl (k)
xl (k),zl (k)

Jl (k0) :=
k0+N−1∑

k=k0

(
J pass

l (k)+ξJ roll
l (k)

)
+LN ,l (k0) (3.36)

subject to

xl (k+1)=Al ,k xl (k)+B1l ,k fl (k)+B2l ,kδl (k)+B3l ,k zl (k), (3.37)

E2l ,kδl (k)+E3l ,k zl (k) ≤ E1l ,k fl (k)+E4l ,k xl (k)+E5l ,k , (3.38)

fl (k) ≤ Dl ,0 +
K∑

i=1
Dl ,i fl (k − i ), (3.39)

k = k0, . . . ,k0 +N −1.

Algorithm 2 describes the DKRH algorithm, where lmax is the total number of lines in
the network; ε is a small positive value which can be the machine precision. An initial es-
timate for the decision variable can be that of the basic timetable, i.e., the timetable with
regular departure frequencies, which is typically used in the daily operation. As each line
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is independent from the other lines, i.e., they do not share track and/or platforms with
the other lines, trains in different lines will not conflict with each other. In this context,
the regular departure frequencies are always feasible.

Algorithm 2 DKRH for real-time train scheduling

Input: kend; ϑmax; lmax; ε; initial estimate for the decision variable: f 0
l (k), l = 1, . . . , lmax;

Output: optimal value fl (k), Jl

1: k ← k0

2: repeat
3: ϑ← 1
4: repeat
5: for l = 1, . . . , l max do
6: solve problem PD

l ,k0
and get f ϑl (k) and Jϑl

7: update (3.37), (3.38), and (3.39) for l by using f ϑl (k)
8: end for
9: ϑ←ϑ+1

10: until ϑ=ϑmax or
∣∣Jϑl − Jϑ−1

l

∣∣≤ ε
11: apply control decision fl (k) to each subsystem l
12: k ← k +1
13: until k = kend

Remark 3.2. As we start with a feasible solution of the overall system and as the initial
values of the decision variables are always feasible at every step, a feasible solution of
problem PD

k0
can always be found.

3.4. SCENARIO-BASED DKRH ALGORITHM
In this section, a scenario-based distributed-knowledgeable-reduced-horizon (S-DKRH)
algorithm is developed to improve service quality in the presence of uncertain passenger
flows.

For a large-scale urban rail transit network, the uncertainties generally consist of
global uncertainties (e.g., the uncertainties caused by different weather conditions), and
local uncertainties of each subsystems (i.e., the uncertainties due to different line con-
ditions). Both global uncertainties and local uncertainties can be captured as several
representative scenarios over the prediction window, which can be defined as global sce-
narios and local scenarios, respectively, based on historical data [45; 63]. If we include all
combinations of global scenarios and local scenarios, the total number of combinations
Ncom is

Ncom = Nglo

lmax∏
l=1

Nloc,l , (3.40)

where Nglo denotes the number of global scenarios; Nloc,l is the number of scenarios for
subsystem l ; lmax is the total number of subsystems in the network; In this context, each
subsystem should consider the complete set of scenarios, i.e., Ncom scenarios, when gen-
erating its decision variables, which would rapidly increase the computational burden.
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In order to address the computational complexity issue arising from the increasing
number of scenarios for urban rail transit networks, we adopt a scenario reduction ap-
proach [73] into the DKRH algorithm. For subsystem l , the Nloc,l scenarios will be di-
rectly used for subsystem l in the scenario-based approach. However, when considering
the impact from subsystem l ′ (l ′ ̸= l ) on subsystem l , we use the scenario reduction
approach to reduce the number of representative scenarios of subsystem l ′ from Nloc,l ′
to Nl ′,l , i.e., Nl ′,l ≪ Nloc,l ′ . In this context, subsystem l only needs to consider Ntotal,l =
NgloNloc,l

∏
l ′ ̸=l

Nl ′,l representative scenarios, which can be much smaller than that of orig-

inal scenario approach with Nglo

lmax∏
l=1

Nloc,l representative scenarios. For example, Fig. 3.2

has three subsystems, and subsystem 2 only considers Nglo ·Nloc,2 ·N1,2 ·N3,2 representa-
tive scenarios instead of Nglo ·Nloc,1 ·Nloc,2 ·Nloc,3 representative scenarios, where N1,2 ≪
Nloc,1, N3,2 ≪ Nloc,3. Therefore, the computational burden of each subsystem is reduced
significantly.

Local scenarios 

for subsystem 1

Local scenarios 

for subsystem 2

Local scenarios 

for subsystem 3

Subsystem 2

Nloc,2 local 

scenariosN1,2 representive 

scenarios

Global scenarios 

for overall network

Nglo global 

scenarios

N3,2 representive 

scenarios

Figure 3.2: Reduced scenarios for agent 2 in an example with 3 agents.

Based on the above scenario reduction approach, we develop the S-DKRH algorithm.
For subsystem l with scenario s, the corresponding objective functions are

J pass
l ,s (k)= ∑

p∈P line
l

(
np,s (k)T +mp,s (k)rp+gp,s (k)t transfer

p

)
, (3.41)

J roll
l ,s (k) = ∑

p∈P line
l

fp (k)Ep,s , (3.42)

where np,s (k), mp,s (k), gp,s (k), and Ep,s respectively represent the values of np (k), mp (k),
gp (k), and Ep under scenario s. The corresponding cost-to-go functions is

LN ,l ,s (k0)= ∑
p∈P line

l

∑
d∈S

(
np,d ,s (k0 +N )

∑
r∈Rp,d

ηp,d ,r t total
p,d ,r

)
, (3.43)

with np,d ,s (k0+N ) denoting the variable np,d (k0+N ) under scenario s.
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In the S-DKRH algorithm, subsystem l considers only one representative scenario
for each neighbor subsystem, and the variables of the neighbor subsystems are set as
the corresponding values of the last iteration. At phase k0, the l -th subsystem generates
its control decisions by solving the following chance-constraint optimization problem
PS

l ,k0
:

min
xl (k), fl (k)
δl (k),zl (k)

Jl (k0) :=
Ntotal,l∑

s=1
P {s}

(k0+N−1∑
k=k0

(
J pass

l ,s (k)+ξJ roll
l ,s (k)

)
+LN ,l ,s (k0)

)
(3.44)

subject to

xl ,s (k +1) = Al ,s,k xl ,s (k)+B1l ,s,k fl (k)+B2l ,s,kδl ,s (k)+B s
3l ,s,k zl ,s (k), (3.45)

E hard
2l ,s,kδl ,s (k)+E hard

3l ,s,k zl ,s (k) ≤ E hard
1l ,s,k fl (k)+E hard

4l ,s,k xl ,s (k)+E hard
5l ,s,k , (3.46)

Ntotal∑
s=1

P{s}1
(
E soft

2l ,s,kδl ,s (k)+E soft
3l ,s,k zl ,s (k) ≤ E soft

1l ,s,k fl (k)+E soft
4l ,s,k xl ,s (k)+E soft

5l ,s,k

)
≥ θl , (3.47)

fl (k) ≤ D s
l ,0 +

K∑
i=1

D s
l ,i fl (k − i ), (3.48)

k = k0, . . . ,k0 +N −1,

where P {s} denotes the probability of s, and Ntotal,l is the total number of scenarios for
agent l after scenario reduction. Eq. (3.45) represents the linear and mixed-integer lin-
ear formulations of the model explained in (3.1)-(3.14) for subsystem l under scenario s;
(3.46) collects the corresponding hard constraints; (3.47) denotes the chance constraints,
i.e., the constraints related to operational performance, 1(·) defines the indicator func-
tion2, and θl ∈ (0,1) indicates the minimally required probability that there is no con-
straint violation; (3.48) collects the hard constraints of decision variables, i.e., (3.14) and
(3.17), for subsystem l with scenario s. By solving PS

l ,k0
, we minimize the expected value

of objective function (3.44) while including the corresponding constraint satisfaction in
(3.46). Problem PS

l ,k0
for the S-DKRH algorithm is also an MILP problem and can be

solved efficiently by using existing MILP solvers.
Algorithm 3 provides the process of the S-DKRH algorithm, where Ll represents the

neighboring subsystems of l , i.e., lines connected with line l via transfer stations.

3.5. CASE STUDY
To evaluate the performance of the developed approaches, numerical experiments are
conducted based on real-life data of the Beijing urban rail transit network. First, we
present the urban rail transit network and some basic settings we use in the case study.
Then, simulations are conducted to illustrate the effectiveness of the developed KRH and
DKRH algorithms. Finally, we include uncertainty in the passenger flows in the simula-
tion to show the performance of the S-DKRH algorithm.

21(·) = 1 if the corresponding constraint is satisfied, otherwise 1(·) = 0.
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Algorithm 3 S-DKRH algorithm for real-time train scheduling

Input: kend; ϑmax; Nglo; Nloc,l ; Nl ′,l ; ε; initial estimate for the decision variable: f 0
l (k),

l = 1, . . . , lmax;
Output: optimal value fl (k), Jl

1: for l = 1, . . . , lmax do
2: construct Nlocal,l scenarios for local controller
3: construct Nl ′,l combined scenario for its neighbors
4: end for
5: k ← k0

6: repeat
7: ϑ← 1
8: repeat
9: for l = 1, . . . , l max do

10: solve problem (3.44) and get f ϑl (k) and Jϑl
11: update constraints in problem PS

l ,k0
for l ∈Ll

12: end for
13: ϑ←ϑ+1
14: until ϑ=ϑmax or

∣∣Jϑl − Jϑ−1
l

∣∣≤ ε
15: apply control decision fl (k) to each subsystem l
16: k ← k +1
17: until k = kend

3.5.1. SETUP

The network we consider includes four bidirectional lines of the Beijing urban rail transit
network, i.e., Changping Line, Line 8, Line 13, and Line 15 (see Fig. 3.3). Therefore, we
have four subsystems for the distributed control approaches. The main parameters for
the case study are shown in Table 3.4, where the circulation time cp mentioned in (3.17)
and (3.18) is estimated based on the average running time and the regular dwell time.
The basic timetable is generated by implementing the regular headway and the regular
dwell time in Table 3.4.

Table 3.4: Parameters of the network for the case study

Parameters
Changping
Line

Line 8 Line 13 Line 15

Minimum headway 120 s 120 s 120 s 120 s
Regular headway 180 s 180 s 180 s 180 s
Maximum dwell time 360 s 360 s 360 s 360 s
Minimum dwell time 30 s 30 s 30 s 30 s
Regular dwell time 60 s 60 s 60 s 60 s
Train capacity 2400 2400 2400 2400
Average transfer time 60 s 60 s 60 s 60 s
Phase time T 1800 s 1800 s 1800 s 1800 s
Total available trains 24 trains 28 trains 32 trains 24 trains
Circulation time 5407.5 s 6227.6 s 7101.9 s 3315.9 s
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Figure 3.3: Layout of the considered urban rail transit network (with 4 lines).

The passenger OD demands are obtained based on the real-life passenger data of the
Beijing urban rail transit network. In particular, we use the real-life data on passengers
entering and exiting flows of each station in the network of Fig. 3.3. The data is updated
every 30 minutes. In the case study, we consider passenger flows from 7:00-12:00, which
includes situations of both peak hours and off-peak hours. We directly use the passenger
OD demands for the simulation of the deterministic case. For the uncertain case, we
generate uncertain passenger OD demands using Poisson distribution [151] based on
the passenger flow data with additional variations within 30% to cover both normal and
over-crowdedness cases for simulations and the scenario-based approach. The number
of representative scenarios for each local subsystem is 5, while both the number of global
scenarios and scenarios for neighbor subsystems are 1. In this context, each subsystem
only needs to consider 5 scenarios in total.

After generating the number of trains departing from each platform during each
phase, we generate the detailed departure and arrival times of each train by the lower-
level controller developed in [79], where five different speed profile options are consid-
ered, which are calculated according to the method in [135], with a maximum accel-
eration of 0.8 m/s2, a maximum deceleration of 0.75 m/s2, and cruising speeds of 67
km/h, 70 km/h, 73 km/h, 76 km/h, 80 km/h, respectively. The length between every two
consecutive stations is openly accessible on the website of Beijing Subway3. We use the
passenger absorption model as the prediction model and an elaborate model from the
literature (i.e., the model in [9; 136]) as the simulation model to evaluate the effective-

3https://www.bjsubway.com/station/zjgls/
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ness of the developed approaches. In each MPC step, the resulting mixed-integer linear
programming problem is solved by the gurobi solver called from MATLAB (R2019b).
The simulations are performed on a computer with an Intel Xeon W-2223 CPU and 8GB
RAM.

3.5.2. REAL-TIME TRAIN SCHEDULING FOR THE DETERMINISTIC CASE
We conduct simulations for the deterministic case to show the effectiveness of the devel-
oped knowledgeable-reduced-horizon (KRH) algorithm and the distributed knowledgeable-
reduced-horizon (DKRH) algorithm. For comparison, we also perform simulations for
the basic timetable as well as the original MPC approach.

According to the circulation time of each line, the prediction horizon of all MPC
approaches should be N ≥ 4 (i.e., the length of the prediction time window satisfies
t ≥ 7200 s) to ensure that the MPC optimization problem can cover every station in the
network. The prediction horizon of the original MPC approach is set as N = 6, while the
prediction horizon for KRH and DKRH is reduced to N = 4. For the DKRH approach, we
use three subsystems, where each line in Fig. 3.3 is regarded as one subsystem. Consid-
ering the real-time implementation, we set the maximum solution time for each MPC
step to 3600 s to meet the real-time feasibility requirement.

Table 3.5: Simulation results for different approaches under the deterministic case

Approach Objective Improvement
CPU time (s)

tavrg tmax

Basic timetable 8.4607 ·104 - - -
MPC (N=6) 7.0633 ·104 16.52% 3600.0 3600.0
KRH (N=4) 7.1614 ·104 15.36% 250.7 636.0

DKRH (N=4) 7.1174 ·104 15.88% 35.5 37.8
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Figure 3.4: Value of the objective function at each time step.
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The simulation results are displayed in Table 3.5, where the value of objective func-
tion and computation time of each approach are collected. The value of objective func-
tion in each MPC step is shown in Fig. 3.4. These results show that MPC, KRH, and DKRH
can improve the performance of the basic timetable, with an improvement of 16.52%,
15.36%, and 15.88%, respectively. As a real-time control approach, the online compu-
tational burden is an essential issue for MPC, which is significantly influenced by the
prediction horizon. The original MPC approach with prediction horizon N = 6 cannot
calculate its optimal solution within 3600 s. By using the cost-to-go function in the devel-
oped KRH algorithm, the prediction horizon and the solution space are reduced. Thus,
the CPU time of the KRH algorithm is reduced significantly while ensuring an acceptable
level of solution quality.

As we divide the original problem into three smaller subproblems in the DKRH al-
gorithm, the computational burden of each subproblem is further reduced. Compared
with the KRH algorithm, the average CPU time for the DKRH algorithm is reduced from
250.7 s to 35.5 s, and the maximum CPU time is reduced from 636.0 s to 37.8 s. The solu-
tion time of the DKRH algorithm is further reduced while maintaining the same level of
control performance.
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Figure 3.5: Total travel time of passengers at each time step.

The total travel time of passengers is shown in Fig. 3.5. To further illustrate the re-
sults, the number of trains departing from the depot of Line 13 is given in Fig. 3.6. In
Fig. 3.5 and Fig. 3.6, time steps 1-3 represent the morning peak hours at 7:00-8:30. Com-
pared with the basic timetable, more trains are scheduled to attend the large passenger
demand in the morning peak hours. Since the maximum number of available trains
for Line 13 is 32, and the circulation time for Line 13 is 7101.9 s, which is approximately
equal to the length of 4 phases, the maximum number of trains scheduled for each phase
is restricted. Compared with peak hours, fewer trains are scheduled in off-peak hours to
reduce operational costs with an acceptable increase in the total passenger travel time.
Based on the developed approaches, we can obtain the number of trains departing from
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Figure 3.6: Number of trains departing from the depot of Line 13.

each platform during each phase, and the corresponding timetable can be further gen-
erated.

The simulation results indicate that both KRH and DKRH can be used for real-time
train scheduling for urban rail transit networks. In particular, when there are no com-
munication restrictions between different lines, KRH can be used to get a high-quality
solution; otherwise, especially for large-scale networks when centralized control for the
whole network is not possible due to the communication restrictions, DKRH can be used
to achieve real-time train scheduling for the urban rail transit network.

3.5.3. REAL-TIME TRAIN SCHEDULING WITH UNCERTAIN PASSENGER FLOWS

In general, passenger demands in urban rail transit networks satisfy a Poisson distribu-
tion [151]. In this section, we perform simulations when there exists uncertainty in pas-
senger flows to evaluate the effectiveness of the developed scenario-based distributed
knowledgeable-reduced-horizon (S-DKRH) algorithm.

We first start simulations for one uncertain scenario. To have a baseline, we also
conduct a simulation with perfect knowledge of the uncertainties, which is indicated as
P-DKRH below. It is worth noting that P-DKRH is not realistic as it is not possible to
have perfect knowledge of the uncertainties in real life. For the DKRH algorithm, we
use the expected value of the passenger demands to calculate the timetable. Using the
simulation results in Section 3.5.2, the prediction horizon for P-DKRH, DKRH, and S-
DKRH is set as N = 4.

Table 3.6 and Fig. 3.7 show the simulation results of different approaches under un-
certain passenger flows. Compared with the basic timetable, an improved performance
can be observed for both DKRH and S-DKRH, with an improvement of 10.38% and 12.90%,
respectively. Compared with DKRH, the objective function value of S-DKRH is closer to
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Table 3.6: Simulation results for different approaches under the uncertain case

Approach Objective Improvement
CPU time (s)
tavrg tmax

Basic timetable 9.7262 ·104 - - -
P-DKRH 8.4282 ·104 13.35% 35.4 40.9

DKRH 8.7171 ·104 10.38% 34.4 37.7
S-DKRH 8.4718 ·104 12.90% 347.6 385.9
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Figure 3.7: Value of the objective function at each time step.

that of P-DKRH, which implies the effectiveness of the scenario-based approach. Both
DKRH and S-DKRH satisfy the real-time feasibility requirement for the given case study.
The computational burden of S-DKRH is larger than that of DKRH, and the average CPU
time increases from 34.4 s to 347.6 s for S-DKRH. The simulation results demonstrate
that a suitable choice is required in real-life applications, i.e., when the CPU power is suf-
ficient, S-DKRH is a better choice to obtain a higher-quality solution; otherwise, when
the CPU power is not sufficient, DKRH can be used to calculate a timetable within a
shorter period of time with acceptable performance.

The number of trains departing from the depot of Line 13 in the uncertain case is
shown in Fig. 3.8. Time steps 1-3 are associated with the morning peak hours at 7:00-
8:30, and it can be observed that more trains are scheduled at time steps 1-3 to attend
the large passenger demands.

To further demonstrate the effectiveness of the developed S-DKRH algorithm, sim-
ulations are carried out in 10 different scenarios. The 10 scenarios are generated based
on Poisson distribution with the real-life passenger entering and exiting flow data as the
expected value. The average value and the standard deviation of the objective function
values for the basic timetable, and the timetable obtained by P-DKRH, DKRH, and S-
DKRH are calculated. Compared with the average objective function value of the basic
timetable, P-DKRH, DKRH, and S-DKRH yield an improvement of 14.01%, 11.92%, and
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Figure 3.8: Number of trains departing from the depot of Line 13 in the uncertain case.

Table 3.7: Comparison of the objective function values for different approaches

Average Standard deviation
Basic timetable 9.3997 ·104 6.6490 ·103

P-DKRH 8.0825 ·104 6.5604 ·103

DKRH 8.2794 ·104 7.7432 ·103

S-DKRH 8.1147 ·104 7.2378 ·103

13.67%, respectively. Although P-DKRH outperforms DKRH and S-DKRH with respect
to both the average value and the standard deviation, as stated before, P-DKRH is not
realizable in real life4. It can be observed in Table 3.7 that the average objective function
value and the standard deviation of S-DKRH are smaller than that of DKRH. The simu-
lation results imply that S-DKRH can be a suitable choice to handle uncertain passenger
flows.

3.6. CONCLUSIONS
In this chapter, we have investigated real-time train scheduling for urban rail transit
networks considering uncertain time-dependent passenger OD demands. The passen-
ger absorption model of [74] has been extended to include the rolling stock availability
to generate more practically implementable timetables by considering the total num-
ber of available trains. To reduce the prediction horizon of the real-time train schedul-
ing problem, a novel cost-to-go function has been developed. By considering different

4As we use the absorption model as the prediction model and the model in [136] as the simulation model,
there exists a model mismatch issue, which may yield the objective function value of P-DKRH larger than that
of DKRH and S-DKRH in some scenarios.
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lines as different subsystems, a distributed-knowledgeable-reduced-horizon (DKRH) al-
gorithm has been proposed considering the computational complexity and communi-
cation restrictions in practical urban rail transit networks. Furthermore, a scenario-
based distributed-knowledgeable-reduced-horizon algorithm (S-DKRH) has been de-
veloped to deal with uncertain passenger flows. Numerical experiments have been con-
ducted to illustrate that 1) DKRH can be used for real-time train scheduling of urban rail
transit networks and 2) the S-DKRH algorithm yields better performance than DKRH
with an acceptable increase in computation time for uncertain cases.

The results in this chapter can help the operator to optimize train schedules to han-
dle uncertain time-dependent passenger demands. Future research includes developing
efficient solution approaches for the resulting optimization problems to further improve
the real-time feasibility of the approach. In particular, integrating learning-based strate-
gies to learn integer variables can be a possible choice to speed up the optimization pro-
cess. Furthermore, next to optimizing the train departure frequencies, adjusting train
composition can also be a choice to handle time-dependent passenger demands.



4
MPC FOR PASSENGER-ORIENTED

REAL-TIME TRAIN RESCHEDULING

Real-time timetable scheduling is an effective way to improve passenger satisfaction and
to reduce operational costs in urban rail transit networks. In this chapter, a novel passenger-
oriented network model is developed for real-time timetable scheduling that can model
time-dependent passenger origin-destination demands with consideration of a balanced
trade-off between model accuracy and computation speed. Then, a model predictive con-
trol (MPC) approach is proposed for the timetable scheduling problem based on the devel-
oped model. The resulting MPC optimization problem is a nonlinear non-convex prob-
lem. In this context, the online computational complexity becomes the main issue for the
real-time feasibility of MPC. To reduce the online computational complexity, the MPC op-
timization problem is therefore reformulated into a mixed-integer linear programming
(MILP) problem. The resulting MILP problem is exactly equivalent to the original MPC
optimization problem and can be solved very efficiently by existing MILP solvers, so that
we can obtain the solution very fast and realize real-time timetable scheduling. Numer-
ical experiments based on a part of Beijing subway network show the effectiveness and
efficiency of the developed model and the MILP-based MPC method.

This chapter is based on [76].
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4.1. INTRODUCTION
Urban rail transit is recognized as a safe, sustainable, and high-efficiency transporta-
tion modality, and it plays an increasingly important role in the public transportation
systems. Real-time timetable scheduling is one of the most effective and efficient ap-
proaches to improve passenger satisfaction and to reduce operational costs. With the
rapidly growing passenger demands and the increasing urban rail network scale, ad-
vanced urban rail network models and the corresponding control approaches are crucial
to obtain efficient timetables and to improve the performance of transportation services.

In the research on railway traffic management problems, one important class of stud-
ies pays attention to departure times and arrival times of trains in the network [28; 125;
142], where the aim is to improve the performance of daily timetables and to minimize
the effects of delays or cascade delays caused by disturbances. Another class of studies
incorporates rolling stock circulation [133], train orders [22], conflict resolution [128],
etc., into timetable scheduling problems, which is particularly helpful when disruptions
occur, as it can be used to adjust the impacted timetable and make the railway network
recover from disruptions as soon as possible. In this chapter, we consider passenger de-
mands when generating timetables online in order to provide high-quality service for
passengers.

There are many studies related to passenger-oriented timetable scheduling. Several
studies handle passenger flows while including rolling stock circulation [94; 133], speed
profiles [51], and short-turning [158], but without detailed passenger origin-destination
(OD) information. Another direction of studies addresses passenger OD demands on
a single line [135; 152]. However, the passenger demands in networks are more com-
plex than those of a single line due to the transfer activities of passengers, and hence,
efficient approaches that consider passenger OD demands in urban rail networks are
required. Some studies consider passenger OD demands in railway networks [159] or
urban rail networks [136; 150]; however, the computational complexity of including the
time-dependent passenger demands and the detailed number of passengers is still a
challenging issue. In real life, passenger demands are typically represented as time-
dependent OD matrices. Nevertheless, most studies on timetable scheduling problems
do not take the detailed time-dependent passenger OD demands into account, leaving
an open gap for further improving the timetable through closed-loop control while tak-
ing real-time passenger demands into account.

Generally, the timetable scheduling problem is a typical constrained control prob-
lem. Model predictive control (MPC) is a well-recognized effective method for its ability
to handle multi-variable constrained control problems [38; 91; 104]. The online com-
putational burden of the MPC optimization problem is the main challenge for real-time
timetable scheduling when taking time-dependent passenger OD demands into account.
Passenger flows in railway networks have a certain similarity with traffic flows in urban
road networks. The efficient traffic flow model and fast MPC methods for the urban road
network [71; 72] have inspired us to develop an efficient model for passenger-orient rail-
way traffic networks and to develop efficient MPC methods for the real-time timetable
scheduling problem.

The main contributions of the chapter are listed as follows:

1. A novel model for passenger-oriented urban rail traffic networks is proposed that
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can explicitly include the number of passengers in urban rail networks under time-
dependent passenger origin-destination demands.

2. Thanks to the notion of cycle time introduced in this chapter, the time-varying
passenger demands are approximated as piecewise constant functions in the model
to achieve a trade-off between model accuracy and computation speed.

3. An MPC approach is proposed for the real-time timetable scheduling problem
based on the developed model. The nonlinear MPC optimization problem is ex-
actly transformed into an MILP problem to reduce the online computational bur-
den.

The rest of this chapter is structured as follows. Section 4.2 summarizes the literature
related to this chapter. In Section 4.3, the passenger-oriented urban rail traffic model
is proposed. In Section 4.4, the MPC controller is designed for the passenger-oriented
timetable scheduling problem based on the proposed model. In Section 4.5, the MPC
optimization problem is solved with different methods, and an MILP-based approach is
proposed. Section 4.6 provides case studies to illustrate the accuracy of the model and
the efficiency of the developed method. Finally, conclusions are given in Section 4.7.

4.2. STATE OF THE ART

4.2.1. MODELS FOR TIMETABLE SCHEDULING
In the literature, many models and methods have been explored for the timetable schedul-
ing problem. One direction of research is based on event-driven models where train
actions are defined as different events with predefined rules determining the orders of
events. In [28], the timetable was formulated as an alternative graph model, and a branch-
and-bound algorithm was proposed to find solutions efficiently. Based on the alternative
graph model, a tabu search algorithm was proposed to reroute trains in [24]. In [143], the
interaction between train speeds and headway under the quasi-moving block system
was considered, when rescheduling high-speed trains based on the alternative graph
model. The timetable scheduling problem can also be formulated through an event-
activity network (a directed graph), which can be used to minimize the total weighted
train delay and the number of canceled trains [154], to optimize passengers’ routes [158],
and to integrate passenger reassignment and timetable scheduling [159]. Furthermore,
max-plus models [44] and switching max-plus-linear models [54; 125] have also been
used to efficiently generate efficient timetables; as the models make use of properties
from max-plus algebra, the resulting problem can be reduced efficiently, and less time is
required to get the solution.

Another important direction of research is based on time-driven models, where train
actions are formulated with respect to time constraints. Time-driven models are widely
used in the literature as they can directly include different factors in railway traffic, such
as passenger demands, train speeds, and energy consumption. In [117], the timetable
and the train speed profile of one urban rail line with several stations were jointly opti-
mized within a bi-level scheme, where a numerical approach was proposed to allocate
the total time to each section, given the optimal speed profile of a fixed running time
for each section. In [26], it was indicated that the timetable can be optimized in real
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time with a closed-loop control framework by predicting the traffic conditions through
the real-time train positions and speed profiles information. In [86; 87], the timetable
and train speed profile were integrally optimized by a mixed-integer nonlinear program-
ming (MINLP) approach, a mixed-integer linear programming (MILP) approach, and a
simplified MILP approach considering different train speed profile options. In [22], the
rescheduling of large-scale railway traffic networks was formulated as a bi-level MILP
problem, and an MPC scheme was applied to handle disruptions and disturbances in
real time.

4.2.2. PASSENGER-ORIENTED TIMETABLE SCHEDULING

In recent decades, many studies have focused on passenger-oriented timetable schedul-
ing, where passenger demands are explicitly taken into account to provide high-quality
services for passengers. In [18], a nonlinear integer programming model was proposed
to optimize arrival and departure times of trains with the objective of minimizing oper-
ational costs and passenger waiting times. In [134], the train speed and stop-skipping
were incorporated into the timetable scheduling problem to minimize the energy con-
sumption and the passenger travel time, and a bi-level approach was proposed to solve
the resulting MINLP problem. Furthermore, an iterative convex programming approach
was developed to improve the computational speed in [135]. In [97], an MINLP prob-
lem was formulated to minimize passenger waiting time with consideration of time-
varying passenger demands. In [152], a Lagrangian relaxation-based heuristic timetable
scheduling algorithm was proposed to minimize passenger waiting times and opera-
tional costs by using a space-time network. An integer linear programming problem was
formulated to jointly optimize the timetable and passenger flow control strategies for an
over-saturated railway line in [112]; then, a hybrid algorithm was developed to solve the
resulting optimization problem. However, most research only focuses on the timetable
scheduling of a single line, and hence leaving an open gap for improving the operational
performance of urban rail transit networks.

Passenger-oriented timetable scheduling of urban rail networks is more challeng-
ing than that of a single line as different lines will interact with each other through the
transfer passengers. An urban rail network including time-dependent passenger OD de-
mands was modeled as a detailed event-driven model in [136], and then the passen-
ger travel time and the train energy consumption were collaboratively optimized. Fur-
thermore, the event-driven model was extended as a disruption management model
for an integrated disruption management problem with the objective of recovering the
impacted timetable and minimizing passenger waiting times in [9]. In [19], an MINLP
model was proposed to optimize line frequencies and capacities in railway rapid transit
networks; the objective of that paper was to minimize operational costs and passenger
trip time and transfer time given a certain OD matrix. In [150], feasible passengers routes
in the urban rail network were defined through a directed graph, so that the passenger
OD demands and the transfer actions can be included explicitly; then, a decomposed
adaptive large-neighborhood search method was proposed to minimize the number of
waiting passengers in the busiest station. However, incorporating time-dependent pas-
senger OD demands in the urban rail network timetable scheduling problem is still a
challenging task because of the network’s size, high non-linearity of the problem, and the
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large computational burden. Accurate models for urban rail networks that include time-
dependent passenger OD demands and fast solution methods for passenger-oriented
timetable scheduling are urgently needed for real-time timetable scheduling.

4.2.3. MPC FOR RAILWAY TRAFFIC MANAGEMENT

As an efficient real-time control approach for constrained systems, MPC has been ap-
plied in railway timetable scheduling problems to optimize and adjust the timetable in
real time. In [125], MPC was used for railway timetable scheduling based on the switch-
ing max-plus-linear models to minimize train delays and operational costs of breaking
connections or changing the order of trains. Furthermore, the switching max-plus-linear
model-based timetable scheduling problem was solved in a distributed manner to han-
dle large-scale cases [54]. In [15], an MPC approach was proposed to cope with train
rescheduling problems in the complex station areas. MPC was also used in railway traf-
fic management in case of disruptions, and the MPC optimization problem was trans-
formed into an MILP problem to reduce the computational burden [22]. A hierarchical
MPC approach was proposed for real-time high-speed railway delay management and
train control problem, where the train delay was minimized at the upper level while the
detailed train speed control was conducted at the lower level [138]. The optimization
problem in both levels of the hierarchical MPC approach were also formulated as MILP
problems to increase the online feasibility. The existing literature indicates that the on-
line computational burden of the MPC optimization problem must be reduced for real-
time scheduling of large-scale railway networks. The problem is even more challenging
when taking time-dependent passenger OD demands into account.

This chapter proposes a novel timetable scheduling model which can take time-
dependent passenger OD demands into account. An MPC approach is then proposed
for real-time timetable scheduling. Based on the proposed model the MPC optimization
problem can be easily transformed into an MILP problem, to overcome computational
complexity issues.

4.3. PASSENGER-ORIENTED REAL-TIME TIMETABLE SCHEDUL-
ING MODEL

In this section, we propose a novel model for passenger-oriented real-time timetable
scheduling in urban rail traffic networks. Some general explanations and assumptions
adopted for the model formulation throughout this chapter are as follows:

1. Since the number of passengers is very large, the approximation error of treating it
as a real-valued variable is relatively small. Hence, variables indicating the number
of passengers are regarded as real-valued variables.

2. The chapter focuses on optimizing arrival and departure times of trains, and hence,
short-turning, stop-skipping, and rolling stock circulation are not considered.

3. A platform can only accommodate one train at a time, and the order of trains at a
platform is fixed.
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The notations used in this chapter are introduced in Section 4.3.1. Then, the simpli-
fied passenger flow model is proposed in Section 4.3.2. In Section 4.3.3, the train opera-
tion model related to the simplified passenger flow model is given.

4.3.1. NOTATIONS

Notations Definition
j Index of stations, j ∈ S, S is the set of stations
p Index of platforms
kp Index of cycles at platform p; also indicating the train visiting platform p at cycle kp

spla (
p

)
Successor platform of platform p

ppla (
p

)
Predecessor platform of platform p

Table 4.1: Sets and Indices

Notations Definition
cp (kp ) Length of cycle kp at platform p
Lp (kp ) Starting time of cycle kp at platform p
r min

p (kp ) Minimum running time of train from platform p to its successor platform at cycle kp

r max
p (kp ) Maximum running time of train from platform p to its successor platform at cycle kp

τmin
p Minimum dwell time of train at platform p

hmin
p Minimum headway of platform p

λstation
j ,m (kp ) Passenger arrival rate at station j with station m as their destination at cycle kp

β j ,p,m Splitting rate of passengers at station j who are assigned to platform p with destination m
as their destination

βtrain
p,q,m Transfer rate of passengers from platform p to platform q with station m

as their destination
θtrans

p,q Average walking time for passengers walking from platform p to platform q

θduration
p,q Duration time for the transfer process from platform p to platform q

Table 4.2: Input Parameters

Notations Definition
ap (kp ) Arrival time of train at cycle kp of platform p
dp (kp ) Departure time of train at cycle kp of platform p

Table 4.3: Decision variables

4.3.2. SIMPLIFIED PASSENGER FLOW MODEL
The passenger origin-destination demands can be described as a time-varying matrix,
and the element of the matrix is denoted as λstation

j ,m (t ), with j and m indicating the origin

and destination stations, respectively. Passengers usually care about whether there are
regular departures at a platform so that they can plan their journey easily and do not
have to wait too long for the next train if they missed the current train. A train only
visits a platform at a certain time period, and the passenger arrival rate generally does
not change significantly during a short time period. Therefore, at each platform, we
discretize the planning time window into several time intervals of equal length, where
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Notations Definition

rp (kp ) Running time of train from platform p to its successor platform spla (
p

)
in cycle kp

τp (kp ) Dwell time of train at cycle kp of platform p
λp,m (kp ) Passenger arrival rate at platform p with station m as their destination at cycle kp
np,m (kp ) Number of passengers with station m as their destination waiting at platform p

immediately after time kp cp

narrive,new
p,m (kp ) Number of passengers outside the urban rail network with destination m

arriving at platform p at cycle kp

narrive,trans
p,m (kp ) Number of transfer passengers with destination m arriving at platform p at cycle kp

nbefore
p,m (kp ) Number of passengers at platform p with station m as their destination immediately

before the departure of train kp

nboard
p,m (kp ) Number of passengers with station m as their destination boarding on the train at cycle kp

n
depart
p,m (kp ) Number of passengers on train kp departing from platform p with station m

as their destination
nafter

p,m (kp ) Number of passengers at platform p with station m as their destination immediately
after the departure of train kp

ntrans
p,q,m (kp ) Number of passengers alighting from train kp of platform p who want to transfer

to platform q with station m as their destination
nremain

p,m (kp ) Number of passengers who continue to stay on train kp after the alighting process

n
alight
p,m (kp ) Number of passengers with station m as their destination alighting from train kp

at platform p

Table 4.4: Output variables

every time interval includes one and only one arrival-departure pair of a train at the
same platform so as to provide reliable service for passengers. In addition, we assume
the passenger arrival rate is constant in each time interval. In the sequel, we refer to
these time intervals as cycles. The cycle time for a given platform is then the length of
the cycle for that platform1 . The cycle times for platform p and platform q , which are
represented by cp (kp ) and cq (kp ) respectively, can be different from each other.

The passenger arrival rate λoriginal
p,m (t ) at platform p with station m as destination is

determined by

λ
original
p,m (t ) =β j ,p,mλ

station
j ,m (t ) ,∀p ∈ P j ,∀m ∈ S, (4.1)

where P j defines a set of platforms at station j ; S is the set of stations in the urban rail
network; β j ,p,m is the splitting rate of passengers at station j who are assigned to plat-
form p with destination m as their destination,

∑
p∈P j

β j ,p,m = 1,∀m ∈ S, and β j ,p,m can be

obtained based on the historical data.
Fig. 4.1 illustrates the procedure of approximating the original passenger arrival rate

for the simplified passenger flow model, where kp represents the index of the cycle at
platform p, and the approximated arrival rate can be calculated by:

λp,m(kp ) = 1

cp (kp )

∫ Lp (kp )+cp (kp )

Lp (kp )
λ

original
p,m (t )dt , (4.2)

1The cycle time at a platform can be equal to the expected departure-departure headway of the basic timetable.
Then, we can adjust departure and arrival times to further improve the basic timetable based on the detailed
passenger demands. We can also generate the expected departure-departure headway by a higher-level con-
troller; for more details, we refer to our recent work [74; 79] (see also Chapter 2).
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Figure 4.1: Illustration of approximating passenger arrival rate.

where λ
original
p,m (t ) represents the original passenger arrival rate, Lp (kp ) represents the

starting time of cycle kp , and cp (kp ) is the length of cycle kp . By introducing the cy-
cle time, the computational efficiency for calculating passenger-related factors can be
significantly improved. Note that the approximation can be conducted offline to reduce
the online computational burden.

According to the definition of cycle, only one train would visit platform p at cycle kp ;
therefore, in this chapter, for the sake of simplification, we use “train kp " to represent the
train visiting platform p at cycle kp .

At each cycle, the number of passengers waiting at the platform is updated as some
passengers have boarded on a train and departed from the platform. The number of
passengers waiting at platform p is updated at every cycle, according to the new arriving
passengers narrive,new

p,m (kp ) from outside the station, the transfer passengers narrive,trans
p,m (kp )

from other lines, and the boarding passengers nboard
p,m (kp ), by

np,m(kp +1) = np,m(kp )+narrive,new
p,m (kp )+narrive,trans

p,m (kp )−nboard
p,m (kp ), (4.3)

where np,m(kp ) denotes the number of passengers with station m as their destination
waiting at platform p at the beginning of cycle kp .

As depicted in Fig. 4.1, in each cycle, the passenger arrival rate is regarded as con-
stant, and the number of new passengers narrive,new

p,m (kp ) arriving at platform p with des-
tination m between kp and kp +1 can be calculated based on the passenger arrival rate:

narrive,new
p,m (kp ) = cp (kp )λp,m(kp ), (4.4)
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where λp,m(kp ) is the passenger arrival rate at platform p with station m as their desti-
nation at cycle kp .

Define θtrans
q,p as the average walking time for passengers walking from platform q to

platform p, ap (kp ) and dp (kp ) as the arriving and departure times of train kp at platform
p, respectively. Then, we introduce a binary variable ykq ,q,kp ,p to represent the connec-
tion of trains at a transfer station:

ykq ,q,kp ,p =
{

1, if dp (kp−1) < aq (kq )+θtrans
q,p ≤ dp (kp );

0, otherwise,
(4.5)

with ykq ,q,kp ,p = 1 denoting that passengers from train kq of platform q connect to train
kp of platform p, i.e., passengers from train kq at platform q could arrive at platform p
between the departure of train kp −1 and kp ; otherwise, when ykq ,q,kp ,p = 0, the passen-
gers from train kq at platform q cannot connect to train kp at platform p.

With ykq ,q,kp ,p defined as in (4.5), the number of passengers narrive,trans
p,m (kp ) transfer-

ring from other platforms of station j and arriving at platform p before the departure of
train kp can be calculated by

narrive,trans
p,m (kp ) = ∑

q∈plat(p)

∑
kq∈Nq

ykq ,q,kp ,p ntrans
q,p,m(kq ), (4.6)

where plat(p) is the set of the platforms at the same station as platform p, and Nq col-
lects the indices of all the cycles of platform q .

Then, the number of passengers nbefore
p,m (kp ) at platform p with station m as their

destination immediately before the departure of train kp can be computed by

nbefore
p,m (kp ) = np,m(kp )+ (dp (kp )−Lp (kp ))λp,m(kp )+narrive,trans

p,m (kp ), (4.7)

Then, the total number of passengers nbefore
p (kp ) waiting at platform p immediately

before the departure of train kp is

nbefore
p (kp ) = ∑

m∈S
nbefore

p,m (kp ). (4.8)

The total number of passengers nboard
p (kp ) boarding the train at cycle kp can be com-

puted by

nboard
p (kp ) = min

(
Cmax,kp −nremain

p (kp ), nbefore
p (kp )

)
, (4.9)

where Cmax,kp represents the capacity of train kp at platform p, and nremain
p (kp ) is the

number of passengers remaining on train kp after the alighting process at platform p.
Therefore, the number of passengers nafter

p (kp ), who cannot board train kp , waiting
at platform p immediately after train kp departs can be computed by

nafter
p (kp ) = nbefore

p (kp )−nboard
p (kp ). (4.10)

If we define
λp (kp ) = ∑

m∈S
λp,m(kp ), (4.11)
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then the number of passengers who cannot board train kp at platform p with different
destinations can be calculated by

nafter
p,m (kp ) = nafter

p (kp )
λp,m(kp )

λp (kp )
, (4.12)

which means the proportion of waiting passengers with different destinations, who can-
not board train kp at platform p, is assumed not to change significantly compared with
the proportion of passengers arriving in the current cycle. As λp,m(kp ) is defined as a
known constant, nafter

p,m (kp ) can be computed linearly.

Then, the number of boarding passengers nboard
p,m (kp ) with destination m can be com-

puted by
nboard

p,m (kp ) = nbefore
p,m (kp )−nafter

p,m (kp ). (4.13)

When train kp arrives at platform p, the number of passengers ntrans
p,q,m(kp ) with sta-

tion m as their destination on train kp transferring from platform p to platform q can be
calculated by

ntrans
p,q,m(kp ) =βtrain

p,q,m ndepart

ppla(p),m
(kp ),∀q ∈ plat(p) \ {p}, (4.14)

where ndepart

ppla(p),m
(kp ) denotes the number of passengers with destination m on train kp

immediately after the train departure from the predecessor platform ppla
(
p

)
of platform

p, and βtrain
p,q,m is the transfer rate of passengers on train kp , transferring from platform p

to q ∈ plat(p) with destination m immediately after arrival at platform p, and∑
q∈plat(p)

βtrain
p,q,m = 1. (4.15)

The transfer rate of passengers can be obtained based on the historical data or by a short-
est path algorithm, e.g., Yen’s algorithm [149], assuming that passengers select the plat-
form corresponding to the shortest path to reach their destination.

Remark 4.1. It is worth noting thatβtrain
p,p,m denotes the proportion of passengers with

m as their destination remaining on train kp at platform p after the alighting process, i.e.,
no transfer behavior is needed; thus, we have ntrans

p,p,m(kp ) = 0. In particular, If the arrival

station is not a transfer station, then βtrain
p,p,m = 1.

Remark 4.2. Define sta(p) as the station corresponding to platform p. For pas-
sengers whose destination is the arrival station, i.e., j = sta(p), we set βtrain

p,p, j = 1 and

βtrain
p,q, j = 0,∀q ∈ plat(p)/{p}, which means passengers who have arrived at their destina-

tion will directly exit the station j from platform p without any transfer behavior, and we
have ntrans

p,q, j (kp ) = 0, ∀q ∈ plat(p).

The number of passengers nremain
p,m (kp ) remaining on the train at platform p in cycle

kp with destination m after the alighting process can be calculated by

nremain
p,m (kp ) =βtrain

p,p,m ndepart

ppla(p),m
(kp ),∀m ∈ S \ {sta(p)}. (4.16)



4.3. PASSENGER-ORIENTED REAL-TIME TIMETABLE SCHEDULING MODEL

4

77

In other words, nremain
p,m (kp ) represents the number of passengers who continue to

stay on train kp after the alighting process. In particular, passengers, who have arrived
at their destination station when train kp arrives at platform p, will alight from the train
directly, i.e., no passengers with destination sta(p) will remain on train kp after arriving
at station sta(p), nremain

p,sta(p)(kp ) = 0.

Having (4.16), the total number of passengers nremain
p (kp ) remaining on train kp at

platform p after the alighting process can be calculated by

nremain
p (kp ) = ∑

m∈S
nremain

p,m (kp ). (4.17)

Then, the number of passengers ndepart
p,m (kp ) with station m as their destination, who will

depart from platform p at time kp , can be computed by

ndepart
p,m (kp ) = nremain

p,m (kp )+nboard
p,m (kp ). (4.18)

The total number of passengers ndepart
p (kp ), who will depart from platform p at time

kp , can be calculated by

ndepart
p (kp ) = ∑

m∈S
ndepart

p,m (kp ). (4.19)

The total number of passengers nalight
p (kp ) alighting from train kp at platform p can

be calculated by

nalight
p (kp ) = ndepart

ppla(p)
(kp )−nremain

p (kp ), (4.20)

where ndepart

ppla(p)
(kp ) denotes the total number of passengers on board of train kp departing

from the predecessor platform ppla
(
p

)
of platform p.

4.3.3. TRAIN OPERATION MODEL
In this chapter, we assume the order of trains at each platform is fixed, and the aim is
to generate departure and arrival times by incorporating the detailed time-dependent
passenger OD demands of the urban rail network to further improve passenger satisfac-
tion. In this context, for a general urban rail transit timetable scheduling problem, the
operation of trains can be described by arrival times, dwell times, departure times, and
running times. These variables interact with each other by several constraints to guar-
antee the conflict-free and efficient traffic operation.

Based on the definition of the cycle, we can generate the lower and upper bounds
of each cycle according to the expected departure-departure headway. Then, the arrival
and departure times of train kp at platform p should satisfy

Lp (kp ) < ap (kp ) < dp (kp ) ≤ Lp (kp )+ cp (kp ), (4.21)

where Lp (kp ) is the starting time of cycle kp at platform p, and cp (kp ) is the length of
cycle kp ; ap (kp ) and dp (kp ) represent the arrival time and the departure time of train kp

at platform p, respectively.
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The dwell time τp (kp ) of train kp at platform p can be calculated by

τp (kp ) = dp (kp )−ap (kp ), (4.22)

and τp (kp ) should be constrained by

τp (kp ) ≥ τmin
p , (4.23)

where τmin
p is the minimum dwell time.

Then, the arrival time of train kp at platform p is also constrained by the departure-
arrival headway constraint

ap (kp ) ≥ dp (kp−1)+hmin
p , (4.24)

where dp (kp −1) is the departure time of train (kp −1) at platform p, and hmin
p is the

minimum headway between two successive trains at platform p.
The arrival time of train kp at the successor platform spla

(
p

)
of platform p is

aspla(p)(kp ) = dp (kp )+ rp (kp ), (4.25)

where rp (kp ) represents the running time of train kp from platform p to platform spla
(
p

)
,

and rp (kp ) should be constrained by

r min
p (kp ) ≤ rp (kp ) ≤ r max

p (kp ), (4.26)

where r max
p (kp ) and r min

p (kp ) are maximal and minimal running time of train kp from

platform p to spla
(
p

)
, respectively. The minimum running time is limited by the condi-

tion of the line, speed limit, and train characteristics, and the maximum running time is
determined by the operational requirement.

4.4. MPC FOR PASSENGER-ORIENTED TIMETABLE RESCHEDUL-
ING

Model predictive control is a control method that repeatedly solves finite-horizon opti-
mization problems and implements optimized decisions in a moving horizon manner
[92]. In the MPC scheme, the current control action is obtained by solving an optimiza-
tion problem over a finite-horizon window. The optimization yields a control sequence,
but only the first control action is implemented in the real system. At the next control
step, the optimization is conducted again using updated state information and with a
shifted finite-horizon window. This moving horizon optimization procedure is repeated
until the end of the overall control period.

In this chapter, the control time interval of each platform is defined as the cycle time
of the platform. Given the train is assumed to run from the starting platform to the ter-
minal platform of a line, the cycle times of all platforms of a line are identical. As cycle
times can be different for different lines, we introduce control time interval Tctrl, and the
control time step is indexed as κ. The number of cycles included in one time step for
different platforms can be different. The MPC method can be described by the following
three elements:
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1. Prediction model.

The passenger-oriented urban rail traffic network model developed in Section 4.3
can be used as the prediction model for the MPC controller. The model is a non-
linear model, and, for each cycle, it can be represented as follows:

np,m(kp +1) = f
(
np,m(kp ),ntrans

q,p,m(kq ), gp (kp )
)

, (4.27)

where np,m(kp ) is the number of passengers waiting at platform p with station m
as their destination at the beginning of cycle kp ; ntrans

q,p,m(kp ) represents the number
of passengers transferring from other platforms (denotes as q) at the same sta-
tion; gp (kp ) collects the decision variables including arrival and departure times
of trains at cycle kp of platform p.

2. Optimization problem.

The waiting time of passengers at the platform is an important criterion to evaluate
passenger satisfaction. Furthermore, to further improve passenger satisfaction a
penalty factor is added for passengers who cannot board a train because of the
train capacity. Hence, in this chapter, an objective function of the following form
is considered:

J = ∑
p∈P

∑
kp∈N p(κ)

(
nbefore

p (kp )cp (kp )+ξnafter
p (kp )cp (kp )

)
, (4.28)

where Np (κ) is the set indices of trains visiting platform p within the prediction
window starting at control step κ, P denotes the set of platforms of the considered
urban rail network; nbefore

p (kp ) and nafter
p (kp ) represent the number of passengers

waiting at platform p immediately before the departure of train kp and immedi-
ately after the departure of train kp , respectively, and ξ is a non-negative weight.

Generally speaking, passengers waiting at a platform consist of two classes of pas-
sengers, i.e., passengers who cannot board the previous train and the new arrival
passengers. For all the passengers waiting at the platform, the largest waiting time
is the time interval between two adjacent departure times, therefore the first term
in (4.28) is used as the cost function of total passenger waiting time, which, loosely
speaking, provides an upper bound of the passenger waiting time. The passengers
who cannot board the train have to stay at the platform and wait for the next train,
so a penalty factor nafter

p (kp )cp (kp ) is employed to make the trains carry as many
passengers as possible.

Therefore, the optimization problem for MPC in each control step is min
g(κ)

J := ∑
p∈P

∑
kp∈N p (κ)

(
nbefore

p (kp )+ξnafter
p (kp )

)
cp (kp ),

s.t. (4.1)− (4.14) , (4.16)− (4.26) ,
(4.29)

where g(κ) collects all decision variables gp (kp |κ ) for all platform p and all kp ∈
N p (κ).
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3. Moving horizon optimization.

Solving the optimization problem (4.29) results in a sequence of decision variables
represented by g(κ), and only the decision variables at the current time step are
implemented to the real-life urban rail network. At the next control time step κ+1,
the time window is shifted for one step, and the optimization problem is solved
again based on the new information collected from the urban rail network. The
procedure of the closed-loop control scheme is shown in Fig. 4.2.

Real-life Railway 

Network

MPC controller

Prediction Model

Optimizer

, ( )p m pn k( )g k

( )kg

Figure 4.2: MPC for passenger-oriented timetable scheduling.

As the length of cycle time at a platform can be equal to the departure headway of a
basic timetable, cycle times that can ensure constraint satisfaction of problem (4.29) can
always be found, i.e., a feasible solution is always available if we use the basic timetable.
Therefore, the recursive feasibility of MPC can be ensured.

4.5. SOLUTION APPROACHES
The resulting optimization problem in Section 4.4 is a nonlinear non-convex problem
because of (4.5), (4.6), and (4.9). The problem can be solved by nonlinear optimiza-
tion approaches, e.g., sequential quadratic programming approach. In order to increase
the online feasibility of the problem, the MPC optimization problem is formulated as a
mixed-integer linear programming (MILP) problem and a simplified mixed-integer lin-
ear programming (SMILP) problem, which can be solved efficiently by existing solvers.

4.5.1. SEQUENTIAL QUADRATIC PROGRAMMING APPROACH
Sequential quadratic programming (SQP) approach is a gradient-based nonlinear pro-
gramming approach, which is widely used in many fields to solve nonlinear optimiza-
tion problems [10]. In SQP, a sequence of quadratic programming problems is solved
to get descent directions of the original problem. The objective function and the con-
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straints of the optimization problem should be continuously differentiable when apply-
ing the SQP algorithm. In this chapter, the optimization problem has some points of
non-smoothness due to the min function in (4.9). As the optimal solution is generally
not obtained at the points of non-smoothness, the SQP approach can jump over these
points. Since the SQP algorithm might obtain a local optimal solution when handling
non-convex problems, multi-start SQP is used to improve the solution quality of SQP in
this chapter.

4.5.2. MIXED-INTEGER LINEAR PROGRAMMING APPROACH

In this section, the MPC optimization problem is transformed into an MILP problem, by
introducing auxiliary binary variables to handle the nonlinear terms in (4.5), (4.6), and
(4.9).

In order to transform (4.5) into a mixed logical dynamical (MLD) system [7], the time
checking binary variable xkq ,q,kp ,p is introduced as

xkq ,q,kp ,p =
{

1, if aq (kq )+θtrans
q,p ≤ dp (kp );

0, otherwise,
(4.30)

where aq (kq ) is the arrival time of train kq at platform q , θtrans
q,p represents the average

transfer time from platform q to platform p, and dp (kp ) denotes departure time of train
kp at platform p.

We define Mt and mt as the maximum and minimum value of the departure (arrival)
time, which are finite as we consider problems in a finite time window2. Then, (4.30) is
equivalent to {

aq (kq )+θtrans
q,p −dp (kp ) ≤

(
1−xkq ,q,kp ,p

)(
Mt−dp (kp )

)
;

aq (kq )+θtrans
q,p −dp (kp ) ≥ ε+xkq ,q,kp ,p

(
mt−dp (kp )−ε) ,

(4.31)

where ε is a sufficient small number (generally the machine precision) [7]. Define

ykq ,q,kp ,p = xkq ,q,kp ,p −xkq ,q,kp−1,p . (4.32)

Then, based on Lemma 4.3, (4.5) is equivalent to (4.31) and (4.32).
Lemma 4.3. Given ykq ,q,kp ,p = xkq ,q,kp ,p − xkq ,q,kp−1,p , dp (kp−1) < aq (kq )+θtrans

q,p ≤
dp (kp ) holds if and only if ykq ,q,kp ,p = 1; otherwise, ykq ,q,kp ,p = 0.

Proof. From the definition of xkq ,q,kp ,p in (4.30), we have xkq ,q,kp ,p ≥ xkq ,q,kp−1,p . Then,

we have the following three situations based on the value of aq (kq )+θtrans
q,p :

if aq (kq )+θtrans
q,p > dp (kp ), we have xkq ,q,kp ,p = 0 and xkq ,q,kp−1,p = 0; then, ykq ,q,kp ,p = 0;

if dp (kp−1) < aq (kq )+θtrans
q,p ≤ dp (kp ), we have xkq ,q,kp ,p = 1 and xkq ,q,kp−1,p = 0; then,

ykq ,q,kp ,p = 1;

if aq (kq )+θtrans
q,p ≤ dp (kp−1), we have xkq ,q,kp ,p = 1 and xkq ,q,kp−1,p = 1; then, ykq ,q,kp ,p =

0.

2The value of Mt can be the length of the planning time window, i.e., Mt = tend, and mt can be equal to 0.
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The min function in (4.9) can be handled by introducing the auxiliary binary variable
δboard

kp ,p and the auxiliary real variable fkp ,p . Define

fkp ,p =
(
Cmax,kp −nremain

p (kp )
)
−nbefore

p (kp ), (4.33)

Then, the expression δboard
kp ,p = 1 ⇔ fkp ,p ≤ 0 is equivalent to

{
fkp ,p ≤ Mp

(
1−δboard

kp ,p

)
,

fkp ,p ≥ ε+ (
mp −ε

)
δboard

kp ,p ,
(4.34)

where Mp and mp are the maximum value and the minimum value of fkp ,p , respectively3.
Having (4.34), the expression (4.9) is equivalent to

nboard
p (kp ) = δboard

kp ,p

(
Cmax,kp −nremain

p (kp )
)
+

(
1−δboard

kp ,p

)
nbefore

p (kp ). (4.35)

After introducing auxiliary variables in (4.30) and (4.34), we still have nonlinear terms,
i.e., the product of binary variables and real variables in (4.6), (4.31), and (4.35). The
product of binary variables and real variables can be transformed into linear inequali-
ties by introducing some auxiliary variables by using the method presented in [7; 139].
The details of the transformation can be found in Transformation property 2.2.

In summary, we introduce three equivalence transformations, i.e., (4.5) with (4.31)-
(4.32), (4.9) with (4.33)-(4.35), and Transformation property 2.2. The proof for “(4.5) is
equivalent to (4.31)-(4.32)" is provided in Lemma 4.3 The other two transformations can
be found in [7; 139]. Based on the above transformations, we can finally obtain an MILP
problem that is exactly equivalent to the original optimization problem.

4.5.3. SIMPLIFIED MIXED-INTEGER LINEAR PROGRAMMING APPROACH
In Section 4.5.2, several auxiliary variables and constraints are introduced to handle the
train capacity constraints in (4.9) which calculates the possible number of boarding pas-
sengers at a platform. These constraints play an important role in accurately calculating
the number of passengers in peak hours, when there are a large number of passengers
waiting at platforms. During the peak hours, not all passengers can board the current
train, and, instead, some passengers must wait for the next train at the platform. How-
ever, in off-peak hours, the number of passengers waiting at the platform is relatively
small, and almost all passengers can board the current train upon their arrival. In this
case, we can disregard the train capacity constraints in (4.9), and hence the constraints
(4.33), (4.34), and (4.35) are not required. Therefore, we can further reduce the compu-
tational burden.

With this simplification, the number of passengers who can board the train at cycle
kp is equal to the number of waiting passengers, i.e., (4.9) will be replaced with:

nboard
p (kp ) = nbefore

p (kp ). (4.36)

3The value of Mp can be a very large value related to train capacities, i.e., Mp = 10 ·Cmax,kp , and mt can be a

small value, i.e., mp =−10 ·Cmax,kp .



4.6. CASE STUDY

4

83

The simplification results in a simplified mixed-integer linear programming (SMILP)
problem.

As mentioned in Section 4.5.1, the SQP algorithm might get stuck in a local optimal
solution when handling non-convex problems. In this context, several starting points are
required for SQP, so as to improve the solution quality. The simplified problem is solved
by disregarding train capacity constraints, and other constraints are identical with the
original MILP problem. Therefore, instead of doing multi-start SQP, the SMILP formula-
tion can be used to get an initial solution; then, this initial solution is employed as the
starting point of SQP for the original nonlinear optimization problem.

4.6. CASE STUDY
In this section, simulations are performed to evaluate the effectiveness of the devel-
oped passenger-oriented urban rail traffic model and the MILP-based MPC approach.
We first simulate the urban rail network using the proposed model and the model in
[9; 136] based on the real-life operation data of part of the Beijing metro network, and
simulation results are used to test the accuracy of the proposed model. Then, numerical
experiments are designed to test the performance of the solution approaches and the
corresponding MPC controller.

4.6.1. ASSESSMENT OF THE PROPOSED MODEL

To the best of the authors’ knowledge, there is no commonly recognized accurate model
for passenger-oriented urban rail networks, and the most accurate model we found in
the literature is the model in [9; 136]. Therefore, in this chapter, we define the model in
[9; 136] as an “accurate model” to simulate the real-life urban network and to test the
accuracy of our model.

The real-life network we use is shown in Fig. 4.3. The network contains two bi-
directional lines that consist of 19 stations and 40 platforms. The passenger OD data
used for the case study are obtained based on the real-life entering and exiting passenger
flows of automatic fare collection systems. The passenger flows over each half-hour are
recorded and stored. In the real-life data used for the case study, passenger arrival rates
in different stations have different dynamics. The lines we use contains both normal and
over-saturated lines. For the simulation, we use the real-life passenger data from the Bei-
jing Subway, which is one of the busiest subway systems in the world. Line 9 is one of
the busiest lines in the Beijing subway network. In order to show the effectiveness of the
developed method in severely congested situations, we select the data corresponding to
Line 9 during the morning peak hours from 7:00 to 9:00 for the simulation.

We use MATLAB (R2019b) for simulations on a computer with an Intel Xeon W-2223
CPU and 8 GB RAM. The main parameters associated with the simulation are listed in
Table 4.5. In the developed model, we use the departure-departure headway as the cycle
time, which is equal to the sum of the dwell time and the departure-arrival headway of
the basic timetable. In the developed model, variables related to the number of passen-
gers for all platforms are updated every cycle.

At each platform, the comparisons are conducted with three key values in the model,
i.e., the accumulated number of passengers boarding the trains, the number of departing
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Figure 4.3: Real-life network of 2 lines from Beijing subway.

Table 4.5: Parameters for simulation of Line 9 and Line 14

Parameters Line 9 Line 14
Dwell time τp (kp ) 60 s 60 s
Departure-arrival headway 180 s 180 s
Cycle time cp (kp ) 240 s 240 s
Number of trains 20 20
Train capacity 2400 2400
Average transfer time θtrans

p,q 60 s 60 s

Average transfer duration θduration
p,q 60 s 60 s

Cruising speed 80 km/h 80 km/h

passengers, and the accumulated number of passengers that cannot board. The number
of boarding passengers and departing passengers can reflect the utility of trains, which
are related to operational costs, as the train operation company wants to transport as
many passengers as possible with the available trains. The number of passengers who
cannot board is related to passenger satisfaction because if passengers cannot board the
current train upon their arrival, they have to wait for the next train.

We conduct simulations using both the accurate model and the developed model.
For each line and each platform, we get the accumulated number of boarding passen-
gers, the number of departing passengers, and the accumulated number of passengers
that cannot board. The computation times needed to simulate the accurate model and
the proposed model for the given period are 1.17 s and 0.24 s, respectively. The plat-
form with the largest deviation between the proposed model and the accurate model is
selected to illustrate the accuracy of the proposed model. The deviations are shown in
Table 4.6.
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Table 4.6: The largest deviation for each line

Passengers Line 9 Line 14
Acc. # of boarding passengers 8.14% 0.58%
Number of departing passengers 11.59% 1.25%
Acc. # of pass. who cannot board 5.43% 0.1%
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Figure 4.4: Accumulated number of boarding passengers at platforms.

For the accumulated number of boarding passengers, Line 9 Station LLQ (up direc-
tion platform) and Line 14 Station DWY (down direction platform) have the largest de-
viation, with an error of 8.14% and 0.58%, respectively. The simulation results of the
platforms are also shown in Fig. 4.4.
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Figure 4.5: Number of departing passengers at each time step.
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The largest deviation of the number of departing passengers for the lines occurs at
Line 8 Station BSQN (up direction platform) and Line 14 Station DWY (down direction
platform), with an error of 11.59% and 1.25%, respectively (see Fig. 4.5).
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Figure 4.6: Accumulated number of passengers that cannot board at platforms.

For the accumulated number of passengers that cannot board, the largest deviation
happens at Line 9 Station LLQ (up direction platform) and Line 14 Station GZZ (up di-
rection platform), with an error of 5.43% and 0.1%, respectively, and we also provide the
simulation results in Fig. 4.6.

According to above simulation results, we can conclude that the developed model
can model the passenger flows with a maximal error of around 10% while the simulat-
ing time is reduced with a factor about 5, compared with the accurate model. There-
fore, with an acceptable loss of accuracy, the proposed model can efficiently incorporate
time-dependent passenger OD demands into the real-time timetable scheduling prob-
lem, which provides more possibilities to develop fast solution methods.

4.6.2. OPEN-LOOP OPTIMIZATION BASED ON THE PROPOSED MODEL
Now we perform numerical experiments for open-loop optimization to illustrate the so-
lution quality and computation time of the approaches provided in Section 4.5, which
can reflect the effectiveness and the real-time feasibility of the developed MPC con-
troller. The model in [9; 136] is also used as the accurate model to simulate the “real-life
network”, in order to compare and evaluate the performance of the approaches.

We use the same urban rail network as introduced in Section 4.6.1, and the param-
eters for train operation constraints are listed in Table 4.7, where rregular indicates the
running time from the corresponding platform to its successor platform of the basic
timetable.

For the SQP approach, we use the fmincon function of the MATLAB Optimization
Toolbox, and we adopt the gurobi solver implemented in MATLAB (R2019b) to solve
the MILP problem. The experiments are performed on a computer with an Intel Xeon
W-2223 CPU and 8GB RAM.
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Table 4.7: Parameters for train operation constraints

Parameters Line 9 Line 14
Minimum dwell time 30 s 30 s
Minimum headway 144 s 144 s
Maximum running time 1.3 · rregular 1.3 · rregular
Minimum running time 0.8 · rregular 0.8 · rregular

The basic timetable of the given urban rail network can be calculated by the param-
eters in Table I and the distance between each pair of consecutive platforms. The basic
timetable represents the case without optimization. In the case study, we use the same
data set with Section 4.6.1. We optimize the arrival and departure times of each platform
for 5 time steps (i.e., 5 ·Tctrl). As the real-time feasibility is also important for the online
implementation of an approach, the maximum solution time is set as 3600 s.

Simulation results are shown in Table 4.8, where the performance is the value of the
objective function in (4.28). We find that all the approaches have better performance
than basic timetable. In particular, the MILP approach has the best performance with
the improvements for 22.66% compared with the basic timetable, while the improve-
ment of SQP (with 1 starting point), SQP (with 10 starting points), and SMILP+SQP are
17.87%, 18.74%, and 18.30%, respectively.

In order to investigate the impact of regarding the variables related to the number of
passengers as real-valued variables, we conduct an extra case study using the MILP for-
mulation and by regarding passengers’ number as integer variables, which is indicated
as MILP-int in Table IV. We can find that the objective function value of MILP-int is very
close to that of MILP. As the number of integer variables grows rapidly, the CPU time
however increases dramatically, and the MILP-int approach cannot get its optimal so-
lution within 3600 s, which indicates that MILP-int is not a suitable choice for real-time
timetable scheduling.

Table 4.8: Comparison of performance and computation time corresponding to different problem formula-
tions

Method Objective function CPU time (s)
Basic timetable 1.3813 ·104 -
SQP (1 starting point) 1.1344 ·104 264.3
SQP (10 starting points) 1.1225 ·104 2845.7
SMILP (+SQP) 1.1285 ·104 8.2
MILP-int 1.0831 ·104 3600.0
MILP 1.0683 ·104 6.4

The simulation results show that MILP performs best in terms of solution quality
and solution time, which indicates that we can use the MILP-based MPC controller for
real-time timetable scheduling. We can also find that the SQP approach is a bit time
consuming compared with the MILP approach. SQP can easily fall into a suboptimal so-
lution of the non-convex optimization problem, and the implementation of multi-start
SQP can help to improve the performance of SQP. However, the computational burden
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of multi-start SQP is much larger than single-start SQP, which would also influence the
real-time feasibility of MPC. The SMILP approach can be used to find a starting point for
the SQP approach so as to further improve the performance. In the case study, the solu-
tion obtained from SMILP approach is already a suboptimal solution of SQP; therefore,
the application of SQP cannot further improve the performance of SMILP.

4.6.3. CLOSED-LOOP CONTROL FOR REAL-TIME TIMETABLE SCHEDULING
In Section 4.6.1 and Section 4.6.2, we have illustrated the effectiveness of the developed
model and the MILP-based approach, respectively. In this section, numerical experi-
ments are conducted from the control side based on the accurate model (i.e. the model
of [9; 136]) and the newly developed model.

The urban rail network is shown in Fig. 4.3, and all settings related to the numeri-
cal experiment are identical with Section 4.6.2. The simulation is conducted for 15 time
steps and the prediction horizon of MPC is 5 (i.e. 5 ·Tctrl). In the developed model, vari-
ables related to the number of passengers are updated every time step.

Table 4.9: Performance of MPC in real-time timetable scheduling

Predictionmodel Performance
CPU time (s)

tavrg tmax

Basic timetable Accurate model 7.0692 ·104 - -
SQP-based MPC Accurate model 6.1104 ·104 1799.4 2680.5
MILP-based MPC Proposed model 5.6763 ·104 4.0 9.1

It has been illustrated in Section 4.6.2 that MILP-based formulation performs best
among the optimization approaches provided in Section 4.4; therefore, we only use the
MILP-based MPC when employing the newly developed model as the prediction model.
For the accurate model, we use SQP-based MPC as it is difficult to transform the MPC
optimization problem of the accurate model into an MILP or SMILP problem. As real-
time feasibility is important for MPC, in this section, we conduct numerical experiments
for SQP-based MPC (with one starting point) to obtain an acceptable performance. For
further improvement of SQP-based approach (with the cost of increasing computational
burden), we refer to multi-start SQP approach which has been included in Section 4.6.2.

As Table 4.9 shows, both SQP-based MPC and MILP-based MPC perform much better
than the basic timetable, with an improvement of 13.56% and 19.70% respectively in the
performance, which indicates that SQP-based MPC and MILP-based MPC can be used
to improve the performance of the basic timetable. Although we use a more accurate
model for SQP-based MPC, MILP-based MPC performs slightly better than SQP-based
MPC, as SQP can fall into suboptimal solution in the timetable scheduling problem.

We collect the computation time of the MPC optimization problem in each control
step. The average and maximum CPU time of SQP-based MPC are 1799.4 s and 2680.5 s,
respectively, which indicates SQP-based MPC may not be a suitable choice for real-time
timetable scheduling. MILP-based MPC is time efficiency, with average and maximum
CPU time as 4.0 s and 9.1 s, respectively.

In order to graphically show the results, we depict a part of the timetable from Line 9
in the considered time window. The basic timetable, the timetable generated by SQP-
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Figure 4.7: Basic timetable.
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Figure 4.8: Timetable generated by SQP-based MPC.

based MPC, and the timetable generated by MILP-based MPC are shown in Fig. 4.7,
Fig. 4.8, and Fig. 4.9, respectively. Both SQP-based MPC and MILP-based MPC can adjust
the arrival and departure times in real time so that the performance of the correspond-
ing timetable is improved compared with that of the basic timetable. The timetable of
SQP-based MPC is not the same as that of MILP-based MPC, because we only take one
starting point (considering the real-time feasibility of the approach), which would typi-
cally result in a suboptimal solution. In order to show the impact on the passengers of
different timetables more clearly, the variables related to the number of passengers are
analyzed in the following.

The total number of departing passengers for all lines and all platforms is depicted
in Fig. 4.10. The timetable obtained from the MILP-based MPC approach results in more
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Figure 4.9: Timetable generated by MILP-based MPC.
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Figure 4.10: Total number of departing passengers at each time step.

boarding and departing passengers, which means the resulting timetable can make bet-
ter use of the available trains.

The total number of waiting passengers before the train departs and the total num-
ber of passenger who cannot board the train, for all lines and all platforms, is depicted
in Fig. 4.11 and Fig. 4.12, respectively. We can find that the timetable obtained from the
MILP-based MPC controller results in less number of waiting passengers and less num-
ber of passengers who cannot depart, i.e., more passengers can board their target trains,
which indicates that MILP-based MPC can help to improve passenger satisfaction.
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Figure 4.11: Total number of waiting passengers at each time step.
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Figure 4.12: Total number of passengers that cannot depart at each time step.

4.7. CONCLUSIONS
In this chapter, we have proposed a novel passenger flow model for real-time timetable
scheduling of urban rail networks. By introducing the cycle time, the time-dependent
passenger origin-destination demands can be modeled very efficiently, with a loss of
accuracy at around 10% compared with an accurate model for a simulation including
part of Beijing urban rail network. Furthermore, a model predictive control framework
was proposed for real-time timetable scheduling. In order to increase the real-time fea-
sibility of MPC, the optimization problem in MPC has been transformed into a mixed-
integer linear programming problem, which can be solved very fast by existing MILP
solvers. Simulation results indicate that the MILP approach can greatly reduce the online
computational burden of the MPC controller with the developed model. The developed



4

92 4. MPC FOR PASSENGER-ORIENTED REAL-TIME TRAIN RESCHEDULING

model and MILP-based MPC controller can be used in real-time timetable scheduling
for real-life passenger-oriented urban rail networks.

In our future work, we will investigate the possibility of using MILP-based MPC com-
bined with more accurate models by designing efficient methods to transform or ap-
proximate the integral of the passenger arrival rates into mixed-integer linear inequali-
ties. We will design distributed control approaches for large-scale networks, where the
developed MILP-based MPC controller will be used as the local controller. Furthermore,
flexible coupling of trains will be considered, so that the capacity of trains at each cy-
cle can be adjusted based on passenger demands. The influence of uncertain passenger
demands and the order of trains will also be a topic for future research.



5
LEARNING-BASED MPC FOR TRAIN

RESCHEDULING WITH FLEXIBLE

TRAIN COMPOSITION

This chapter focuses on passenger-oriented real-time train scheduling, considering flex-
ible train composition and rolling stock circulation, by integrating learning-based and
optimization-based approaches. A learning-based model predictive control (MPC) ap-
proach is developed for real-time train rescheduling including train compositions, and
taking into account rolling stock circulation to address time-varying passenger demands.
In the proposed approach, first the values of the integer variables are obtained by pre-
trained long short-term memory (LSTM) networks; next, they are fixed and the values of
continuous variables are determined via nonlinear constrained optimization. The learn-
ing-based MPC approach enables us to jointly consider efficiency and constraint satisfac-
tion by combining learning-based and optimization-based approaches. In order to reduce
the number of integer variables, four presolve techniques are developed to prune a subset
of integer decision variables. Numerical simulations based on real-life data from the Bei-
jing urban rail transit system are conducted to illustrate the effectiveness of the developed
learning-based MPC approach.

This chapter is based on [80], for which X. Liu focused on the research framework, model, integration of appli-
cation and learning approaches, joint programming, and paper writing.
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5.1. INTRODUCTION
Urban rail transit has become indispensable in metropolitan areas due to its reliabil-
ity, high capacity, and eco-friendly characteristics. Urban rail transit systems prioritize
safe and efficient train operations while providing high-quality service to passengers. Ef-
fective real-time train scheduling is essential for enhancing passenger satisfaction and
minimizing operational costs within infrastructure limitations. However, the rapid ex-
pansion of urban rail transit systems and the increasing passenger demands pose sig-
nificant challenges to real-time scheduling. Advanced scheduling models and control
strategies are required to develop efficient timetables and to improve the overall perfor-
mance of urban rail transit systems.

5.1.1. PASSENGER-ORIENTED TRAIN SCHEDULING

In urban rail transit systems, passenger demands vary throughout the day, necessitating
adjustments of the train schedules to accommodate these demand variations while con-
sidering operational costs. One direction addresses time-varying passenger demands by
optimizing the departure and arrival times of trains at each station, while taking into
account several attributes of train operations and infrastructure restrictions, e.g., train
stopping plans [14; 103], rolling stock circulations [133], and train speed levels [51; 137].
Qi et al. [103] optimized train stopping plans and timetables of a high-speed railway
line considering time-varying passenger demands by formulating a mixed-integer lin-
ear programming (MILP) problem. The aim of [103] is to find a solution that considers
passenger preferences for departure times while ensuring trains operate within capacity
limits. Considering the passenger load of trains, Wu et al. [141] minimized the passenger
waiting time and the energy consumption by developing a heuristic algorithm to solve
the resulting nonlinear integer programming problem. Wang et al. [137] formulated a
mixed-integer nonlinear programming (MINLP) problem to minimize train energy con-
sumption and passenger waiting times by optimizing train speed levels and headway de-
viations. However, the above studies optimize train schedules within the fixed transport
capacity of a rail line, such as fixed train compositions or fixed train departure frequen-
cies. As transport capacity directly impacts passenger flows, further research is required
to improve passenger satisfaction by including transport capacity as a decision variable.

Another direction for train scheduling problems addresses time-varying passenger
demands by optimizing transport capacity explicitly. Several studies focus on optimiz-
ing transport capacity by adjusting train departure frequencies, with higher frequencies
during peak hours and lower frequencies during off-peak hours [19; 77; 79]. However,
passengers typically expect regular departures at each platform to plan their travels con-
veniently and have a predictable waiting time in case they miss a connecting train [76].
Therefore, instead of changing the departure frequency, which would significantly im-
pact the timetable, in recent years, many researchers have focused on optimizing the
train composition [153; 156]. Pan et al. [99] developed a column-generation-based ap-
proach to optimize the timetable, train composition, and rolling stock circulation plan of
an urban rail transit line. Their paper concludes that flexible train composition can pro-
vide additional adaptability to better match time-varying passenger demands. Wang et
al. [129] investigated flexible train composition and rolling stock circulation of an urban
rail transit line, and solved the resulting MILP problem by developing an approximation
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approach and a two-stage meta-heuristic algorithm. Yang et al. [147] investigated the
train scheduling problem with flexible train composition for an urban rail transit line,
and they applied an adaptive large neighborhood search algorithm to solve the result-
ing integer programming problem. As the inclusion of train composition optimization
and rolling stock circulation planning introduces additional integer variables, the above
studies indicate that the online computational complexity is the main challenge of in-
corporating flexible train composition into the real-time train scheduling problem.

5.1.2. MPC FOR REAL-TIME TRAIN SCHEDULING

Model predictive control (MPC) has been widely adopted in various applications for its
ability to handle multivariable constrained control problems [46; 92; 104]. The train
scheduling problem is a typical contained control problem, and many studies have ap-
plied MPC for real-time train scheduling. De Schutter et al. [31] first applied MPC in
the train scheduling problem to minimize train delays by adjusting transfer connec-
tions. Caimi et al. [15] developed an MPC algorithm to optimize timetables, transfer
connections, and train assignment plans in complex station areas. Cavone et al. [22]
proposed an MPC approach for train rescheduling during disruptions and delays, where
in each step the resulting MILP problem is solved by combining bi-level heuristics and
distributed optimization. The above studies only handle operator-related factors in rail-
way systems, leaving an open gap in including passenger demands in real-time train
scheduling problems to improve the service quality of urban rail transit systems.

In recent years, several studies have focused on MPC for real-time passenger-oriented
train scheduling. Assis and Milani [5] applied MPC to compute the train timetable of a
metro line considering train headway and passenger load, where a linear programming
problem is solved at each step. Based on a state-space model, Li et al. [68] developed
a robust MPC approach to minimize the upper bound of the timetable deviation from
the nominal timetable under uncertain disturbances. By solving linear matrix inequal-
ities, they constructed a Lyapunov function to ensure the attenuation of the timetable
deviation. An event-triggered MPC approach is further developed in [130] to reduce the
computational burden of updating control variables in each step. However, these stud-
ies do not explicitly consider train capacity limitations and time-varying passenger de-
mands, and the results are based on the assumption that the maximum number of pas-
sengers does not exceed the maximum train capacity. Liu et al. [76] explicitly incorpo-
rated time-varying passenger demands and train capacity limitations into the real-time
train scheduling problem. In [76], the time-varying passenger demand is approximated
as a piecewise constant function by dividing the planning time window into several time
intervals of equal length, and an MILP-based MPC approach is adopted for real-time
train scheduling. The main challenge of applying MPC in real time is the online com-
putational burden. Including additional attributes, such as train capacity, train com-
position, and rolling stock circulation, will further increase the computational burden.
Therefore, further research is required to develop efficient MPC approaches for real-time
passenger-oriented train scheduling.
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5.1.3. LEARNING-BASED TRAIN SCHEDULING

Learning-based approaches are effective in reducing the online computational burden
and have been developed for dynamic control problems in different fields, such as road
transportation systems [120], smart building systems [127], and power systems [39]. Learn-
ing-based approaches, including supervised learning (SL) and reinforcement learning
(RL), have also been applied in train scheduling problems in recent years [124]. SL trains
models on labeled data to make accurate predictions or classifications, while RL trains
an agent to make decisions through trial-and-error using rewards and penalties. Kup-
pusamy et al. [60] applied a deep learning approach to an energy-efficient timetable
rescheduling problem, where a long short-term memory (LSTM) network is trained to
select the optimal operation mode. Šemrov et al. [110] applied Q-learning in the train
rescheduling problem to reduce delays caused by disturbances and disruptions, and
they illustrated their method on a single-lane track with three trains. Yin et al. [151] pro-
posed an approximate dynamic programming approach to address train rescheduling
problems, aiming to reduce passenger delays, total travel time, and train energy con-
sumption. In [151], the states include disturbance information, train arrival times, the
number of boarding passengers, and the number of waiting passengers, while the ac-
tions include rescheduling the dwell times and running times. Khadilkar [57] applied
RL to determine track allocations and timetables of bidirectional railway lines to mini-
mize the priority-weighted delay. Ying et al. [153] developed a proximal policy optimiza-
tion approach for the train scheduling problem in an urban rail transit line considering
flexible train composition. In [153], the control policy and the value function are pa-
rameterized by artificial neural networks, and scheduling constraints are handled by a
devised mask scheme. Simulation results show that this approach reduces the compu-
tational burden and improves solution quality compared to the genetic algorithm and
differential evolution. More studies of learning-based approaches in railway systems
can be found in the recent review paper [124].

In the above studies, scalability and constraint satisfaction are two main challenges
in developing learning-based train scheduling approaches. The train scheduling prob-
lem is typically formulated as an MILP or MINLP problem, and the computational com-
plexity increases rapidly as the number of integer variables increases. In recent years,
some research has combined learning-based and optimization-based approaches for
MILP or MINLP problems by using learning-based approaches to obtain the integer vari-
ables. Having the integer variables fixed, the continuous variables are then obtained by
solving a linear or nonlinear programming problem. In this context, the aim is to com-
bine the advantages of both learning-based and optimization-based approaches, i.e., the
online computational efficiency of learning-based approaches and the constraint satis-
faction of optimization-based approaches [21; 108]. Promising results of learning-based
approaches in railway systems and the novel learning-based approaches in mixed inte-
ger programming problems have inspired us to develop new learning-based frameworks
for real-time train scheduling.

5.1.4. CONTRIBUTIONS AND STRUCTURE OF THE CHAPTER

This chapter addresses the real-time, passenger-oriented train rescheduling problem
taking into account time-varying passenger demands, flexible train composition, and
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rolling stock circulation. The main contributions of the chapter are listed as follows:

1. A passenger-oriented train scheduling model [76] is extended to include time-
varying sectional passenger demands, flexible train composition, and rolling stock
circulation. The time-varying passenger demands can be approximated as a piece-
wise constant function by dividing the prediction horizon into several time inter-
vals.

2. Four presolve techniques are developed to streamline optimization processes by
pruning a subset of integer decision variables. After implementing the presolve
techniques, long short-term memory (LSTM) networks are applied to obtain the
remaining integer variables with reduced dimensions.

3. A learning-based MPC approach is developed for real-time train rescheduling. To
improve the online computational efficiency of MPC, the learning-based approach
is applied to obtain integer variables while the detailed timetable is obtained by
solving a constrained optimization problem with the fixed integer variables.

The remaining part of the chapter is organized as follows: Section 5.2 provides the
problem description and general explanations. Section 5.3 introduces the passenger-
oriented train scheduling model. In Section 5.4, the problem formulation and the MINLP-
based MPC approach are presented. In Section 5.5, we propose a learning-based MPC
approach for real-time train rescheduling. Section 5.6 provides an illustrative case study.
Section 5.7 concludes the chapter.

5.2. PROBLEM DESCRIPTION AND EXPLANATIONS
In urban rail transit systems, passengers typically expect regular departures at every plat-
form to plan their trips conveniently and to avoid extended waiting times in case they
miss a connecting train [76]. In this context, we consider the regular departure of trains
and optimize the transport capacity by adjusting train composition.

In urban rail transit systems, a line is defined as the route of trains with the same ori-
gin, intermediate, and destination stations. A train service is defined as a train departure
from its origin station, visiting every station in the line, and finally returning to the de-
pot. As illustrated in Fig. 5.1, a train service consists of one or several train units, and the
composition can be changed at the station connected to a depot by adding or removing
train units.

In this chapter, we jointly optimize train compositions and timetables considering
time-varying passenger demands and rolling stock circulation. We aim to minimize the
total waiting time of passengers and the train energy consumption, and the control ac-
tions are the train composition, train orders, and train timetables. Flexible train com-
position and rolling stock circulation relate to the set of integer variables, while train
timetables relate to the set of continuous variables, such as departure and arrival times.
The train operates under several constraints, including train capacity constraints, train
availability in a depot, and headway constraints. By applying MPC, we solve the re-
sulting mixed-integer programming problem in a moving horizon manner for real-time
train scheduling. To improve the online computational efficiency of MPC, we use the
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Figure 5.1: Illustration of definitions used in this chapter.

learning-based approach to obtain integer variables, i.e., train compositions and train
orders; then, we optimize the detailed timetable with the fixed integer variables by solv-
ing a constrained optimization problem.

5.3. MATHEMATICAL FORMULATION FOR PASSENGER-ORIENTED

TRAIN SCHEDULING
In this section, we develop a passenger-oriented train scheduling model for urban rail
transit systems. The notations for the model formulation are provided in Section 5.3.1.
The train operation constraints of the model are introduced in Section 5.3.2. In Sec-
tion 5.3.3, the rolling stock circulation constraints related to the model are introduced.
In Section 5.3.4, passenger flow constraints of the model are presented.

5.3.1. NOTATIONS

5.3.2. TRAIN OPERATION CONSTRAINTS
In urban rail transit systems, each line typically comprises two directions, i.e., the up
direction and the down direction, as shown for a line of P stations in Fig. 5.2. For each
line, a train service can be defined as a train running from the starting platform to the
terminal platform, e.g., from Platform 1 to Platform 2P in Fig. 5.2. Trains generally oper-

Platform 1 Platform 2 Platform P

...

Platform 2P Platform 2P-1 Platform P+1

...

up direction

down direction

out from depot

back to depot

  turnaround

Figure 5.2: Layout of a bidirectional urban rail transit line.

ate following a predetermined timetable, and the predetermined departure time of train
service kp at platform p is represented by d pre

p (kp ).
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Notations Definition
p Index of platforms, p ∈P ; P is the set of platforms
kp Index of train services at platform p, kp ∈Ip ; Ip is the set of train services departing

from platform p
z Index of depots; pla(z) defines the set of platforms directly connected with depot z
ppla (

p
)

Predecessor platform of platform p
spla (

p
)

Successor platform of platform p
d

pre
p (kp ) Predetermined departure time of train service kp at platform p

hmin
p Minimum departure-arrival headway at platform p

r min
p Minimum running time of trains from platform p to its succeeding platform

r max
p Maximum running time of trains from platform p to its succeeding platform

Cmax Maximum capacity of a train unit
ℓmin Minimum number of train units allowed to be included in any train service
ℓmax Maximum number of train units allowed to be included in any train service
σp Parameter indicating whether the train composition can be adjusted at platform p,

i.e., if the train composition can be adjusted at platform p, then, σp = 1, otherwise, σp = 0
τmin

p Minimum dwell time of a train service at platform p
t cons

p Time required for changing the train composition at platform p

t roll
p Time for trains from platform p to other platforms corresponding to the same depot

dep(z) Set of platforms directly connected with depot z
pla(p) Set of platforms belonging to the same station as platform p
ρp (kp ) Passenger demands from platform p to its successor platform during d

pre
k−1,p

to d
pre
k,p

N train
z Total number of train units available at depot z

χkq ,q,kp ,p Binary parameter; if train kq at platform q has transfer connection with train kp at platform p,

χkq ,q,kp ,p = 1; otherwise, χkq ,q,kp ,p = 0.

t trans
q Average transfer time from platform q to the corresponding platforms at the same station

E
energy
p Average energy consumption for a train unit running from platform p to its successor platform

Eadd
p Additional cost of changing train composition at platform p

Table 5.1: Indices and Input Parameters

Notations Definition
dp (kp ) Departure time of train service kp at platform p
ap (kp ) Arrival time of train service kp at platform p
ℓp (kp ) Number of train units included in train service kp at platform p, ℓp (kp ) ∈Z+

Table 5.2: Decision variables

In practice, premature departure is usually not permitted; thus, the predetermined
departure time defines a lower bound of the actual departure time. In general, passen-
gers expect regular departures at every platform so that they can conveniently plan their
travels and avoid extended waiting times for the next train in case they miss a connect-
ing train. Therefore, in this chapter, we do not change the departure frequency of trains
when adjusting the timetable and train composition. Hence, the actual departure time
is constrained by

d pre
p (kp ) ≤ dp (kp ) < d pre

p (kp +1), (5.1)

where dp (kp ) is the actual departure time of train service kp at platform p determined
by

dp (kp ) = ap (kp )+τp (kp ), (5.2)
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Notations Definition
τp (kp ) Dwell time of train service kp at platform p
hp (kp ) Departure-arrival headway between train service kp and train service kp +1 at platform p
rp (kp ) Running time of train service i from platform p to its successor platform
yp (kp ) Number of train units coming to/from the depot for train service kp , yp (kp ) ∈Z
τadd

p (kp ) Additional time required for changing the composition of train service kp at platform p
ηkp ,p Binary variable; if the composition of train service kp is changed at platform p, ηkp ,p = 1;

otherwise, ηkp ,p = 0

ξkp ,kp′ ,p,p′ Binary variable; if the train units from train service kp′ at platform p ′ can be used

for train service kp at platform p, ξkp ,kp′ ,p,p′ = 1; otherwise, ξkp ,kp′ ,p,p′ = 0

np (kp ) Number of passengers waiting at platform p at time d
pre
p (kp )

ntrans
p (kp ) Number of transfer passengers arriving at platform p for train kp

n
depart
p (kp ) n

depart
p (kp ) denotes the number of passengers departing from platform p

with train service kp

narrive
p (kp ) Number of passengers arriving at platform p with train kp from the predecessor

platform ppla (
p

)
nbefore

p (kp ) Number of passengers waiting at platform p immediately before the departure
of train service kp

Cp (kp ) Total capacity of train service kp at platform p
nafter

p (kp ) Number of passengers waiting at platform p immediately after train service kp

departs from platform p

Table 5.3: Output variables

where ap (kp ) and τp (kp ) are the arrival time and dwell time of train service kp at plat-
form p.

For the safe operation of trains, the headway constraint should be satisfied:

ap (kp +1) = dp (kp )+hp (kp ), (5.3)

hp (kp ) ≥ hmin
p , (5.4)

where hp (kp ) is headway of train service kp at platform p , and hmin
p denotes the mini-

mum headway.

The arrival time of train service kp at the successor platform of platform p should
also satisfy

aspla(p)(kp ) = dp (kp )+ rp (kp ), (5.5)

r min
p ≤ rp (kp ) ≤ r max

p , (5.6)

where rp (kp ) is the running time of train service kp from platform p to platform spla
(
p

)
,

and r min
p and r max

p are the minimum and maximum running time from platform p to

platform spla
(
p

)
.
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5.3.3. ROLLING STOCK CIRCULATION CONSTRAINTS
At the terminal station, a turnaround action is required for the continuation of the train
service. The turnaround constraints can be formulated as:

aspla(p)(kspla(p)) = dp (kp )+ r turn
p (kp ), (5.7)

r turn,min
p ≤ r turn

p (kp ) ≤ r turn,max
p , (5.8)

where r turn
p (kp ) represents the turnaround time of train service k at platform p, and

r turn
p,min and r turn

p,max denote the minimum and maximum turnaround times at platform p.
An urban rail transit line typically has a limited number of train units that either op-

erate on the line or are stored in the depot. The train composition can be adjusted at
the platform that is linked with the depot, and the number of train units ℓp (kp ) ∈Z+ for
train service kp at platform p is determined by

ℓp (kp ) = ℓppla(p)(kp )+σp yp (kp ), (5.9)

ℓmin ≤ ℓp (kp ) ≤ ℓmax, (5.10)

where σp is a parameter related to the network layout indicating whether the train com-
position can be adjusted at platform p, i.e., if the train composition can be adjusted at
platform p, then, σp = 1, otherwise, σp = 0. Moreover, yp (kp ) ∈ Z represents the num-
ber of train units coming to/from the depot for train service k; specifically, if yp (kp ) > 0,
then, yp (kp ) extra train units will come from the depot to be added to train service kp ; if
yp (kp ) < 0, train service kp will be decomposed and |yp (kp )| train units will return to the
depot; if yp (kp ) = 0 the composition of train service kp will not be changed at platform
p. Furthermore, ℓmin and ℓmax represent the minimum and the maximum number of
train units allowed to be included in any train service.

Remark 5.1: If the depot is linked with the terminal platform (e.g., Platform 1 in
Fig. 5.2) and train service k is performed by the turnaround trains of the previous train
service, then (5.9) becomes ℓ1(k1) = ℓ2P (k2P −1)+σ1 y1(k1), i.e., we set ℓ1(k1) = ℓ2P (k2P −
1).

To capture the changes of train composition at platform p, we introduce a binary
variable ηkp ,p as

ηkp ,p =
{

1, if |yp (kp )| > 0;

0, otherwise,
(5.11)

where ηkp ,p = 1 indicates the composition of train service kp is changed at platform p;
otherwise, ηkp ,p = 0.

In general, additional dwell time is required when changing the train composition;
thus, the dwell time τp (kp ) of train service kp at platform p should satisfy:

τp (kp ) ≥ τmin
p +σpτ

add
p (kp ), (5.12)

where τmin
p is the minimum dwell time at platform p, and τadd

p (kp ) represents the ad-
ditional time required for changing the composition of train service kp at platform p,
which can be determined by

τadd
p (kp ) = ηkp ,p · t cons

p , (5.13)
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where t cons
p is a constant representing the time required for changing the train composi-

tion at platform p.
A depot typically connects to at least one platform, and the availability of train units

in a depot is influenced by the departure order of train services at the corresponding
platforms, i.e., if a newly arriving train service requires changing its composition, the
total number of train units in the corresponding depot will change. To represent the
relation of departure time of train services corresponding to the same depot, we define
a binary variable ξkp ,kp′ ,p,p ′ as

ξkp ,kp′ ,p,p ′ =
{

1, if dp (kp ) ≥ dp ′ (kp ′ )+ t roll
p ′ ;

0, otherwise,
(5.14)

where dp (kp ) is the departure time of train service kp at platform p, dp ′ (kp ′ ) is the depar-

ture time of train service kp ′ at platform p ′, and t roll
p ′ is the time for trains from platform

p ′ to other platforms corresponding to the same depot. In (5.14), ξkp ,kp′ ,p,p ′ = 1 indicates

train units in train service kp ′ from platform p ′ is available for train service kp at platform
p; otherwise, ξkp ,kp′ ,p,p ′ = 0.

Then, the rolling stock circulation constraint is∑
kp∈Ip

yp (kp )+ ∑
p ′∈dep(z)\{p}

∑
kp′∈Ip′

ξkp ,kp′ ,p,p ′ yp ′ (kp ′ ) ≤ N train
z , (5.15)

where z is the index of the depot; dep(z) defines the set of platforms directly connected
with depot z; Ip ′ defines the set of train services departing from platform p ′; and N train

z
represents the total number of train units available at depot z. Eq. (5.15) indicates that
the total number of train units departing from depot z before time dp (kp ) should be less
than or equal to the total number of available train units in the depot.

5.3.4. PASSENGER FLOW CONSTRAINTS
A predetermined timetable is generally designed based on the time-varying passenger
demand to guide the daily operation of trains. At each platform, the predetermined
timetable naturally divides the planning time window into several time intervals, with
the predetermined train departure times at the platforms as the partition points. In this
chapter, we approximate the passenger arrival rates during each time interval as con-
stants. The resulting piecewise approximation is shown in Fig. 5.3 where d pre

p (kp ) is the
predetermined departure time of train service kp ; and ρp (kp ) denotes passenger de-
mands during d pre

p (kp − 1) to d pre
p (kp ) for passengers aiming to leave platform p with

train service kp .
The number of passengers waiting at a platform immediately after the predeter-

mined departure time of train service kp +1 at platform p can be calculated by

np (kp +1) = np (kp )+ρp (kp +1)
(
d pre

p (kp +1)−d pre
p (kp )

)+ntrans
p (kp )−ndepart

p (kp ), (5.16)

where np (kp ) represents the number of passengers waiting at platform p at time d pre
p (kp );

ρp (kp +1)
(
d pre

p (kp +1)−d pre
p (kp )

)
calculates the number of passengers arriving at plat-

form p between d pre
p (kp ) and d pre

p (kp + 1); ntrans
p (kp ) denotes the number of transfer
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Figure 5.3: Illustration of piecewise approximation of passenger demands for platform p.

passengers arriving at platform p for train kp , and ndepart
p (kp ) denotes the number of

passengers departing from platform p with train service kp .
Since the departure time of each train service is adjusted according to (5.1), there

exists one departure in each time interval. Having Fig. 5.3, the number of passengers
nbefore

p (kp ) waiting at platform p immediately before the departure of train service kp

can be calculated by

nbefore
p (kp ) = np (kp )+ρp (kp +1)

(
dp (kp )−d pre

p (kp )
)+ntrans

p (kp ). (5.17)

The number of passengers ndepart
p (kp ) departing from platform p with train service

kp should satisfy

ndepart
p (kp ) ≤Cp (kp ), (5.18a)

ndepart
p (kp ) ≤ nbefore

p (kp ), (5.18b)

where Cp (kp ) is the total capacity of train service kp at platform p.
The total capacity of train service kp at platform p is computed by

Cp (kp ) = ℓp (kp )Cmax, (5.19)

where ℓp (kp ) is the number of train units composing train service kp at platform p.
The number of passengers narrive

p (kp ) arriving at platform p with train kp from the

predecessor platform ppla
(
p

)
can be calculated by

narrive
p (kp ) = ndepart

ppla(p)
(kp ). (5.20)

Then, the number of passengers ntrans
p (kp ) transferring to platform p for train kp is com-

puted by

ntrans
p (kp ) = ∑

q∈pla(p)

∑
kq∈Iq

χkq ,q,kp ,p narrive
p (kp ), (5.21)
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where pla(p) defines the set of platforms belonging to the same station as platform p,
and χkq ,q,kp ,p is the binary parameter denoting transfer connection between train kq at
platform q and train kp at platform p, which is defined as

χkq ,q,kp ,p =
{

1, if d
pre
p (kp −1) < d

pre
q (kq )+ t trans

q ≤ d
pre
p (kp );

0, otherwise,
(5.22)

where t trans
q represents the average transfer time from platform q to the corresponding

platforms at the same station.
After train service kp departs from platform p, the number of passengers waiting at

the platform can be calculated by

nafter
p (kp ) = nbefore

p (kp )−ndepart
p (kp ), (5.23)

where nafter
p (kp ) represents the number of passengers waiting at platform p immediately

after train service kp departs from platform p.

5.4. MPC FOR REAL-TIME TRAIN RESCHEDULING

5.4.1. PROBLEM FORMULATION
Based on the developed model, we can formulate the problem to minimize passenger
delays and operational costs. The passenger delays corresponding to train service kp at
platform p can be formulated as

J pass
p (kp ) = np (kp )

(
dp (kp )−d pre

p (kp )
)+nafter

p (kp )
(
d pre

p (kp +1)−dp (kp )
)

. (5.24)

As passengers expect to depart at the predetermined departure time d pre
p (kp ), the term

np (kp )
(
dp (kp )−d pre

p (kp )
)

in (5.24) represents the delay for passengers departing from

platform p with train service kp ; the term nafter
p (kp )

(
d pre

p (kp +1)−dp (kp )
)

denotes the
expected delay for passengers that could not board train service kp , hence they have to
wait for the next train at the platform.

Assigning more train units to a train service can increase the capacity for transport-
ing passengers while leading to higher energy consumption. Furthermore, changing the
train composition may require additional workload from operators and thus lead to ad-
ditional costs. The operational costs of train service kp running from platform p to its
successor platform can be expressed as

J cost
p (kp ) = ℓp (kp )E energy

p +ηkp ,p E add
p , (5.25)

where E energy
p represents the average energy consumption for a train unit running from

platform p to its successor platform, and E add
p denotes the additional cost for changing

the train composition of a train service at platform p.
In urban rail transit systems, a train service typically departs from a depot, visiting

each platform along a line before returning to the depot. As we want to ensure the reg-
ular departure of trains at each platform, we define the time interval between two con-
secutive predetermined departure times as the control time step, and the length of the
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control time step, denoted as Tctrl for all platforms along a line is identical, and the con-
trol time step is indexed as κ.

Therefore, the optimization problem for the train rescheduling problem is

min
g (κ0)

J (κ0) := ∑
p∈P

∑
kp∈Np (κ0)

(
w1 J pass

p (kp )+w2 J cost
p (kp )

)
,

s.t. (5.1)− (5.25),
(5.26)

where g (κ0) collects all the variables of problem (5.26), P is the set collecting all the plat-
forms of the line, Np (κ0) is the set indices of trains departing from platform p within the
prediction time window starting at time step κ0, and w1 and w2 are weights banlacing
two objectives.

5.4.2. MINLP-BASED MPC FOR REAL-TIME TRAIN RESCHEDULING
Problem (5.26) contains piecewise constant (“if-then") constraints in (5.13) and (5.14).
We apply the following transformation properties to convert (5.13) into a mixed logical
dynamical (MLD) system [139].

Transformation property 5.2: If we introduce an auxiliary continuous variable ok,p

and an auxiliary binary variable γkp ,p with γkp ,p = 1 ⇔ okp ,p = yp (kp ) and γkp ,p = 0 ⇔
okp ,p =−yp (kp ), and then okp ,p = |yp (kp )| is equivalent to

okp ,p − yp (kp ) ≥ 0,
okp ,p − yp (kp ) ≤ 2Ymax(1−γkp ,p ),
okp ,p + yp (kp ) ≥ 0,
okp ,p + yp (kp ) ≤ 2Ymaxγkp ,p ,

(5.27)

where Ymax denotes the maximum value of yp (kp ).
Transformation property 5.3: Based on Transformation property 5.2, (5.11) is equiv-

alent to ηkp ,p =
{

1, if okp ,p > 0;
0, otherwise,

, which can be converted to

{
okp ,p ≤ ηkp ,pOmax,
okp ,p ≥ ϵ+ (1−ηkp ,p )(Omin −ϵ).

(5.28)

where Omax and Omin are the minimum and maximum values of okp ,p , respectively, and
ϵ is a sufficiently small number, typically representing machine precision.

Therefore, (5.13) can be transformed to

τadd
p (kp ) = ηkp ,p t cons

p . (5.29)

Transformation property 5.4: If we define ma and Ma as the minimum and maxi-
mum values of ap ′ (kp ′ ), respectively, then following the transformation property in [7],
(5.14) is equivalent to the following inequalities{

ap ′ (kp ′ )−ap (kp ) ≤
(
1−ξkp′ ,kp ,p ′,p

)(
Ma−ap (kp )

)
,

ap ′ (kp ′ )−ap (kp ) ≥ ε+ξkp ,kp′ ,p,p ′
(
ma−ap (kp )−ε) .

(5.30)
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Based on the transformations described above, we can convert problem (5.26) into
an MINLP problem. The nonlinearity in the MINLP arises from the nonlinear objective
function. The integer variables in this problem encompass the train composition vari-
ables (yp (kp ) and ℓp (kp )), the train ordering variable (ξkp ,kp′ ,p,p ′ ), and auxiliary binary

variables (γkp ,p and ηkp ,p ).
For compactness, we rewrite the resulting MINLP problem in the following form:

min
x(κ0),u(κ0),δ(κ0)

J (κ0) :=
κ0+N−1∑
κ=κ0

L(x(κ),u(κ),δ(κ)) (5.31a)

s.t. x(κ+1) = Aκx(κ)+B1,κu(κ)+B2,κδ(κ), (5.31b)

D3,κx(κ)+D1,κu(κ)+D2,κδ(κ) ≤ D4,κ, (5.31c)

κ= κ0, · · · ,κ0 +N −1,

where N is the total number of time steps, x(κ), u(κ), and δ(κ) collect all the inde-
pendent variables, continuous decision variables, and discrete decision variables for
time step κ, respectively, and x(κ0) = [x⊺(κ0), x⊺(κ0 + 1), . . . , x⊺(κ0 + N − 1)]⊺, u(κ0) =
[u⊺(κ0),u⊺(κ0+1), . . . ,u⊺(κ0+N −1)]⊺, and δ(κ0) = [δ⊺(κ0),δ⊺(κ0+1), . . . ,δ⊺(κ0+N −1)]⊺.
In (5.31), L(x(κ),u(κ),δ(κ)) represents the nonlinear objective function for time step κ,
(5.31b) collects all equality constraints, and (5.31c) collects all inequality constraints.

MPC

Real-life System

Optimizer

Prediction Model

Figure 5.4: Model predictive control for real-time train rescheduling.

Solving (5.31) leads to a series of continuous decision variables and discrete deci-
sion variables, and only the decision variables at time step κ0 are applied. At the next
time step, the prediction time window is shifted for one step, and a new optimization is
formulated. The framework is depicted in Fig. 5.4.

Lemma 5.5 (Recursive Feasibility): If problem (5.31) is feasible at time step κ with
initial state x(κ), then problem (5.31) is also feasible at time step κ+1.

Proof. The proof relies on finding a feasible solution for time step κ+1. Recall that the
planning time window at each platform is divided into several intervals of equal length,
with a train service departing from the platform at each interval according to (5.1). In
general, there are two types of depots: (i) depots connected to the terminal platform
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(e.g., Platform 1 in Fig. 5.2), and (ii) depots connected to intermediate platforms (e.g.,
Platform 2 in Fig. 5.2).

i) For a depot connected to the terminal platform: if the problem (5.31) is feasible at
time step κ, then at each time step, a train service returns to the depot from the opposite
direction of the line. In this context, the new train service departing from the terminal
platform at step κ+1 can directly utilize the train units by performing a turnaround from
the opposite direction of the line following (5.7).

ii) For any depot connected to an intermediate platform: a feasible solution is ob-
tained by maintaining the composition of each train service the same as it was at time
step κ.

5.4.3. MILP-BASED MPC FOR REAL-TIME TRAIN RESCHEDULING
In Section 5.4.1, a nonlinear objective function is defined in (5.24) to calculate the pas-
senger delays. The nonlinear objective function yields the MINLP-based MPC in Sec-
tion 5.4.2. In general, the nonlinear term significantly increases the computational bur-
den. In this context, we simplify the nonlinear objective function to reduce the compu-
tational burden.

As we divide the planning time window as in Fig. 5.3 and the actual departure time
is constrained by d pre

p (kp ) ≤ dp (kp ) < d pre
p (kp +1), then by using the upper bound and

lower bound of dp (kp ) we can approximate the nonlinear objective function (5.24) by

J pass
p (kp ) = w3np (kp )

(
d pre

p (kp +1)−d pre
p (kp )

)+nafter
p (kp )

(
d pre

p (kp +1)−d pre
p (kp )

)
,

(5.32)
where w3 is a weight used to balance the approximated errors. In particular, w3 can be
defined as

w3 = 1∑
p∈P |Ip |

∑
p∈P

∑
kp∈Ip

d̄p (kp )−d pre
p (kp )

d pre
p (kp +1)− d̄p (kp )

, (5.33)

where |Ip | represents the cardinality of Ip , and d̄p (kp ) represents the average value of
dp (kp ) from historical data.

Other settings are identical to those of Section 5.4.2. With this approximation, a lin-
ear objective function (5.24) is obtained, and due to the objective function and con-
straints being all linear, we obtain an MILP-based MPC approach for real-time train
rescheduling.

5.5. LEARNING-BASED MPC FOR REAL-TIME TRAIN RESCHEDUL-
ING

For the MINLP-based MPC in Section 5.4.2, an MINLP problem should be solved at each
step, which is typically not computationally affordable for real-time application as the
number of integer variables significantly influences the computational complexity. To
handle the computational complexity issues, we develop a learning-based model pre-
dictive control approach where the integer variables are obtained by deep learning, and
then the MPC optimizer only needs to solve a continuous nonlinear optimization prob-
lem with fewer variables than the original problem at each time step.
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The framework of the approach is provided in Fig. 5.5. At each step, the algorithm
generates discrete variables based on the current state. Once the discrete variables have
been determined, the MPC optimization problem of Section 5.4.2 becomes a continuous-
variable nonlinear programming (NLP) problem, while the MPC optimization problem
of Section 5.4.3 reduces to a linear programming (LP) problem. By solving the result-
ing NLP or LP problem, the optimal continuous variable values can be obtained, and
the new state of the railway network can be obtained after implementing the obtained
discrete and continuous variables.

Environment

MPC

Real-life system

Agent

(Learning algorithm)

Continuous

variables

Discrete

variables
State

Figure 5.5: Learning-based MPC for real-time train rescheduling.

5.5.1. PRESOLVE TECHNIQUES

Presolve techniques streamline optimization processes by pruning a subset of decision
variables with values predetermined by other coupled variables and constraints, setting
them to predefined values. In this chapter, we consider the following presolve tech-
niques.

Presolve technique 1: As we adjust the departure time of train service k at platform p
according to d pre

p (kp ) ≤ dp (kp ) < d pre
p (kp +1), the departure order between some trains

has already been determined: If d pre
p (kp ) ≥ d pre

p ′ (kp ′ + 1)+ t roll
p ′ , then ξkp ,kp′ ,p,p ′ = 1. If

d pre
p (kp +1) ≤ d pre

p ′ (kp ′ )+ t roll
p ′ , then ξkp ,kp′ ,p,p ′ = 0.

Presolve technique 2: According to the definition of ξkp ,kp′ ,p,p ′ in (5.14), the order of

trains at the same platform should be kept consistent, i.e., ξkp+1,kp′ ,p,p ′ ≥ ξkp ,kp′ ,p,p ′ .

Presolve technique 3: The train composition cannot be changed at a station that is
not linked with a depot: If σp = 0, then yp (kp ) = 0.

Presolve technique 4: Let t0 = κ0T represent the current time. If train service kp

has already departed from station p at time t0, the composition cannot be changed at
that station: If dp (kp ) ≤ t0, yp (kp ) = y∗

p (kp ), ∀p ∈ P , where y∗
p (kp ) represents the value

of yp (kp ) obtained before train k departs from platform p and P denotes the set of all
platforms of the line.
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5.5.2. ENVIRONMENT SETTING
The environment of the Learning-based MPC algorithm includes the system and an MPC
optimization problem. The state and variables that interact with the environment are
defined as follows:

State s(κ) ∈ S: The state space ought to encompass all necessary information of the
framework so that the neural network can be trained such that the input can capture as
much possible situations as possible. Hence, state at time step k is defined as:

s(κ) = [n⊺(κ),ρ⊺(κ), N⊺(κ)]⊺, (5.34)

where n(κ) includes the variables np (kp ) for train service kp at its corresponding plat-
form p with κT ∈ [d pre

p (kp −1),d pre
p (kp )), ρ(κ) collects the passenger demands ρp (kp ) for

all train services kp departing from all platforms p from time t = κT to the end of the
prediction time window, and N (κ) collects the number of available trains for all depots
at time t = κT .

Discrete variables δ(κ) ∈ A: The discrete variables correspond to the discrete vari-
ables of the MPC optimization problem (5.31) in each step. Before we evaluate the dis-
crete variable, we first implement the presolve techniques in Section 5.5.1 to avoid in-
feasible actions, and then, we solve the resulting problem corresponding to the discrete
action.

Continuous variables u(κ) ∈U : The continuous variables represent the continuous
decision variables at time step κ in the MPC optimization problem (5.31).

5.5.3. OFFLINE TRAINING FOR LEARNING-BASED MPC ALGORITHM
In practice, the train schedules across consecutive time intervals are interdependent due
to the headway relation between trains and the physical connections between stations.
The neural network should be able to capture and retain essential information over se-
quences time intervals. Therefore, a long short-term memory (LSTM) network [50] is
implemented to train the agent. As a deep recurrent neural network (RNN), the LSTM
architecture enables the network to remember the dynamic interdependencies within
train schedules, ensuring effective adaptation and learning in response to evolving tem-
poral dynamics.

The training procedure of the learning-based MPC approach is shown in Fig. 5.6. At
each step, the LSTM network takes the current state as input, and the hidden state hκ is
initially processed through a feedforward layer to generate objective function values for
all possible discrete variables. The hidden state hκ and cκ are then passed to the LSTM
network at the next time step.

The mean squared error (MSE) is applied to update the parameters of the LSTM net-
work as the optimizer with the following loss function:

Lcross = 1

|S |
∑

s∈S

κ0+N−1∑
κ=κ0

(
J∗s (κ)− Js (κ,δ(κ))

)2, (5.35)

where Lcross represents the loss function, S defines a set collecting all transitions, |S |
denotes the cardinality of S , J∗s (κ) is the optimal value of the objective function of tran-
sition s at time step κ, and Js (κ,δ(κ)) is the value of objective function of transition s at
time step κ with discrete variable δ(κ).
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Figure 5.6: Training procedure of the learning-based MPC approach with LSTM.

5.6. CASE STUDY

5.6.1. BASIC SETTING
In this section, we illustrate the proposed approaches based on real-life data from a net-
work of three lines in the Beijing urban rail transit network. As shown in Fig. 5.7, the
network including 3 bi-directional lines with 45 stations. There are 3 transfer stations,
i.e., Station ZXZ, Station XEQ, and Station HY, where passengers can transfer from one
line to another. For each line, there is a depot connected with the starting station of the
line, i.e., Station CPX for Changping Line, Station XZM for Line 13, and Station ZXZ for
Line 8. The values of parameters for the case study are given in Table 5.4. The original
timetable is generated based on the regular headway, regular dwell time, and average
running times in Table 5.4. According to the definition, the length of a time step is the
sum of the regular headway and the regular dwell time. The number of train units in the
depot for each line has been selected as a random integer number with the value varying
among the range given in Table 5.4.

The length between every two consecutive stations is openly accessible on the web-
site of Beijing Subway1. In the case study, the average running time and the average
energy consumption of a train between every two consecutive stations are calculated
using the method in [135] with the maximum acceleration of 0.75 m/s2, the maximum
deceleration of 0.7 m/s2, and the cruising speed of 70 km/h, respectively. The sectional
passenger demands are obtained based on real-life passenger flow data from the Bei-
jing urban rail transit network, collected in January 2020. We have selected data from
6:00 AM to 10:00 PM for simulation, so the data contains both peak hours and off-peak
hours. For training agents and simulation, we have generated passenger demands based
on a Poisson distribution by using real-life passenger flow data as the expected value.

The simulations have been conducted using Python as a programming language,
PyTorch as the machine learning library, and gurobi to solve optimization problems.
Adam [59] is applied in the offline training process to minimize MSE, and dropout [114]
is used to handle the over-fitting issue. Moreover, the experiments were conducted on a

1https://www.bjsubway.com/station/zjgls/
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Figure 5.7: The layout of considered urban rail transit network (with 3 lines).

Table 5.4: Main parameters for the case study

Parameter Symbol Value

Regular headway h
regular
p 180 s

Minimum headway hmin
p 120 s

Regular dwell time τ
regular
p 60 s

Minimum dwell time τmin
p 30 s

Average turnaround time r turn
p 52.9 s

Minimum running time r min
p 0.8 · r

avrg
p

Maximum running time r max
p 1.2 · r

avrg
p

Time for changing train composition t cons
p 60 s

Time for rolling stock circulation t roll
p 240 s

Transfer rate at a transfer station βq,p 10%
Capacity of a train unit Cmax 400 persons

Regular train composition of a train service ℓ
regular
p 2 train units

Minimum number of train units
included in a train service

ℓmin
p 1 train unit

Maximum number of train units
included in a train service

ℓmax
p 4 train units

Weighted term w1 10−4

Weighted term w2 10−1

Weighted term w3 10−1

Number of train units for Changping Line N train
z [55, 75]

Number of train units for Line 13 N train
z [70, 90]

Number of train units for Line 8 N train
z [60, 80]

Prediction horizon of MPC N 40
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computing cluster with Intel XEON E5-6248R CPUs. The dataset consists of 96000 states
and the corresponding optimal solutions, and it has been built using 60 CPU cores and
240GB of RAM in 24 hours. The training and hyperparameter tuning processes have
been conducted using 144 CPU cores, 864GB of RAM, using more than 200000 iterations
for 24 hours.

To reduce the solution time of the MINLP solver without significantly compromis-
ing optimality, a simple early termination criterion was employed: if the optimality gap
does not decrease by 0.5% within 10 seconds, the solution process terminates, and the
solver outputs the best solution found. Moreover, as the MILP-based approach typically
has a significantly shorter solution time than the MINLP-based approach, the integer
variables generated by the MILP-based approach are used as a warm-start rule for the
MINLP-based approach.

In this section, the developed train scheduling approaches, i.e., MINLP-based MPC,
warm-start-MINLP-based MPC, MILP-based MPC, learning-NLP-based MPC, and learn-
ing-LP-based MPC are evaluated. As defined in Section 5.3, the length of a time step is
240 s. Hence, to ensure that a solution can be obtained for each time step, we set the
maximum solution time for each approach as 240 s. In addition, as a longer solution
time typically yields better objective function value, we use the MINLP approach with
warm-start and a longer maximum solution time, i.e., 600 s, as a benchmark to evaluate
the performance of the developed approaches.

As the inference time of the LSTM networks and the time required for feasibility
checks are sufficiently low, instead of using a single LSTM network, an ensemble of 15
LSTM networks was employed in a sequential way to generate integer variables for the
learning-based approaches to improve the overall feasibility of the learning-based ap-
proaches. The inference process of the LSTM networks in the ensemble is performed
sequentially, where the (i+1)th network is evaluated only if the i th and all preceding net-
works fail to produce a feasible solution. In particular, the ensemble consists of LSTM
networks with hidden sizes from the set {512, 1024}, dropout rates from the set {0, 0.5},
learning adjusting in the set {on, off}, and output masking in the set {on, off}.

5.6.2. SIMULATION AND RESULTS

We have conducted simulations to train the learning algorithm, and the learning pro-
cess for one of the networks is shown in Fig. 5.8, where a 1000-step moving average
approach is applied to smooth the learning curve. From Fig. 5.8, we can see that the
learning curve converges very quickly during the first 100000 iterations, and then the
performance gradually improves until iteration 200000. We have performed simulations
for open-loop control using the developed learning-based approaches across more than
1000 different scenarios, i.e., 1038 different scenarios. For comparison, simulations have
been also performed with the MINLP approach, the warm-start MINLP approach, MILP
approach.

The optimality gap, CPU time, and feasibility rate among the simulations are given
in Table 5.5. From Table 5.5, we see that the MINLP approach without warm-start has
the worst optimality gap and the worst CPU times. In general, the nonlinear objective
function and the integer terms significantly influence the performance of MINLP. By ap-
plying the warm start, the optimality gap and the solution time are reduced; however,
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Figure 5.8: Learning process of the learning algorithm.

Table 5.5: Simulation results for different train scheduling approaches

Approach
Optimality gap CPU time (s)

Feasibility rate
max average min max average min

Benchmark - - - 600.10 222.18 3.67 100%
MINLP 100.81% 7.22% 0% 240.14 239.84 52.47 100%

Warm-start MINLP 12.96% 0.04% -0.24 % 240.10 96.71 3.58 100%
MILP 1.54% 0.47% -33.73% 240.01 8.77 0.37 100%

Learning + NLP 3.48% -0.11% -34.28% 112.22 6.89 1.80 98.94%
Learning + LP 1.73% 0.22% -33.42% 0.25 0.13 0.11 98.55%
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the maximum solution time and the average solution time of the warm-start MINLP ap-
proach are still large with values of 240.10 s and 96.71 s, respectively. By approximat-
ing the nonlinear objective function, the solution time of the MILP approach is further
reduced without sacrificing too much optimality. However, the MILP also reached the
maximum allowed solution time in some cases, i.e., the maximum CUP time of MILP in
Table 5.5 still reached 240 s.

The developed learning-based NLP approach and learning-based LP approach achieve
comparable performance with an average optimality gap of -0.11% and 0.22% among the
feasible cases, while significantly reducing the solution time to an average of 6.89 s and
0.13 s, respectively. Furthermore, by approximating the nonlinear objective function,
the learning-based LP approach further reduces the solution time, enabling the opti-
mized timetable to be obtained in under 1 second. Both the learning-based NLP and LP
approaches demonstrate high feasibility rates, at 98.94% and 98.55%, respectively. For
the infeasible case, the heuristic as stated in Lemma 5.5 can be applied to get the train
decomposition and generate a feasible timetable.

Figure 5.9: Number of train units departing from Station CPX at each time step.

To further show the performance of the learning-based approach, the number of
train units departing from Station CPX at each time step is given in Fig. 5.9, where time
step 1 corresponds to 10:40 AM. The train decomposition and timetable before 10:40 AM
are aligned with the regular timetable with parameters indicated in Table 5.4. The results
indicate that both the learning-based approach achieve performance nearly equivalent
to the MINLP-based approach in most cases with the learning-based approach show-
ing a deviation at only one step in Fig. 5.9. In practice, rail operators typically expect to
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obtain a timetable as quickly as possible. The simulation results indicate that the devel-
oped learning-based approaches can be applied to generate timetables that minimize
passenger delays and train energy consumption within a relatively short time.

5.7. CONCLUSIONS
In this paper, we have investigated the passenger-oriented train rescheduling problem
considering flexible train composition and rolling stock circulation. The passenger-ori-
ented train scheduling model [76] has been extended to include train compositions and
rolling stock circulation considering time-varying passenger demands. To improve the
online computational efficiency of model predictive control, we have combined the op-
timization-based and learning-based approaches, where the learning-based approach
obtains integer variables, i.e., train compositions and train orders, by using pre-trained
long short-term memory networks; then, the detailed timetables are optimized by solv-
ing a constrained optimization problem with the fixed integer variables. We have devel-
oped several presolve techniques to prune the subset of integer decision variables. Sim-
ulation results show that the developed learning-based framework can achieve compa-
rable performance compared to the exact approach with an acceptable loss of feasibility
while the solution time is significantly reduced.

In the future, we will investigate the integration of reinforcement learning (instead of
supervised learning) and model predictive control for real-time train scheduling to im-
prove the learning ability of the approach. Among several directions, multi-agent learn-
ing-based approaches can also be a promising direction for handling large-scale urban
rail transit networks.





6
COOPERATIVE DISTRIBUTED MPC

FOR VIRTUALLY COUPLED TRAINS

Virtual coupling is regarded as an efficient way to improve the line capacity of rail trans-
portation systems by reducing the spacing between consecutive trains. This study is the
first to compare and assess different distributed model predictive control (MPC) approaches,
i.e., cooperative distributed MPC, serial distributed MPC, and decentralized MPC, for vir-
tually coupled trains with a nonlinear train dynamic model. To make a balanced trade-off
between computational complexity and efficiency, we also propose and assess convex ap-
proximations of the above control approaches. Furthermore, we are the first to introduce
the relaxed dynamic programming approach to analyze the stability of the MPC-based
nonlinear train control problem. By using the relaxed dynamic programming approach,
a distributed stopping criterion with a stability guarantee is developed for the cooperative
distributed MPC approach. In real life, masses of trains are different and can change at
stations due to changes in passenger loads. This change in mass can significantly affect
the dynamics and control of the virtually coupled trains when not taken into account in
the control design. Therefore, we explicitly consider heterogeneous train masses when de-
signing MPC approaches. We evaluate the different distributed MPC approaches through
case studies based on the data of the Beijing Yizhuang Line. Simulation results indicate
that the cooperative distributed MPC approach has the best tracking performance, while
the serial distributed MPC approach can reduce communication requirements and com-
putation capabilities with sacrifices of tracking performance.

This chapter is based on [78].
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6.1. INTRODUCTION
The transport demand for rail transportation systems has increased rapidly, and the
need to enhance rail line capacity while ensuring operational safety remains a paramount
concern for rail operators. The line capacity is associated with the spacing between con-
secutive trains, which is determined by the signal systems. Currently, the widely applied
signal system in urban rail transit is the moving block system [3; 96], which determines
the distance between two consecutive trains based on the absolute braking distance, i.e.,
the distance a train needs to fully stop from its current speed.

In recent years, an advanced signaling technology, i.e., virtual coupling, has been
recognized as an efficient way to further improve the line capacity by reducing the spac-
ing between consecutive trains [3; 11]. In a platoon of virtually coupled trains, the dis-
tance between two consecutive trains is determined based on the relative braking dis-
tance, which also takes into account the braking characteristics of the predecessor train
[81; 106]. Different from platoons of connected and automated vehicles (CAVs) in road
traffic [67], a platoon of virtually coupled trains features a long train braking distance,
and trains in a platoon should run on the same rail track, leading to larger spacing be-
tween trains. Furthermore, the communication between non-adjacent trains is typically
not considered due to the longer headway in railway systems as communication over
longer distances may become unreliable [113]. Hence, one cannot just adopt control
approaches of CAVs to virtually coupled trains.

As a novel signaling technology, virtual coupling significantly relies on vehicle-to-
vehicle communication and cooperative train control schemes [2; 140; 146]. Gener-
ally, the communication topology and the cooperative control schemes are highly in-
tertwined. Several control approaches have been developed for virtually coupled trains
based on different communication topologies. Cao et al. [20] applied generalized predic-
tive control (GPC) to virtually coupled trains with the aim to ensure the expected track-
ing distance and to prevent collisions. Xun et al. [145] applied model predictive control
(MPC) to realize centralized control and in addition they developed a speed protection
mechanism for virtually coupled trains. Su et al. [118] developed a centralized MPC ap-
proach for virtually coupled trains in the cruising phase, and they applied a generalized
minimum-residual-method-based approach to solve the resulting nonlinear optimiza-
tion problem. The above papers focus on centralized control approaches that rely on a
centralized controller, thereby significantly increasing the communication and compu-
tation burden [90].

In contrast to those centralized control approaches, decentralized control strategies
have gained attention due to their potential to alleviate the communication and com-
putation burden. Felez et al. [33] formulated a decentralized MPC approach for virtually
coupled trains based on a linear model with nonlinear constraints. Two cases are consid-
ered in [33], i.e., the case that the follower receives predicted states from its predecessor
train, and the case that the followers have to predict the states of its predecessor train
based on the measured information. Considering uncertainties in the dynamic model
and train positioning, Felez et al. [35] developed a decentralized robust MPC approach
based on the min-max principle. This work is further extended in [126] by including
more uncertain factors, such as modeling errors, positioning errors, communication de-
lays, and possible adhesion losses. Di Meo et al. [32] developed a decentralized control
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approach based on local state variables and the information received from other trains,
and they analyzed the exponential stability under communication delays by introducing
a Lyapunov-Krasovskii function. By using sliding mode control (SMC) and a nonlinear
train control model, Park et al. [100] developed a robust gap controller based on the
measurement of the position and velocity of the predecessor trains. Basile et al. [6] de-
veloped a deep deterministic policy gradient approach to design a decentralized control
law for virtually coupled trains with heterogeneous train dynamics and uncertain dis-
turbances, showing lower computational burden and energy consumption compared to
MPC. However, the safety distance in [6] is considered by using a penalty term in the
reward function, which does not provide a theoretical guarantee of safety. The above
papers primarily emphasize the significance of decentralized control strategies for vir-
tual coupling, highlighting their ability to alleviate the communication burden while
ensuring system performance. However, these decentralized approaches often rely on
measurement information or limited communication information, and trains make in-
dependent decisions without coordinating their actions with those of other trains. high-
lighting the potential for distributed and/or cooperative control approaches1 that can
leverage communication data even more.

The advanced vehicle-to-vehicle communication technology enables communica-
tion-enhanced information exchange between virtually coupled trains [113; 140], prompt-
ing the exploration of distributed control methods that can leverage more extensive com-
munication data. Quaglietta et al. [105] analyzed the safety margin of virtually coupled
trains to handle the safety risk caused by communication delays, control delays, posi-
tioning errors, and train braking characteristics. Su et al. [119] considered the heteroge-
neous train braking distance and developed a feedback control law to ensure the string
stability of the train platoon. Liu et al. [81] linearized the train movement model and
developed a distributed MPC approach for a platoon of virtually coupled trains, where
trains are assumed to be close to each other, and therefore the slope difference between
different trains is ignored; then, they analyzed the local stability of each individual train
based on a terminal controller. By ignoring the slope difference between trains, Liu et al.
[82] developed an optimal control (OC) approach based on Pontryagin’s principle, and
analyzed the local stability and the head-to-tail string stability. By considering the resis-
tance caused by tracks and winds as bounded disturbances, Luo et al. [88] introduced
tube-based distributed MPC based on a linear train model, where the safety constraint
can be ensured in any situation in the robust control scheme. In the aforementioned dis-
tributed control approaches, each train computes its control input based on the infor-
mation received from its predecessor train only, and thus the approach is also called the
serial distributed control approach. Zhang et al. [155] introduced the fixed-time track-
ing control (FTC) approach and developed a cooperative control approach to achieve
virtual coupling within the fixed time. Wang et al. [127] introduced a Q-learning-based
cooperative control approach for virtually coupled trains where monitoring sensors and
wireless communication networks are used to obtain the operational status of trains;
however, only two virtually coupled trains are considered in [127], and the extension to
more trains still requires further research. In summary, these studies indicate the poten-

1Each agent in a distributed control scheme only focuses on its own objective, while cooperative distributed
control enables agents to take into account the objective of the overall system [115; 116].
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tial for enhanced control and coordination among virtually coupled trains facilitated by
vehicle-to-vehicle communication technologies.

Table 6.1: Summary of studies on control for virtually coupled trains

Literature Model Control scheme Control approach Train heterogeneity
Cao et al. (2021) [20] linear centralized GPC no
Xun et al. (2020) [145] linear centralized MPC no
Su et al. (2021) [118] nonlinear centralized MPC no
Felez et al. (2019) [33] nonlinear decentralized MPC no
Felez et al. (2022) [35] nonlinear decentralized MPC no
Vaquero-Serrano et al. (2023) [126] nonlinear decentralized MPC no
Di Meo et al. (2019) [32] linear decentralized PID no
Park et al. (2020) [100] nonlinear decentralized SMC train mass
Basile et al. (2024) [6] nonlinear decentralized DDPG train dynamics
Liu et al. (2021) [81] linear distributed MPC no
Liu et al. (2021) [82] linear distributed OC no
Luo et al. (2023) [88] linear distributed MPC no
Su et al. (2023) [119] nonlinear distributed feedback control braking dynamics
Zhang et al. (2021) [155] nonlinear cooperative FTC no
Wang et al. (2020) [127] nonlinear cooperative Q-learning no

This chapter
linear,
nonlinear

cooperative,
distributed,
decentralized

MPC train mass

GPC: generalized predictive control; MPC: model predictive control; PID: proportional–integral–derivative; SMC:
sliding mode control; DDPG: deep deterministic policy gradient; OC: optimal control; FTC: fixed-time tracking con-
trol.

In a set of virtually coupled trains, trains may have different characteristics, resulting
in heterogeneity. In particular, heterogeneous trains may have different lengths, masses,
and braking characteristics, which should be considered in the controller design to en-
sure efficient and safe operation [106; 119]. Train mass is a crucial factor influencing
train dynamics and varies according to train type and passenger load. Therefore, with-
out loss of generality, we focus on train mass in this chapter as an illustrative example of
the various aspects of heterogeneous trains.

Table 6.1 summarizes the aforementioned studies, outlining the differences in the
model, control scheme, control approach, and train heterogeneity they used. From Ta-
ble 6.1, we can observe the application of both linear and nonlinear train dynamic mod-
els. Notably, the nonlinear model generally yields more accurate results but also comes
with a higher computational burden compared to the linear model. According to dif-
ferent communication topologies, different control schemes, i.e., centralized, decentral-
ized, distributed, and cooperative distributed, are studied. We find that MPC stands out
as the most widely adopted train control approach in virtual coupling research. For more
studies in virtual coupling, we refer to the recent review papers [34; 140; 146]. It is worth
noting that only the study presented in [100] explicitly incorporates train masses when
designing the controller, and there is still no research on an MPC design for virtually cou-
pled trains explicitly considering masses of trains. Furthermore, a comprehensive com-
parison and assessment considering different models and different control schemes for
virtually coupled trains is still unaddressed in the existing literature.

The chapter contributes to the state of the art as follows:

1. A comprehensive comparison and assessment of distributed MPC approaches for
virtually coupled trains are provided, which would benefit the process of control
method design and selection for virtually coupled trains.
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2. We are the first to incorporate the relaxed dynamic programming (RDP) approach
into the train control field and to use it to ensure the stability of the nonlinear train
control problem. By using RDP, a stopping criterion under the distributed con-
trol scheme with a stability guarantee is developed for the cooperative distributed
MPC approach.

3. The mass of trains can significantly affect the dynamics and control of virtually
coupled trains if not considered in the control design. We are the first to explic-
itly account for changes in train masses when designing MPC approaches, and
we demonstrate the impact of incorporating train masses in the control design
through simulations.

The rest of this chapter is structured as follows. In Section 6.2, the problem statement
and preliminaries are provided. In Section 6.3, the mathematical model of the system is
provided. In Section 6.4, several distributed MPC approaches are presented. In Sec-
tion 6.5, we conducted case studies to illustrate the performance of the approaches, and
in Section 6.6, the conclusions and the outlook for future works are provided.

6.2. PROBLEM STATEMENT AND PRELIMINARIES

6.2.1. PROBLEM STATEMENT
In a platoon of virtually coupled trains, trains are coupled virtually through train-to-train
communication. We consider heterogeneous trains, and in particular, we focus on het-
erogeneous masses in this chapter. The leader train receives reference signals from the
infrastructure and operates following a reference speed profile, and each follower train
follows its predecessor train while keeping a safe distance.

Let us define si , vi , and ui as the position, speed, and control input of train i , re-
spectively, and define ∆si and ∆vi as the position difference and speed difference be-
tween train i and its predecessor train, respectively. As stated in [113], ultra-reliable low-
latency communications are typically required when the distance between trains is less
than 50 m. Moreover, the latency of 50 ms can be achieved for wireless train control
and monitoring system [109; 113]. The field tests and simulations in [131] also indicated
that the average transmission delay of train-to-train communications is below 20 ms.
Therefore, in this chapter, we only consider the case that a train can communicate with
its predecessor train and follower train, and train-to-train communication under a rela-
tively short distance can be ensured. As shown in Fig. 6.1, three possible communication
topologies realized in practice are considered, i.e., bidirectional communication, unidi-
rectional communication, and measurement, and different communication topologies
require different control methods. The bidirectional communication in Fig. 6.1(a) allows
trains to include their neighbors’ real-time control inputs, speeds, and positions when
generating control inputs. Hence, trains can compute their control inputs in parallel and
exchange information with their neighbors [113; 155], which involves adjusting control
inputs, to achieve cooperative control; however, the communication burden of bidirec-
tional communication is relatively large.

For the unidirectional communication in Fig. 6.1(b), trains compute control inputs
sequentially in the virtual coupled train string: each train computes the control input
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Figure 6.1: Illustration of train-to-train communication topologies for virtually coupled trains occurring in
practice.

based on the real-time control input, speed, and position, received from its predecessor
train, and then, the computed control input, speed, and position are sent to its successor
train. In this context, each train only requires communicating with its neighbors once
per control step.

Fig. 6.1(c) corresponds to the case when the communication between trains is lost,
and thus a train cannot receive the real-time control input, speed, and position of its
predecessor train. Then, to ensure safe operation, each train should compute control
inputs based on the relative speed and position of its predecessor train measured by
onboard sensors, e.g., radars or LiDARs, assuming the predecessor train may brake with
the maximum braking force.

In this chapter, we consider the three communication topologies depicted in Fig. 6.1
and introduce different control approaches based on the three communication topolo-
gies.

Remark 6.1. Different from platoons of connected automated vehicles in road traf-
fic, communication between non-adjacent trains is not considered due to the longer
headway in railway systems compared to that in road traffic control systems, as commu-
nication over longer distances may become unreliable.

The virtual coupling train control problem aims at controlling trains operating with
a relatively short headway while ensuring a safe and steady distance between two adja-
cent trains. The safety distance can be guaranteed by including hard constraints in the
control problem. The steady distance between a train and its predecessor train is evalu-
ated by local stability, while the steady distance between any two adjacent trains in the
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platoon is ensured by the so-called string stability.

6.2.2. PRELIMINARIES
To introduce the concept of string stability, let us consider train i in the platoon, and the
dynamic of train i is

xi ,k+1 = fi (x1,k , . . . , xi ,k , . . . , xI ,k ), (6.1)

where xi ,k represents the state of train i at time step k, I is the total number of trains in
the platoon.

The definitions of local stability and string stability used in this chapter are intro-
duced as follows.

Definition 6.2 (Lyapunov Local Stability) [58]: For a given system (6.1), the equilib-
rium point xeq

i is said to be Lyapunov local stable if

∀ϵ> 0,∃δ> 0, ||xi ,0 −xeq
i || < δ⇒||xi ,k −xeq

i || < ϵ,∀k ∈N0. (6.2)

In addition, the equilibrium point xeq
i is said to be asymptotically Lyapunov locally stable

if it is Lyapunov locally stable and xi ,k → xeq
i as k →∞.

Let us further define the dynamic platoon of trains as

xk+1 = f (xk ), (6.3)

where xk = [x1,k , . . . , xI ,k ]⊺.
Definition 6.3 (Lyapunov String Stability) [36; 122]: For a platoon of trains described

by (6.3), the equilibrium point xeq is said to be Lyapunov string stable if

∀ϵ> 0,∃δ> 0, ||x0 −xeq|| < δ⇒||xk −xeq|| < ϵ,∀k ∈N0. (6.4)

In addition, the equilibrium point xeq is said to be asymptotically Lyapunov string stable
if it is Lyapunov string stable and x → xeq asymptotically.

Notation: A continuous function h(·) :R+ →R+ is of class K , if it is strictly increasing
and h(0) = 0. A continuous function h(·) : R+ → R+ is of class K∞, if it is of class K and
limu→∞ h(u) =∞. The quadratic norm corresponding to a positive definite symmetric
matrix Q is ||x||2Q = x⊺Qx. Given a set X⊆Rn , a scalar a ∈R, we define aX := {ax|x ∈X}.

6.3. MATHEMATICAL MODEL FOR VIRTUALLY COUPLED TRAINS

6.3.1. TRAIN DYNAMIC MODEL
Although the dynamics of a train is continuous, the control input of the automatic train
operation (ATO) system is typically implemented in a discrete-time manner due to the
implementation of digital computers. Similar to [33; 70], the discrete-time model of lon-
gitudinal dynamics of a train can be described as

vi ,k+1 = vi ,k +
(
ui ,k − ri (vi ,k )−wi (si ,k )

)
T

Mi ,p
, (6.5a)

si ,k+1 = si ,k + vi ,k T, (6.5b)
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where i is the train index, T represents the sampling time, vi ,k and si ,k represent the
speed and position of train i at time step k, respectively, Mi ,p denotes the total mass of
train i from station p to its successor station with p being the station index. We assume
that Mi ,p is a piecewise constant function whose value changes at the station in accor-
dance with the variance of the passenger load. Moreover, ui ,k is the control input, i.e.,
the traction/braking force; ri

(
vi ,k

)
is the basic resistance that is related to the speed of

train i ; wi
(
si ,k

)
denotes the additional resistance that is determined by the position of

train i .
The total mass of train i changes when train i has arrived at a station and can be

calculated by
Mi ,p = mi +ni ,p mpa, (6.6)

where mi denotes the mass of train i itself; ni ,p is the number of passengers on board the
train at station p, and the value of ni ,p changes when the train has arrived at a station;
mpa represents the average mass of a passenger.

The train basic resistance ri
(
vi ,k

)
can be described by

ri
(
vi ,k

)= Mi ,p

(
c0 + c1vi ,k + c2v2

i ,k

)
, (6.7)

where c0, c1, and c2 are parameters that can be identified based on experiment data
[29]. The train basic resistance considers the effects caused by the rotational inertia for
wheelsets, the number of axles, the effective frontal cross-section, the air resistance, etc.

The additional resistance wi
(
si ,k

)
is related to the total mass of the train and can be

approximated as a piecewise constant function of the train position:

wi
(
si ,k

)= Mi ,p g sinθ(si ,k ), (6.8)

where θ(·) is a function of train position representing slope at the corresponding posi-
tion2.

The decision variable ui ,k , the train speed vi ,k , and the train position si ,k should
satisfy

−B sb
i ≤ ui ,k ≤U max

i , (6.9)

0 ≤ vi ,k ≤ vlim(si ,k ), (6.10)

si ,k +d safe
i (vi ,k , vi−1,k ) ≤ si−1,k , (6.11)

where B sb
i and U max

i are the maximum service braking force and the maximum trac-
tion force of train i , respectively, vlim(si ,k ) is a piecewise constant function denoting the
speed limit for train i at position si ,k , d safe

i (vi ,k , vi−1,k ) is the safety distance between
train i and its predecessor train, which can be constrained by

d safe
i

(
vi ,k , vi−1,k

)≥ d sb
i

(
vi ,k

)−d eb
i−1

(
vi−1,k

)+L+Dsafe, (6.12a)

d safe
i (vi ,k , vi−1,k ) ≥ L+Dsafe, (6.12b)

2The additional resistance consists of the resistance caused by slope, curve, and tunnel. Note that the curve
resistance and the tunnel resistance can be represented by wi

(
si ,k

) = Mi ,p gγ(si ,k ), with 0 ≤ γ(si ,k ) ≤ 1; so
they can be transformed into the form of (6.8).
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where d sb
i

(
vi ,k

) = v2
i ,k

2asb
i

is the braking distance of train i with the service braking, i.e.,

when asb
i = B sb

i
Mi ,p

, d eb
i−1

(
vi−1,k

)= v2
i−1,k

2aeb
i−1

is the braking distance of train i−1 with emergency

braking, i.e., aeb
i−1 = B eb

i−1
Mi−1,p

, where B eb
i−1 is the emergency braking force of train i − 1, L

denotes the length of a train, and Dsafe is the safety distance applied to address the safety
risk caused by modeling errors, positioning errors, communication delays, etc [81; 105].

6.3.2. DYNAMIC MODEL FOR VIRTUALLY COUPLED TRAINS
In a platoon of virtually coupled trains, a train is expected to follow its predecessor train
at a certain distance. We consider that the relative distance between train i (i > 1) and
its predecessor train is determined by the speeds of the two trains:

ei ,k = si−1,k − si ,k −d sb
i (vi ,k )+d eb

i−1(vi−1,k ). (6.13)

The first train (i = 1) tracks a desired speed profile with the speed and position repre-
sented by v0,k and s0,k respectively, and we define e1,k = s0,k − s1,k . The illustration of
calculating ei ,k in (6.13) is shown in Fig. 6.2.

Velocity

Distance

Train i Train i – 1

,,

,

sb

,( )
i i k
d v ,

Service braking 

Emergency braking 

Train i 1

Figure 6.2: Illustration of calculating relative distance for train i (i > 1).

Let us define the state and input of train i as xi ,k = [
vi ,k , ei ,k

]⊺ and µi ,k = 1
Mi ,p

ui ,k ,

respectively. Then, the evolution of xi ,k can be expressed compactly as

xi ,k+1 = fi (xi ,k ,µi ,k ), (6.14)

where xi ,k ∈ Xi ,k and µi ,k ∈Wi ,k , with Xi ,k and Wi ,k being the feasible sets of xi ,k and
µi ,k , respectively. If ui ,k ∈ Ui ,k , then Wi ,k = 1

Mi ,p
Ui ,k . Note that, in (6.14), the states of

train i implicitly depend on the position and speed of train i −1; hence we have coupled
dynamics.

6.4. DISTRIBUTED MODEL PREDICTIVE CONTROL FOR VIRTU-
ALLY COUPLED TRAINS

In this section, we apply different distributed MPC approaches for virtually coupled
trains based on the nonlinear model in Section 6.3. We first provide the general non-
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linear model predictive control problem formulation. Considering the possible commu-
nication structures introduced in Fig. 6.1, the computational complexity, and the model
accuracy, we then develop the following six distributed MPC approaches:

• nonconvex cooperative distributed MPC: N-CDMPC;

• convex cooperative distributed MPC: C-CDMPC;

• nonconvex serial distributed MPC: N-SDMPC;

• convex serial distributed MPC: C-SDMPC;

• nonconvex decentralized MPC: N-DMPC;

• convex decentralized MPC: C-DMPC;

N-CDMPC, N-SDMPC, and N-DMPC are related to the bidirectional communication
case, the unidirectional communication case, and the measurement case in Fig. 6.1, re-
spectively. However, as the model (6.14) and constraints (6.11), (6.12), and (6.13) are
nonlinear, the resulting MPC optimization problems of N-CDMPC, N-SDMPC, and N-
DMPC are nonlinear and nonconvex, which may increase the computational burden of
finding the optimal solution. Hence, we approximate these problems as convex prob-
lems to make a balanced trade-off between computational burden and accuracy, and the
convex counterparts of the methods are labeled C-CDMPC, C-SDMPC, and C-DMPC, re-
spectively. The details of the above approaches are provided as follows.

6.4.1. GENERAL NONLINEAR MPC PROBLEM FORMULATION
To ensure that trains run with consistent speed and steady distance, we define the quadratic
stage cost for train i at time step k as

ℓi (xi ,k ,µi ,k ) = ||xi ,k −xeq
i ,k ||2Q +||µi ,k ||2R , (6.15)

where Q ∈R2×2 is a positive symmetric matrix, and R ∈R. The first term in (6.15) defines
the tracking error, while the second term corresponds to the energy consumption of train
i . Virtual coupling aims to control trains running with consistent speed and steady rela-

tive distance. Thus, the equilibrium state of train i (i > 1) is defined as xeq
i ,k =

[
veq

i ,k , eeq
i ,k

]⊺
with veq

i ,k = vi−1,k and eeq
i ,k = L +Ddes, where L is the length of a train, Ddes represents

the desired distance between two trains. The equilibrium state of the first train (i = 1) is
xeq

1,k = [
v0,k , 0

]⊺.
The nonlinear MPC optimization problem for train i is

min
xi ,k0
µi ,k0

Ji (k0) :=
k0+N−1∑

k=k0

ℓi (xi ,k ,µi ,k ) (6.16a)

s.t. xi ,k+1 = f (xi ,k ,µi ,k ), k = k0, . . . ,k0 +N −1, (6.16b)

xi ,k ∈Xi ,k , k = k0, . . . ,k0 +N −1, (6.16c)

µi ,k ∈Wi ,k , k = k0, . . . ,k0 +N −1, (6.16d)
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where xi ,k0 = [x⊺
i ,k0

, . . . , x⊺
i ,k0+N ]⊺ and µi ,k0 = [µi ,k0 , . . . ,µi ,k0+N−1]⊺, Xi ,k denotes the set

defined by constraints (6.10)-(6.12), and Wi ,k represents the set defined by constraint
(6.9).

The optimization problem (6.16) is a nonlinear nonconvex optimization problem.
Solving (6.16) at time step k0 leads to the input sequence µ∗

i ,k0
= [µ∗

i ,k0
, . . . ,µ∗

i ,k0+N−1];
only the first value µ∗

i ,k0
is implemented in the system and the procedure is repeated

under a moving horizon scheme.
From (6.16), we formulate a nonlinear model predictive controller, and the stability

can be analyzed based on relaxed dynamic programming. The stability condition can be
stated as follows.

Theorem 6.4 (Lyapunov Stability) [46]. Considering system (6.14) with xi ,k ∈Xi ,k , let
Xi ,k be forward invariant3, and let πi (·) be an admissible control law, i.e., πi (xi ,k ) ∈Wi ,k ,
∀xi ,k ∈ Xi ,k such that fi (xi ,k ,πi (xi ,k )) ∈ Xi ,k+1. Then, the closed-loop system xi ,k+1 =
fi (xi ,k ,πi (xi ,k )) is asymptotically stable on Xi ,k with the equilibrium point xeq

i ,k if for all
xi ,k ∈Xi ,k ,

J N
i (k) ≥αℓi (xi ,k ,πi (xi ,k ))+ J N

i (k +1), (6.17a)

β1(||xi ,k −xeq
i ,k ||2) ≤ J N

i (k) ≤β2(||xi ,k −xeq
i ,k ||2), (6.17b)

ℓi (xi ,k ,πi (xi ,k )) ≥β3(||xi ,k −xeq
i ,k ||2), (6.17c)

where J N
i (k) represents the optimized value of Ji (k) at time step k with prediction hori-

zon N , β1(·), β2(·), and β3(·) are of class K∞, and α ∈ (0,1] is the relaxed dynamic pro-
gramming parameter. Note that ifα= 1, then (6.17a) coincides with the general dynamic
programming format.

Remark 6.5. Note that J N
i (k +1) in condition (6.17a) requires the control law in time

step k + 1, which is not available at time step k. In the MPC scheme, given the opti-
mized control variables at time step k as µ∗

i ,k = [µ∗⊺
i ,k , . . . ,µ∗⊺

i ,k+N ]⊺, we can directly build a
sequence of feasible control variables for time step k +1 as

µ̃i ,k+1 = [µ̃⊺
i ,k+1, . . . , µ̃⊺

i ,k+N , µ̃⊺
i ,k+N+1]⊺ (6.18)

= [µ∗⊺
i ,k+1, . . . ,µ∗⊺

i ,k+N , µ̃⊺
i ,k+N+1]⊺, (6.19)

where µ̃⊺
i ,k+1, . . . , µ̃⊺

i ,k+N are the inputs inµ∗
i ,k , and µ̃i ,k+N+1 can be any admissible control

law, e.g., µi ,k+N =−B max
i

Mi ,p
. The cost function for µ̃i ,k+1 is represented by P N

i (k +1). Thus,

we can obtain optimized decision variables at time step k+1, such that J N
i (k+1) ≤ P N

i (k+
1). Then, the implementable version of (6.17a) becomes

J N
i (k) ≥αℓi (xi ,k ,µ∗

i ,k )+P N
i (k +1). (6.20)

6.4.2. NONCONVEX COOPERATIVE DISTRIBUTED MPC
With the bidirectional communication as in Fig. 6.1(a), trains in a platoon of virtually
coupled trains can compute control inputs in parallel and exchange information several

3A family of sets Xi ,k is forward invariant if there exists µi ,k such that xi ,k+1 = fi (xi ,k ,µi ,k ) ∈Xi ,k+1 holds for
all xi ,k ∈Xi ,k .
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times to achieve cooperative control. The alternating direction method of multipliers
(ADMM) is an efficient distributed optimization approach for problems with coupled
constraints [12]. Therefore, we adopt ADMM to solve the resulting distributed optimiza-
tion problem in each step of distributed MPC.

For the MPC optimization problem of train i , (6.16c) and (6.16d) collect constraints
for xi ,k and µi ,k , and we can write (6.16c) and (6.16d) compactly as:

hi (yi−1,k , yi ,k , yi+1,k ) ≤ E1,i ,k , (6.21)

where yi−1,k = [x⊺
i−1,k ,µi−1,k ]⊺, yi ,k = [x⊺

i ,k ,µi ,k ]⊺, yi+1,k = [x⊺
i+1,k ,µi+1,k ]⊺, and E1,i ,k is a

constant. We can observe from (6.16) that different subproblems are coupled through
constraint (6.21). The coupled constraints can be relaxed by introducing zi ,k ≥ 0 as fol-
lows:

hi (yi−1,k , yi ,k , yi+1,k )+ zi ,k = E1,i ,k . (6.22)

Then, in ADMM, the objective function for train i becomes

Li (k0) = Ji (k0)+
k0+N−1∑

k=k0

(
λ⊺

i ,k

(
hi (yi−1,k , yi ,k , yi+1,k )+ zi ,k −E1,i ,k

)+
+ ρ

2
||hi (yi−1,k , yi ,k , yi+1,k )+ zi ,k −E1,i ,k ||22

)
, (6.23)

where yi ,k0 = [y⊺
i ,k0

, . . . , y⊺
i ,k0+N−1]⊺, ρ > 0 is the augmented Lagrangian parameter, and

λi ,k represents the Lagrangian multipliers, which are updated by

λ
(q+1)
i ,k =λ(q)

i ,k +ρ
(
hi

(
y (q+1)

i−1,k , yi ,k , y (q)
i+1,k

)+ zi ,k −E1,i ,k

)
, (6.24)

where q represents the iteration index, and λ
(q)
i ,k and y (q)

i ,k are the values of λi ,k and yi ,k

after iteration q , respectively. For more details about ADMM, we refer the readers to
[12; 48].

In each iteration, a nonlinear nonconvex optimization problem should be solved.
We can use gradient-based approaches, e.g., sequential quadratic programming, to find
a solution. ADMM is a distributed optimization approach, and a stopping criterion that
can be applied in a distributed manner is required when implementing ADMM in the
distributed control scheme.

Lemma 6.6. If L N
i (k) represents the optimized value of Li (k), one sufficient condi-

tion for (6.17a) in the distributed control scheme is

L N
i (k) ≥αℓi (xi ,k ,µ∗

i ,k )+P N
i (k +1), (6.25)

where α ∈ (0,1].

Proof. Based on the weak duality theorem, we have

L N
i (k) ≤ J N

i (k). (6.26)

Then, according to (6.20), we have

J N
i (k) ≥αℓi (xi ,k ,µ∗

i ,k )+P N
i (k +1). (6.27)
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Hence, we can conclude that (6.25) implies

J N
i (k) ≥αℓi (xi ,k ,µ∗

i ,k )+ J N
i (k +1). (6.28)

The iteration of ADMM for N-CDMPC stops when either the stability condition rep-
resented by (6.25) is satisfied, or the maximum number of iterations zmax is reached.
Based on the aforementioned stopping criteria, ADMM may terminate before reaching
its (local) optimal solution. To ensure safe operations, the safety coupled constraints
(6.11)-(6.12) can be directly incorporated as a constraint when optimizing (6.23), and
the coupled constraint (6.13) is relaxed by (6.23).

Lemma 6.7 (Recursive Feasibility). If a feasible solution that satisfies the stopping
criterion (6.25) is found at time step k, the feasibility for the optimization problem (6.16)
of each agent at time step k +1 can be found.

Proof. The proof is based on finding a feasible solution for time step k+1. For a solution
µ∗

i ,k at time step k, a feasible solution at time step k+1 can be found as stated in Remark
6.5.

Theorem 6.8 (Lyapunov String Stability). If a feasible solution that satisfies the stop-
ping criterion (6.25) can be found, then the platoon of virtually coupled trains is Lya-
punov string stable.

Proof. If a feasible solution that satisfies the stopping criterion (6.25) can be found, ac-
cording to Theorem 6.4, we can show that the equilibrium point of each train is Lyapunov
stable. Then, the Lyapunov string stability for the platoon of virtually coupled trains can
be obtained following the procedure in [122].

Algorithm 4 elaborates the procedure for implementing the cooperative distributed

MPC algorithm, where q is the iteration index, and x(q)
i ,k and µ(q)

i ,k represent the values of
xi ,k and µi ,k after iteration q , respectively.

6.4.3. CONVEX COOPERATIVE DISTRIBUTED MPC
The problem (6.16) formulated in Section 6.4.1 is a nonlinear nonconvex optimization
problem. In the N-CDMPC approach developed in Section 6.4.2, we cannot ensure the
convergence of ADMM and the optimal solution to the optimization problem easily.
Moreover, solving nonlinear nonconvex optimization problems typically requires a larger
computational burden than its convex counterpart.

There are two nonconvex components in the N-CDMPC formulation, i.e., the nonlin-
ear model (6.16b) and constraints (6.22). By using Taylor expansion at the prior estimate
state of the train, we can linearize d sb

i (vi ,k ) and d eb
i−1(vi−1,k ) in (6.12) and (6.13). The

prior estimate state of train i at time step k+1 can be calculated according to the current
speed vi ,k+1, the current position si ,k+1, and control inputs in (6.18) [33; 81]. The non-
linear model (6.16b) can also be linearized at each time step based on the prior estimate
state by using Taylor expansion. Other settings are exactly the same as the N-CDMPC ap-
proach Hence, we can simplify the N-CDMPC approach to develop a convex cooperative
distributed MPC (C-CDMPC) approach for the platoon of virtually coupled trains.
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Algorithm 4 Cooperative Distributed MPC for Virtually Coupled Trains

Input: xi ,k0 , Mi ,p , N , U max, B sb, B eb, Itrain, Dsafe, Ddes, L, kend, qmax, ρ, λ(0)
i ,k , α; recom-

mend speeds v0,k , s0,k ;
Output: control input µi ,k

1: k ← k0

2: repeat
3: q ← 0
4: repeat
5: for i = 1, . . . , Itrain do
6: minimize objective (6.23) subject to (6.5)-(6.12)

7: send obtained x(q+1)
i ,k and µ(q+1)

i ,k to neighbours

8: update λ(q+1)
i ,k subject to (6.24)

9: end for
10: q ← q +1
11: until q = qmax or (6.25) holds for each train i
12: apply control decision µi ,k to each train i
13: k ← k +1
14: until k = kend

6.4.4. NONCONVEX SERIAL DISTRIBUTED MPC
For the unidirectional communication in Fig. 6.1(b), each train only communicates with
its neighbors once in one control step. In this context, each train computes control in-
puts sequentially based on the information received from its predecessor train. Specif-
ically, train i calculates control inputs based on the speed v̄i−1,k , position s̄i−1,k , and
control input µ̄i−1,k received from train i −1, where v̄i−1,k , s̄i−1,k , and µ̄i−1,k are the re-
sults of the optimization problem in train i −1. Thus, the safety constraints in (6.12) are
replaced by

d safe
i

(
vi ,k , v̄i−1,k

)≥ d sb
i

(
vi ,k

)−d eb
i−1

(
v̄i−1,k

)+L+Dsafe, (6.29a)

d safe
i (vi ,k , v̄i−1,k ) ≥ L+Dsafe. (6.29b)

Furthermore, the relative distance with its predecessor train becomes

ei ,k = s̄i−1,k − si ,k −d sb
i (vi ,k )+d eb

i−1(v̄i−1,k ). (6.30)

Then, the cost function becomes

ℓ̄i (xi ,k ,µi ,k ) = ||xi ,k − x̄eq
i ,k ||2Qi

+||µi ,k ||2Ri
, (6.31)

where x̄eq
i ,k =

[
v̄eq

i ,k , ēeq
i ,k

]⊺
is the equilibrium state of train i , with v̄eq

i ,k = v̄i−1,k and ēeq
i ,k =

L+Ddes.

Therefore, in nonconvex serial distributed MPC (N-SDMPC), each train solves the
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MPC optimization problem as follows

min
xi ,k0
µi ,k0

Ji (k0) :=
k0+N−1∑

k=k0

ℓ̄i (xi ,k ,µi ,k ) (6.32a)

s.t. xi ,k+1 = f (xi ,k ,µi ,k ), k = k0, . . . ,k0 +N −1, (6.32b)

gi (ȳi−1,k , yi ,k ) ≤ E2,i ,k , k = k0, . . . ,k0 +N −1, (6.32c)

where (6.32c) is the compact form of constraints corresponding to yi ,k = [x⊺
i ,k ,µi ,k ]⊺, i.e.,

constraints (6.9)-(6.11) and (6.29).
The MPC optimization problem (6.32) is a nonlinear nonconvex optimization prob-

lem, and we can use gradient-based approaches, e.g., sequential quadratic program-
ming, to find a solution. At each MPC step of N-SDMPC, each train calculated its control
input µi ,k for implementation by solving (6.32) with received x̄i−1,k and µ̄i−1,k , and then
send the obtained xi ,k and µi ,k to its succeeding train.

Remark 6.9. As each train only communicates with its neighbors once per control
step in the unidirectional communication case, the global optimal solution to the overall
problem cannot be guaranteed. The serial distributed MPC approach follows a first-
come first-serve fashion for the coupled constraint (6.32c), i.e., the predecessor train
calculates and sends states and control inputs to its follower train, and the follower train
then calculates states and control inputs that satisfy the coupled constraint (6.32c) based
on the received information.

6.4.5. CONVEX SERIAL DISTRIBUTED MPC
To reduce the computational burden of solving the nonlinear nonconvex optimization
problem (6.32) for each train, (6.32) can be approximated to develop convex serial dis-
tributed MPC (C-SDMPC) for the platoon of virtually coupled trains based on the prior
estimate state [81]. See also Section 6.4.3 for detailed information on the convex approx-
imation using the prior estimate state. Then, we can obtain the convex counterpart of
(6.32) by linearizing d sb

i

(
vi ,k

)
and d eb

i−1

(
v̄i−1,k

)
in (6.29a) and (6.30). Other settings of the

C-SDMPC approach are exactly the same as the N-SDMPC approach in Section 6.4.4.

6.4.6. NONCONVEX DECENTRALIZED MPC
The virtually coupled train control approaches should be able to ensure safe operation
when the communication between trains is lost, i.e., the case in Fig. 6.1(c). In this con-
text, each train should compute control inputs based on the relative speed and position
of its predecessor train measured by onboard sensors, e.g., radars or LiDARs, assuming
the predecessor train brakes with the maximum braking force. This leads to a nonconvex
decentralized MPC (N-DMPC) approach elaborated in this section.

For train i , the relative speed and position with respect to its predecessor train, i.e.,
train i −1, at time step k are represented by ∆vi ,k and ∆si ,k , respectively, which can be
obtained by onboard sensors. At time step k, the estimated speed v̂i−1,k and position
ŝi−1,k of train i −1 are

v̂i−1,k = vi ,k +∆vi ,k , (6.33a)

ŝi−1,k = si ,k +∆si ,k . (6.33b)
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Then, the predicted state of train i − 1 is estimated by assuming the control value as

µ̂i−1,k = −B eb
i−1

Mi−1,p
. Thus, the safety constraints in (6.12) are replaced by

d safe
i

(
vi ,k , v̂i−1,k

)≥ d sb
i

(
vi ,k

)−d eb
i−1

(
v̂i−1,k

)+L+Dsafe, (6.34a)

d safe
i (vi ,k , v̂i−1,k ) ≥ L+Dsafe. (6.34b)

Furthermore, the relative distance with its predecessor train becomes

ei ,k = ŝi−1,k − si ,k −d sb
i (vi ,k )+d eb

i−1(v̂i−1,k ). (6.35)

To ensure the safety operation, train i should follow the desired state x̂eq
i ,k =

[
v̂eq

i ,k , êeq
i ,k

]⊺
with v̂eq

i ,k = v̂i−1,k and êeq
i ,k = L+Ddes. Then, the cost function for N-DMPC is

ℓ̂i (xi ,k ,µi ,k ) = ||xi ,k − x̂eq
i ,k ||2Qi

+||µi ,k ||2Ri
. (6.36)

Hence, the optimization problem of train i for N-DMPC becomes

min
xi ,k0
µi ,k0

Ji (k0) :=
k0+N−1∑

k=k0

ℓ̂i (xi ,k ,µi ,k ) (6.37a)

s.t. xi ,k+1 = f (xi ,k ,µi ,k ), k = k0, . . . ,k0 +N −1, (6.37b)

gi (ŷi−1,k , yi ,k ) ≤ E3,i ,k , k = k0, . . . ,k0 +N −1, (6.37c)

where (6.37c) collects constraints (6.9)-(6.11) and (6.34). The optimization problem (6.37)
is also a nonlinear nonconvex optimization problem. At each MPC step of N-DMPC,
each train calculated its control input µi ,k for implementation by solving (6.37) with es-
timated x̂i−1,k .

6.4.7. CONVEX DECENTRALIZED MPC
Similarly, we can obtain the convex counterpart of optimization problem (6.37), named
as convex decentralized MPC (C-DMPC) by linearizing d sb

i (vi ,k ) and d eb
i−1(v̂i−1,k ) in (6.34a)

and (6.35). Then, the nonlinear model (6.37b) can be linearized at each time step based
on the prior estimate state. Other settings of the C-DMPC approach are exactly the same
as the N-DMPC approach.

6.5. CASE STUDY
In this section, we conduct simulations to validate the developed distributed MPC ap-
proaches. We first introduce general settings for simulations. Then, we perform sim-
ulations for a platoon of trains with uniform masses. Finally, we explore simulations
involving trains with varying masses.

6.5.1. GENERAL SETUP
The simulations are conducted based on the real-life train operation data of trains on the
Beijing Yizhuang Line from Station YH to Station CQ. The values of the main parameters
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are provided in Table 6.2. The value of ρ is set as 0.5, and the initial value ofλ(0)
i ,k is set as 1.

The values of the safety distance and the desired distance are the same as those in papers
[33; 35]. The distance from Station YH to Station CQ is 1398.6 m, and the slope and the
speed limit information along the line are shown in Fig. 6.3. Model mismatches exist
between the control model and the simulation model. The controller design considers
the prediction model with the values of the maximum traction and braking forces U max

i ,

B sb
i , and B eb

i given in Table 6.2, while the assessment experiments use the simulation
model considering the realistic traction and braking characteristics given in Fig. 6.4 (see
also [121]).

Table 6.2: Parameters for the controller design

Parameter Symbol Numerical value
Prediction horizon N 5
Sampling time T 0.2 s
Number of trains Itrain 4
Average train mass Mi ,p 60 t
Resistance parameter c0 0.0078
Resistance parameter c1 0.00085
Resistance parameter c2 0.000076
Maximum traction force U max

i 60000 N

Maximum service braking force Bsb
i 48000 N

Emergency braking force Beb
i 60000 N

Safety distance Dsafe 5 m
Desired distance Ddes 10 m
Train Length L 10 m
Weight of tracking error Q1 100
Weight of relative speed error Q2 1
Weight of control variable R 1
RDP parameter α 0.5
Maximum iterations qmax 5
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Figure 6.3: Line information from Station YH to Station CQ.

Sequential quadratic programming (SQP) is an efficient gradient-based algorithm for
solving nonlinear programming problems [10] and has also been applied to solve the
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Figure 6.4: Traction and braking characteristics of the simulation model.

optimization problem of virtually coupled trains [81]. Similar to [81], in each MPC step,
the resulting optimization problem is solved by SQP through the fmincon function in the
MATLAB optimization toolbox. All simulations are implemented in MATLAB (R2019b)
on a computer with an Intel Xeon W-2223 CPU and 8GB RAM.

6.5.2. CONTROL PERFORMANCE WITH UNIFORM TRAIN MASSES

This case study is conducted to evaluate the performance of the distributed MPC ap-
proaches in the case that trains in the platoon have the same mass. The parameters are
provided in Section 6.5.1. We consider a platoon of 4 trains in the simulation, and all
trains weigh 60 t. The simulation results are presented in Table 6.3, wherein the rela-
tive distance is calculated as defined in (6.13), and the speed difference represents the
velocity error between a train and its predecessor train.

Note that the relative distance represents the distance between two trains, assuming
that the predecessor train performs emergency braking and the succeeding train per-
forms service braking. As the train length is set as 10 m and the safety distance Dsafe

is 5 m, the relative distance should be larger than 15 m to ensure safe operation. Fur-
thermore, since the desired distance is 10 m, the ideal relative distance should be 20 m
considering the length of the train (i.e., 10 m).

It can be observed from Table 6.3 that convex cooperative distributed MPC (C-CDMPC),
convex serial distributed MPC (C-SDMPC), and convex decentralized MPC (C-DMPC)
exhibit a performance that is comparable to that of their nonconvex counterparts in
terms of the relative distance and the speed difference. The average CPU time is re-
duced when the underlying problem is convex, with a reduction of 64.25%, 17.86%, and
17.86% for C-CDMPC, C-SDMPC, and C-DMPC, respectively, compared with their cor-
responding original approaches, indicating that a computational burden reduction is
achieved by transforming these problems to their corresponding convex problems. As
the performance, in terms of the relative distance and the speed difference, of the orig-
inal approaches is comparable with their corresponding convex counterparts, we will
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focus on C-CDMPC, C-SDMPC, and C-DMPC to compare the performance of different
distributed control schemes in the following for brevity.

Table 6.3 shows that all approaches can ensure safe operation when trains have the
same mass with a minimum relative distance larger than 15 m. The average relative
distance of C-CDMPC and C-SDMPC is close to the ideal relative distance (20 m), while
C-DMPC has the largest average relative distance. Furthermore, C-CDMPC exhibits the
smallest fluctuation, with the relative distance fluctuating between [18.47 m, 22.62 m]
and the speed difference fluctuating between [-1.1071 m/s, 1.3886 m/s].

Table 6.3: Simulation results for different approaches with uniform train masses

Approach RDP Total cost
Relative distance (m) Speed difference (m/s) CPU time (s)

max average min max average min max average
N-CDMPC yes 2.1506 ·104 22.63 19.89 18.50 1.3927 0.0099 -1.1059 4.74 4.00
C-CDMPC yes 1.8412 ·104 22.62 19.91 18.47 1.3886 0.0083 -1.1071 1.62 1.43
N-SDMPC no 2.8826 ·104 27.64 20.02 19.35 1.6091 0.0025 -1.2273 0.40 0.28
C-SDMPC no 2.8825 ·104 27.64 20.02 19.35 1.6091 0.0025 -1.2273 0.30 0.23
N-DMPC no 9.1687 ·105 31.50 21.91 19.08 1.7582 0.0035 -1.3627 0.37 0.28
C-DMPC no 9.2349 ·105 31.64 21.92 19.08 1.7488 0.0035 -1.3778 0.30 0.23
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Figure 6.5: Speed profiles and speed difference of C-CDMPC (with the same mass).
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Figure 6.6: Speed profiles and speed difference of C-SDMPC (with the same mass).

For further demonstration, the speed profiles obtained by C-CDMPC, C-SDMPC,
and C-DMPC are provided in Fig. 6.5, Fig. 6.6, and Fig. 6.7, respectively, where we in-
clude the speed difference between a train and its predecessor train. For the first train,
the speed difference denotes the difference with the reference speed. It can be ob-
served from Fig. 6.6 that due to the speed limit, train 4 cannot accelerate, causing a
rapid change in speed difference. Thanks to the bidirectional communication as rep-
resented in Fig. 6.1(a), the rapid change is avoided in Fig. 6.5, i.e., by using C-CDMPC, a
train can include the information of its follower train when calculating its control input,
thereby achieving a more homogeneous speed profile via cooperative control. Table 6.3
and Fig. 6.7 show that C-DMPC exhibits the largest fluctuation in both relative distance
and the speed difference. As a train cannot receive information from its predecessor
train in Fig. 6.1(c), a train should always assume its predecessor train will perform emer-
gency braking. The decentralized control scheme tends to be conservative; thus, the
relative distance and the speed difference of C-DMPC are larger than those of C-CDMPC
and C-SDMPC.



6.5. CASE STUDY

6

137

0 500 1000 1500

Distance (m)

0

5

10

15

20

25

S
p
e
e
d
 (

m
/s

)

speed limit

reference speed

train 1

train 2

train 3

train 4

0 500 1000 1500

Distance (m)

-2

-1

0

1

2

S
p
e
e
d
 d

if
fe

re
n
c
e
 (

m
/s

)

train 1 - reference

train 2 - train 1

train 3 - train 2

train 4 - train 3

Figure 6.7: Speed profiles and speed difference of C-DMPC (with the same mass).

6.5.3. CONTROL PERFORMANCE WITH HETEROGENEOUS TRAIN MASS
In general, the masses of trains within a platoon are different due to variations in the
total passenger loads on each train. The mass of a train influences the acceleration and
deceleration (see (6.5a)), and determines the upper bound and the lower bound of the
control input. Therefore, the mass inconsistency will influence the control performance
of the platoon. In this case study, we consider a platoon of 4 trains, where the weights
of the trains, from the leader train to the follower trains, are 60 t, 66 t, 57 t, and 66 t,
respectively; so the heaviest train is more than 15% heavier than the lightest train.

In order to show the importance of incorporating the information on weights into the
control design, we first conduct simulations with all trains assumed to have the same
mass in the control design. Then, we compare the results with the true masses of the
trains used in the control design. The simulation results are provided in Table 6.4.
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Table 6.4: Simulation results for different approaches with different train masses

Approach RDP Total cost
Relative distance (m) Speed difference (m/s) CPU time (s)

max average min max average min max average

With all trains assumed
to have the same mass

N-CDMPC yes 3.9359 ·107 44.26 16.34 -4.39 1.3943 0.0102 -1.1032 4.71 4.02
C-CDMPC yes 3.9348 ·107 44.26 16.35 -4.39 1.3902 0.0087 -1.1049 1.78 1.41
N-SDMPC no 3.9198 ·107 44.26 16.44 -4.40 1.5643 0.0030 -1.2313 0.55 0.26
C-SDMPC no 3.9198 ·107 44.26 16.44 -4.40 1.5643 0.0030 -1.2313 0.30 0.22
N-DMPC no 3.7318 ·107 46.31 18.35 -2.66 1.7237 0.0041 -1.3598 0.47 0.26
C-DMPC no 3.7330 ·107 46.31 18.35 -2.67 1.7254 0.0041 -1.3747 0.27 0.22

With true masses of trains
in control design

N-CDMPC yes 2.5846 ·104 21.96 19.86 17.86 2.2300 0.0126 -1.5705 5.04 4.35
C-CDMPC yes 1.9643 ·104 21.92 19.88 18.16 2.2387 0.0106 -1.5715 1.82 1.39
N-SDMPC no 3.0343 ·104 27.42 20.01 18.69 2.5732 0.0042 -1.6251 0.34 0.26
C-SDMPC no 3.0342 ·104 27.42 20.01 18.69 2.5732 0.0042 -1.6251 0.31 0.23
N-DMPC no 9.2421 ·104 31.33 21.87 18.18 2.7396 0.0057 -1.7608 0.35 0.27
C-DMPC no 9.3093 ·104 31.47 21.88 18.17 2.7339 0.0057 -1.7748 0.30 0.23
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From Table 6.4, we can find that all approaches have comparable performance in
terms of the relative distance and speed difference with their convex counterpart under
both cases. Therefore, in the following, we only use convex approaches for the compar-
ison between the two cases in which the mass information is disregarded or included in
the design.
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Figure 6.8: Relative distance of different approaches (with all trains assumed to have the same mass in the
control design).
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Figure 6.9: Relative distance of different approaches (with the true masses of the trains used in the control
design).
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In Table 6.4, if we assume all trains have the same mass in the control design, the
minimum relative distance across all approaches is less than 0 m, implying the poten-
tial collision between trains, i.e., a train cannot ensure safety operation by using service
braking when the predecessor train performs emergency braking. The relative distance
between trains during the operation process of each approach when assuming all trains
have the same mass in the control design is shown in Fig. 6.8. Fig. 6.8 shows that the rel-
ative distance between Train 1 and Train 2, Train 3 and Train 4 are lower than the given
threshold. As the follower train has a larger inertia than its predecessor train, if the pre-
decessor train starts to perform emergency braking, the follower train cannot perform
braking with the same deceleration. Therefore, when a train is heavier than its predeces-
sor train, the required safe tracking distance becomes difficult to ensure. Train 3 is lighter
than Train 2; thus, the braking distance of Train 3 is shorter than expected and the safety
distance between trains can be ensured. However, the relative distance between Train 2
and Train 3 is larger than the desired distance, with the maximum value being more than
twice the desired distance, which is unnecessary and negatively influences the tracking
performance.

The relative distance between trains of each approach when considering the true
masses of the trains is shown in Fig. 6.9. From Table 6.4 and Fig. 6.9, we can find that
by including train masses explicitly, the safety distance between trains can be ensured,
and the relative distance between trains is comparable to the case of uniform masses in
Table 6.3.

The speed profiles obtained by C-CDMPC, C-SDMPC, and C-DMPC considering the
true masses of trains are provided in Fig. 6.10, Fig. 6.11, and Fig. 6.12, respectively. The
C-CDMPC approach has the smallest fluctuation, with the relative distance fluctuating
between [18.16 m, 21.92 m] and the speed difference fluctuates between [-1.5715 m/s,
2.2387 m/s]. In the cooperative control scheme, a subsystem can include the status of its
neighbors and try to reach consistency with its neighbors regarding the relative distance
and speed difference. Fig. 6.10, Fig. 6.11, and Fig. 6.12 show that for all three control
methods, the speed difference between Train 2 and Train 3 is lower than the speed dif-
ference between Train 1 and Train 2, Train 3 and Train 4, implying that if the follower
train is lighter than the predecessor train, the tracking performance would be better.

From the above simulations, we can conclude that the cooperative control approach
has the best tracking performance while requiring ample communication and compu-
tation capabilities. Hence, C-CDMPC can be selected when sufficient communication
bandwidth and computation power are available. The C-SDMPC approach can be se-
lected in case of limited communication bandwidth and limited computation power.
Moreover, in the worst case when two neighbor trains cannot communicate with each
other, C-DMPC can be selected to control trains in a decentralized manner. Moreover,
the simulation results also indicate that arranging heavier trains at the front of the pla-
toon can help to improve the control performance of the virtually coupled trains.

6.5.4. HIGHLIGHTS OF RESULTS

CONVEX APPROXIMATION

In Sections 6.5.2 and 6.5.3, we have conducted simulations for cooperative distributed
MPC, serial distributed MPC, and decentralized MPC under both the cases of uniform
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Figure 6.10: Speed profiles and speed difference of C-CDMPC (with the true masses of the trains used in the
control design).

masses and heterogeneous masses. For all approaches and cases, we have tested non-
linear MPC approaches and their convex approximations. The simulation results indi-
cate that MPC with convex approximation can achieve a speed tracking accuracy that
is comparable to that of the original nonconvex counterpart, while significantly reduc-
ing the computation time. Therefore, using convex approximation is an effective way to
improve the computational efficiency of MPC in virtually coupled trains.

RELAXED DYNAMIC PROGRAMMING (RDP)
Sections 6.5.2 and 6.5.3 provide case studies for uniform masses and heterogeneous
masses, respectively. The simulations indicate that cooperative distributed MPC, when
accompanied by RDP, can achieve better performance with lower speed and distance
tracking differences. By using RDP, we can develop a stopping criterion for the string
stability of the platoon, which, in general, cannot be achieved with serial distributed
MPC and decentralized MPC. Overall, RDP is an effective approach to analyze the stabil-
ity of MPC approaches. Moreover, sufficient computational capacity should be ensured
to support the efficient implementation of the RDP-based stopping criterion developed
in this chapter.
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Figure 6.11: Speed profiles and speed difference of C-SDMPC (with the true masses of the trains used in the
control design).

HETEROGENEOUS MASSES

Train masses influence the dynamics of trains and should be considered explicitly in the
controller design to improve control performance. In Section 6.5.3, we have conducted
simulations for cases with and without true masses of trains. The simulation results
indicate that incorporating the true masses of trains in the controller design ensures
safety and achieves the desired tracking performance while significantly reducing the
total costs for all the mentioned MPC approaches. In this context, we conclude that, in
general, detailed train information should be included to improve control performance
when designing control approaches for virtually coupled heterogeneous trains.

Table 6.5: Characteristics of including different elements

Elements Characteristics
Convex approximation Reduce computational burden while maintaining

tracking accuracy
RDP Incorporate a stopping criterion into cooperative

distributed MPC for string stability
Heterogeneous masses Improve tracking accuracy and ensure safety
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Figure 6.12: Speed profiles and speed difference of C-DMPC (with the true masses of the trains used in the
control design).

To summarize, the advantages of considering convex approximation, relaxed dy-
namic programming, and heterogeneous masses are listed in Table 6.5. In this chapter,
we consider communication between two consecutive trains (as stated in Fig. 6.1). In
this context, each train only needs to consider the status of its preceding and succeeding
trains when calculating its control decision. Thus, the approaches can be extended to
larger train platoons without increasing the computational burden for each individual
train.

6.6. CONCLUSIONS
In this chapter, cooperative distributed MPC, serial distributed MPC, and decentralized
MPC have been compared and assessed for controlling virtually coupled trains, consid-
ering the nonlinear train model and changes in the masses of trains. We introduced the
relaxed dynamic programming approach into the train control field, and a distributed
stopping criterion with a stability guarantee has been developed for the cooperative dis-
tributed MPC approach. We have also proposed and assessed convex approximations
of the above control approaches to make a balanced trade-off between computational
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burden and accuracy. The three control approaches and their convex counterparts have
been evaluated considering their distance tracking error, speed tracking error, and CPU
time. Simulation results indicate that: 1) the convex approaches can achieve a perfor-
mance that is comparable to that of their original nonconvex version, while the com-
putational burden is reduced; 2) the cooperative control approach has the best tracking
performance while requiring ample communication and computation capabilities; 3)
by considering heterogeneous train masses explicitly, the safety distance between trains
and the desired tracking performance can be ensured while the total objective function
value is significantly reduced.

Future research could explore uncertainties related to resistances and train dynam-
ics to enhance the performance of the control methods. Additionally, distributed con-
trol under conditions of intermittent communication is also promising, which can be
achieved by designing appropriate self-triggered or event-triggered control strategies to
address communication latency. Furthermore, future work could involve extending the
research into other types of rail transportation modes, such as freight and heavy haul
trains.



7
CONCLUSIONS AND

RECOMMENDATIONS

In this thesis, we have investigated traffic management for urban rail transit networks by
developing several efficient MPC approaches, including bi-level MPC, distributed MPC,
and learning-based MPC. In this final chapter, the main conclusions, the impact of this
thesis, and the recommendations for future research are provided.

7.1. CONCLUSIONS
This thesis answers the main research question (How can model predictive control bene-
fit flexible, highly efficient, and passenger-oriented urban rail transit network operations?)
by proposing a macroscopic passenger absorption model and a microscope passenger-
oriented train scheduling model, and by developing several control approaches (includ-
ing bi-level MPC, distributed MPC, mixed-integer linear programming (MILP) based
MPC, and learning-based MPC) for efficient train scheduling in urban rail transit net-
works. In addition, a cooperative distributed MPC approach is developed for efficient
operations of virtually coupled trains considering heterogeneous passenger loads. The
results highlight the benefits of MPC in train scheduling and train operation problems, as
it provides practical and innovative solutions for flexible, highly efficient, and passenger-
oriented urban rail transit network operations.

The main results of this thesis can be summarized as follows:

• Efficient model and control approach for the integration of timetables, passen-
ger flows, and train speeds
In Chapter 2, we have developed a bi-level framework for the integration of pas-
senger flows, timetables, and train speeds. To deal with time-dependent passen-
ger OD demands in urban rail transit networks, a passenger absorption model is
developed to optimize train departure frequencies and rolling stock circulation
plans. The passenger absorption model has been a macroscopic model that de-
termines the maximum transport capacity of each line while making a balanced

145
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trade-off between model accuracy and computational efficiency. To implement
the generated departure frequencies, a train schedule model has been developed
at the lower level considering detailed timetables, detailed rolling stock circula-
tion, train speed profiles, and train orders. A bi-level MPC approach has been pro-
posed for the bi-level framework, and the MPC optimization problems in both lev-
els have been transformed into small-scale MILP problems, which enables solving
them with existing MILP solvers. In this way, efficient real-time scheduling can be
achieved for urban rail transit networks. (This addresses subquestion 1, i.e., inte-
gration of passenger flows, timetables, and train speeds, and subquestion 2, i.e.,
application of MPC.)

• Scenario-based distributed MPC for optimizing train departure frequency
In Chapter 3, we have developed a scenario-based distributed MPC approach for
optimizing the train departure frequency of urban rail transit networks with uncer-
tain passenger flows. To handle the computational complexity and communica-
tion restrictions in practical urban rail transit networks, a distributed-knowledge-
able-reduced horizon algorithm has been proposed by considering different lines
as different subsystems. Furthermore, to deal with uncertain passenger flows, we
have implemented a scenario-based distributed control scheme and developed
a scenario-based distributed-knowledgeable-reduced-horizon algorithm is devel-
oped. The developed algorithm can handle the computational complexity issues
arising from large-scale networks. By incorporating a scenario-based distributed
control scheme, the control performance of the proposed approach can be im-
proved when considering uncertain passenger flows. (This addresses subquestion
3, i.e., train scheduling in large-scale networks.)

• Learning-based MPC for timetable and train composition adjustment
In Chapter 4, we have proposed a passenger flow model for passenger-oriented
timetable scheduling. We have proposed a centralized MPC framework for real-
time timetable scheduling. The MPC optimization problem has been transformed
into a mixed-integer linear programming problem, which can be solved efficiently
by existing MILP solvers. To further reduce the online computational burden,
in Chapter 5, we have developed a learning-based MPC approach for timetable
rescheduling problems. In the developed learning-based MPC approach, the in-
teger variables of the resulting mixed-integer programming problem are obtained
by deep learning, and the continuous variables are then solved by optimization.
By applying a long short-term memory network to train the agent, the dynamic
interdependencies within train schedules are captured to ensure effective adapta-
tion and learning in response to evolving temporal dynamics. The developed ap-
proach can significantly reduce the computation time while achieving comparable
performance to results obtained by the exact optimization-based MPC approach.
(This addresses subquestion 4, i.e., train scheduling with time-varying passenger
demands, and subquestion 5, i.e., efficient online computation of MPC.)

• Cooperative distributed MPC for virtually coupled trains
In Chapter 6, we have introduced the relaxed dynamic programming approach
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into the train control field, and we have developed a distributed stopping crite-
rion with a stability guarantee for the cooperative distributed MPC approach. In
this context, the string stability of a train platoon can be ensured without using the
MPC terminal conditions. To investigate the effect of train masses on the dynamics
and control of the virtually coupled trains, we have explicitly included the changes
in train masses when designing distributed MPC approaches. Considering typi-
cal communication topologies, we have compared and assessed the performance
of cooperative distributed MPC, serial distributed MPC, and decentralized MPC
for the control problem of virtually coupled trains. The simulation results indi-
cate that the cooperative control approach exhibits the best tracking performance
while requiring ample communication and computation capabilities. (This ad-
dresses subquestion 6, i.e., control of virtually coupled heterogeneous trains.)

7.2. IMPACTS OF THIS THESIS

7.2.1. SOCIAL IMPACTS

The thesis contributes to several positive social impacts, including the following:

• Enhanced passenger convenience
The primary objective of urban rail transit networks is to provide satisfactory ser-
vices to passengers. The developed passenger-oriented traffic management ap-
proaches in Chapters 2-4 take into account the total passenger travel time while
Chapter 5 considers the total passenger waiting time in urban rail transit networks.
These approaches are instrumental in enhancing passenger satisfaction and en-
suring the service quality of urban rail transit networks.

• Improved efficiency of urban rail transit networks
The current traffic management of urban rail transit networks suffers from a high
computational burden due to the continuously expanding network scales and in-
creasing passenger demands. This thesis has developed efficient traffic manage-
ment and train control approaches to enhance the system-wide efficiency of ur-
ban rail transit networks from several aspects. In particular, Chapters 3-5 benefit
efficient decision-making by developing efficient traffic management approaches
that can encompass large-scale networks and time-dependent passenger demands.
Furthermore, Chapter 6 provides several train speed approaches that can help
to achieve efficient control for virtually coupled trains. By leveraging these ap-
proaches, significant contributions can be made toward efficient decision making
for urban rail transit networks.

• Sustainable urban mobility
The approaches developed in Chapters 2, 3, and 5 explicitly incorporate the en-
ergy consumption of trains into the traffic management problem. The approaches
enable the scheduling of fewer trains when passenger demands decrease, thereby
facilitating energy-efficient traffic management. As a result, this thesis contributes
to the sustainable mobility of urban rail transit networks and thus can help to
achieve climate objectives.
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7.2.2. SCIENTIFIC AND TECHNICAL IMPACTS

This thesis also makes contributions to advancing the state-of-the-art MPC methodolo-
gies that have been verified to be effective for urban rail transit networks.

• Distributed MPC frameworks with reduced computation costs
The implementation of MPC approaches is typically restricted by communication
and system scaling issues. Shortening the prediction horizon can reduce the com-
putational burden; however, a short prediction horizon may negatively affect the
performance of the controller as less future information can be included in the
decision-making process. The approach developed in Chapter 3 extends the ex-
isting approaches of designing cost-to-go functions. To deal with large-scale net-
works, solving the problem in a distributed manner is a natural choice. The dis-
tributed optimization approaches have a significant impact on distributed MPC.
The research in Chapter 6 extends the direction of distributed MPC in reducing it-
erations while applying distributed optimization. By investigating the relation be-
tween distributed optimization and distributed control, significant improvement
can be made in distributed MPC in terms of computational efficiency and control
performance.

• Learning-based MPC frameworks for mixed logical dynamical systems
As an optimization-based approach, MPC can ensure safe control by explicitly
including hard constraints. However, solving the optimization problem online
for mixed logical dynamical systems may not be computationally affordable. Re-
inforcement learning and deep learning can provide efficient control decisions
through a well-trained agent; however, ensuring safety in learning-based approaches
is still challenging. The learning-based MPC approach developed in Chapter 5
leverages deep learning to improve solution efficiency while using MPC to ensure
constraint satisfaction. The developed learning-based MPC approach expands the
direction of control mixed logical dynamical systems where a trade-off between
the control performance and real-time realizability is necessary.

• Extension to other applications
The methodologies developed in this thesis can be applied to the management
and control problems of various other networks, including road traffic networks
and power systems. The bi-level MPC approach of Chapter 2 extends the direc-
tions of controlling large-scale systems by reducing the computational burden by
dividing the problem into macroscopic and microscopic levels. The developed
distributed MPC approaches in Chapters 3 and 6 divide the overall problem into
several subproblems according to the physical structure of the system and the re-
search extends the direction of application of distributed control. The learning-
based MPC approach of Chapter 5 extends the direction of improving the control
efficiency of hybrid systems by separating discrete and continuous variables. The
above approaches can be introduced to various application fields, and significant
improvements can be made towards realizing more reliable and efficient control.
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7.3. RECOMMENDATIONS FOR FUTURE RESEARCH
In this section, we outline some potential future research directions based on the find-
ings of this thesis, which can be categorized into application topics and theory topics.

7.3.1. RECOMMENDATIONS FOR APPLICATION TOPICS
• Passenger route choices

In this thesis, the time-dependent passenger origin-destination demands are in-
cluded in the traffic management problem of urban rail transit networks. How-
ever, when timetables are changed, passengers may also change the route for their
travel. In this context, the dynamic interactions between departure frequencies
and passenger route choices still ask for further research.

• Disturbances and disruptions
The real-time operations of the urban rail transit networks are inevitably influ-
enced by many unexpected factors, such as bad weather, infrastructure failures,
and equipment failures. These interferences may lead to serious delays and must
be prevented where possible; otherwise, their effects should be minimized. These
problems can be divided into disturbances and disruptions. Disturbances are de-
fined as short delays caused by perturbations while disruptions refer to long de-
lays that can lead to large decreases in network capacity. Extending the developed
approaches to tackle disturbances and disruptions is also an imperative research
direction.

• Heterogeneous train platoons
Safety is crucial for virtually coupled trains when reducing spacing between con-
secutive trains. The trains in the platoon typically have different conditions, in-
cluding the variation of passenger load and difference of train types, yielding a
heterogeneous train platoon. Developing efficient approaches to control hetero-
geneous train platoons can further improve the effectiveness and safety of the vir-
tually coupled trains. Furthermore, including traction and braking saturation can
also help to enhance the practical applicability of the corresponding approaches.

7.3.2. RECOMMENDATIONS FOR THEORY TOPICS
• Distributed MPC under inexact distributed optimization

Distributed optimization is typically applied to control of multi-agent systems;
however, due to communication and computational power limitations, many real
-time applications of distributed optimization terminate their iterations before
reaching the optimal solution, thereby resulting in inexact minimization. Such
early termination can result in constraint violation issues, as some distributed op-
timization approaches (e.g., ADMM) cannot ensure constraint satisfaction during
iterations. Extending the distributed MPC approaches to deal with constraint vi-
olation issues with early termination by using tightened constraints [1; 41] and
control barrier functions [123] can be a promising topic.

• Multi-agent learning-based MPC
Chapter 5 in this thesis focuses on centralized learning-based MPC, where a single
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learning agent is incorporated into the centralized MPC scheme. The developed
approach is limited to relatively small-scale cases (e.g., a bi-directional urban rail
transit line considered in Chapter 5). A natural extension is to extend the work
to multi-agent systems, so as to deal with the case of large-scale networks, where
the centralized approach may encounter scaling and communication issues. To
develop such multi-agent learning-based MPC approaches, the interaction be-
tween neighbor agents should be integrated, and the interaction can be inves-
tigated as cooperative or noncooperative games [37; 83; 101]. Furthermore, the
safety guarantee of each agent should be considered when developing the multi-
agent learning-based MPC approach.

• Theoretical analysis of learning-based control
Learning-based control approaches have shown promising performance in many
application fields. In general, the agent should be well-trained before applying it
for real-time control. However, there is no commonly accepted rule for the train-
ing process, and the optimal values of the hyperparameters may vary from case to
case, thereby significantly reducing the applicability of learning-based approaches
in different cases . Theoretical analysis of learning-based approaches is essential
for understanding their underlying principles, strengths, and limitations in diverse
application domains, which will improve the applicability of learning-based ap-
proaches in various cases. To improve the applicability, the transfer learning ap-
proaches, e.g., inductive transfer learning [144] and transductive transfer learning
[4; 95], can be incorporated to design the learning-based control approaches.
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