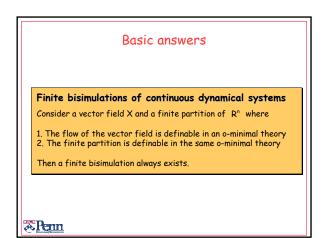
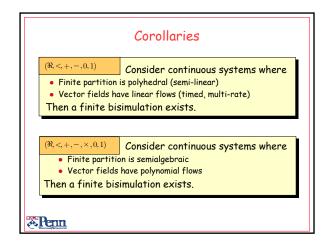


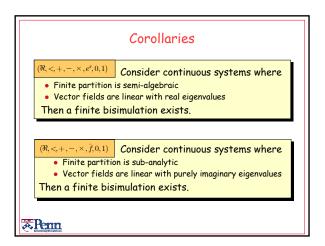
First-order logic		
Useful languages		
$(\Re, <, +, -, 0, 1)$	$\forall x \forall y (x + 2y \ge 0)$	
$(\Re,<,+,-,\times,0,1)$	$\exists x.ax^2 + bx + c = 0$	
$(\Re,<,+,-,\times,e^x\!,0,1)$	$\exists t. (t \geq 0) \land (y = e^t x)$	
A theory of the reals is decidable if there is an algorithm which in a finite number of steps will decide whether a formula is true or not		
A theory of the reals admits quantifier elimination if there is an algorithm which will eliminate all quantified variables. $\exists x.ax^2 + bx + c = 0 \equiv b^2 - 4ac \ge 0$		

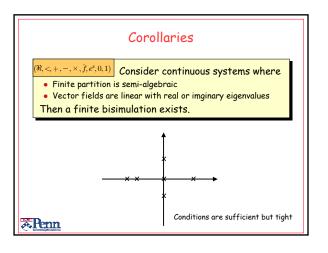
able? Quant. Elim. ? S YES ES YES	
ES YES	
NO	
	d
	+,-, imes,0,1) can be decide : decided

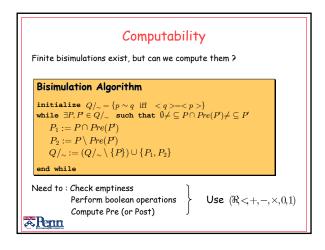
O-Minimal Theories A definable set is $Y = \{(x_1, x_2,, x_n) \in \Re^n \mid \varphi(x_1,, x_n)\}$
A theory of the reals is called o-minimal if every definable subset of the reals is a finite union of points and intervals
Example: $Y = \{(x) \in \Re \mid p(x) \ge 0\}$ for polynomial p(x)
Recent o-minimal theories
$(\Re,<,+,-,0,1)$
$(\Re,<,+,-,\times,0,1)$
$(\Re,<,+,-,\times,e^x,0,1)$ \longrightarrow Related to Hilbert's 16th problem
$(\Re,<,+,-, imes,\hat{f},0,1)$
$(\Re, <, +, -, \times, \hat{f}, e^x, 0, 1)$

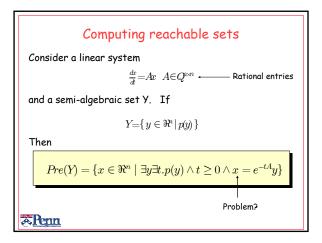




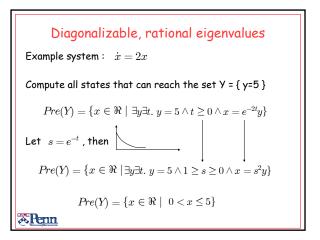


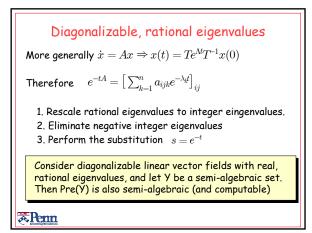


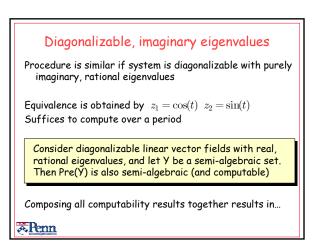


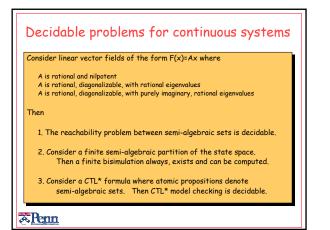


Nilpotent Linear Systems
Nilpotent matrices: $\exists n \geq 0 \ A^n = 0$
Then flow of linear system is polynomial
$e^{-tA} = \sum_{k=0}^{n-1} (-1)^k rac{k!^k}{k!} A^k$
Therefore $\text{Pre}(\mathbf{Y})$ completely definable in $(\Re,<,+,-,\times,0,1)$
$Pre(Y) = \{x \in \Re^n \mid \exists y \exists t. p(y) \land t \ge 0 \land x = \sum_{k=0}^{n-1} (-1)^{kt^k} A^k y\}$
Term









Decidable problems for hybrid systems

A hybrid system H is said to be o-minimal if

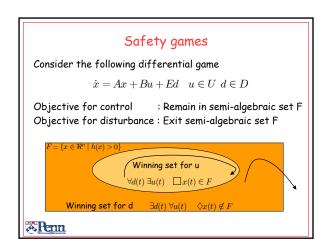
- In each discrete state, all relevant sets and the flow of the vector field are definable in the same o-minimal theory.
- After every discrete transition, state is reset to a constant set (forced initialization)

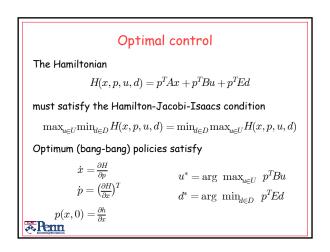
All o-minimal hybrid systems admit a finite bisimulation.

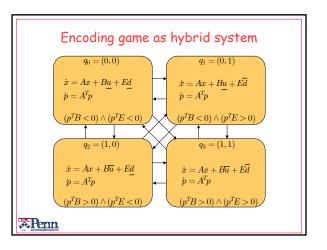
CTL* model checking is decidable for the class of o-minimal hybrid systems.

<u>A Penn</u>









Pontryagin Maximum Principle

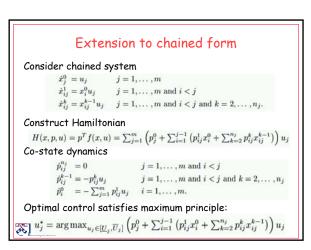
A linear system $\dot{x} = Ax + Bu$ is normal if for each input column b_i , the pair (A, b_i) is completely controllable.

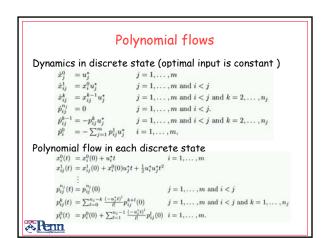
If the linear system is **normal** with respect to both control and disturbance, then for any initial state the optimal control and optimal disturbance are **well-defined**, **unique** and **piece-wise constant** taking values on the **vertices** of U and D.

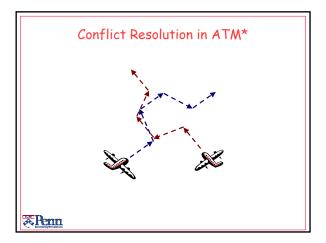
If the linear system is normal and A has **purely real** eigenvalues, then there is a global, uniform upper bound, independent of the initial state on the number of switchings of the optimal control and optimal disturbance.

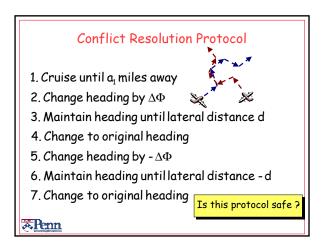
Renn

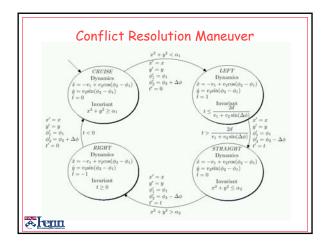
Decidable games Combining optimal control and decidable logics we get... Consider the differential game $\dot{x} = Ax + Bu + Ed$ $u \in U$ $d \in D$ with target set $F = \{x \in \Re^n \mid h(x) > 0\}$ If the system is normal and A has real eigenvalues, then the differential game can be decided. Winning sets for u and d can be computed. Least restrictive controllers can be computed. Scenn











	Computing Unsafe Sets
unsafeCruise	$v_1 = 4; v_2 = 5; \lambda = 0$ = Resolve $[\exists t > 0 \land (x - v_1t + \lambda v_2t)^2 + (y + \sqrt{1 - \lambda^2}v_2t)^2 \le 25]$
	$= \left(y < -\frac{20}{\sqrt{41}} \wedge -\sqrt{41} - \frac{4g}{5} \le x \le \sqrt{41} - \frac{4g}{5}\right) \vee \left(y = -\frac{20}{\sqrt{41}} \wedge -\sqrt{41} - \frac{4g}{5} < x \le \sqrt{41} - \frac{4g}{5}\right) \vee$
	$ \begin{pmatrix} y = \frac{3}{\sqrt{41}} \wedge -\sqrt{25-y^2} < x < \sqrt{41} - \frac{4z}{5} \end{pmatrix} \vee \begin{pmatrix} \frac{3}{\sqrt{41}} \le y < 5 \wedge -\sqrt{25-y^2} < x < \sqrt{25-y^2} \\ \begin{pmatrix} -\frac{30}{\sqrt{41}} < y < \frac{2y}{\sqrt{41}} \wedge -\sqrt{25-y^2} < x \le \sqrt{41} - \frac{4z}{5} \end{pmatrix} $
unsafeLeft	$v_1 = 4$; $v_2 = 5$; $\lambda = \frac{3}{5}$ = Resolve $[3t > 0 \land (x - v_1t + \lambda v_2t)^2 + (y + \sqrt{1 - \lambda^2}v_2t)^2 \le 25]$
	$= (y < -\frac{5}{\sqrt{17}} \wedge -\frac{5\sqrt{17}}{4} - \frac{y}{4} \le x \le \frac{5\sqrt{17}}{4} - \frac{y}{4}) \lor (y = -\frac{5}{\sqrt{17}} \wedge -\frac{5\sqrt{17}}{4} - \frac{y}{4} < x \le \frac{5\sqrt{17}}{4} - \frac{y}{4}) \lor (y = -\frac{5}{\sqrt{17}} \wedge -\frac{5\sqrt{17}}{4} - \frac{y}{4} < x \le \frac{5\sqrt{17}}{4} - \frac{y}{4}) \lor (y = -\frac{5}{\sqrt{17}} \wedge -\frac{5\sqrt{17}}{4} - \frac{y}{4} < x \le \frac{5\sqrt{17}}{4} - \frac{y}{4}) \lor (y = -\frac{5}{\sqrt{17}} \wedge -\frac{5\sqrt{17}}{4} - \frac{y}{4} < x \le \frac{5\sqrt{17}}{4} - \frac{y}{4}) \lor (y = -\frac{5}{\sqrt{17}} \wedge -\frac{5\sqrt{17}}{4} - \frac{y}{4} < x \le \frac{5\sqrt{17}}{4} - \frac{y}{4}) \lor (y = -\frac{5}{\sqrt{17}} \wedge -\frac{5\sqrt{17}}{4} - \frac{y}{4} < x \le \frac{5\sqrt{17}}{4} - \frac{y}{4}) \lor (y = -\frac{5}{\sqrt{17}} \wedge -\frac{5\sqrt{17}}{4} - \frac{y}{4} < x \le \frac{5\sqrt{17}}{4} - \frac{y}{4}) \lor (y = -\frac{5}{\sqrt{17}} \wedge -\frac{5\sqrt{17}}{4} - \frac{5\sqrt{17}}{4} - \frac{5\sqrt{17}}$
	$ \begin{pmatrix} y = \frac{5}{\sqrt{12}} \wedge -\sqrt{25-y^2} < x < \frac{5\sqrt{12}}{\sqrt{12}} - \frac{3}{4} \end{pmatrix} \vee \begin{pmatrix} 5}{\sqrt{12}} < y < 5 \wedge -\sqrt{25-y^2} < x < \sqrt{25-y^2} \\ \begin{pmatrix} -\frac{5}{\sqrt{12}} < y < \frac{5}{\sqrt{12}} \wedge -\sqrt{25-y^2} < x \le \frac{5\sqrt{12}}{4} - \frac{3}{4} \end{pmatrix} \end{pmatrix} $
unsafeRight	$\begin{array}{l} v_1=4; v_2=5; \lambda=-\frac{1}{3}\\ & \textbf{Resolve}\left[2t>0 \land (x-v_1t+\lambda v_2t)^2+(y+\sqrt{1-\lambda^2}v_2t)^2\leq 25\right] \end{array}$
	$= \left(y < -7\sqrt{\frac{5}{13}} \wedge -\frac{5\sqrt{65}}{4} - \frac{7g}{4} \le x \le \frac{5\sqrt{65}}{4} - \frac{7g}{4}\right) \vee \left(y = -7\sqrt{\frac{5}{13}} \wedge -\frac{5\sqrt{65}}{4} - \frac{7g}{4} < x \le \frac{5\sqrt{65}}{4} - \frac{7g}{4}\right)$
	$\left(y = 7\sqrt{\frac{5}{13}} \wedge -\sqrt{25 - y^2} < x < \frac{5\sqrt{85}}{4} - \frac{7y}{4}\right) \vee \left(7\sqrt{\frac{5}{15}} < y < 5 \wedge -\sqrt{25 - y^2} < x < \sqrt{25 - y^2}\right)$
	$\left(-7\sqrt{\frac{5}{13}} < y < 7\sqrt{\frac{5}{13}} \land -\sqrt{25-y^2} < x \le \frac{3\sqrt{65}}{4} - \frac{7y}{4}\right)$

