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Outline of this mini-course

Lecture 1 : Monday, June 23 
Examples of hybrid systems, modeling formalisms

Lecture 2 : Monday, June 23 
Transitions systems, temporal logic, refinement notions

Lecture 3 : Tuesday, June 24
Discrete abstractions of hybrid systems for verification

Lecture 4 : Tuesday, June 24
Discrete abstractions of continuous systems for control

Lecture 5 : Thursday, June 26
Bisimilar control systems

≈≡ /TT

T

≈/T

Hybrid to discrete (Lecture 3)

Abstraction

Goal : Finite quotients of hybrid systems

Hybrid

Discrete

Hybrid System Model
A hybrid system consists of

is a finite set of states
is the continuous state space
is the state space of the hybrid system
is the set of initial states
maps a diff. inclusion to each discrete state  
maps invariant sets to each discrete state 
is a relation capturing discontinuous changes

Define

H = (V,<n,X0, F, Inv,R)

<n

X = Vâ<n

X0 òX
F(l, x) ò<n

V

Inv(l) ò<n

R òXâX

E = {(l, l0)| ∃x ∈ Inv(l), x0 ∈ Inv(l0) ((l, x), (l0, x0)) ∈ R}
Init(l) = {x ∈ Inv(l) | (l, x) ∈ X0}
Guard(e) = {x ∈ Inv(l)| ∃x0 ∈ Inv(l0) ((l, x), (l0, x0)) ∈ R}
Reset(e, x) = {x0 ∈ Inv(l0)| ((l, x), (l0, x0)) ∈ R}
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Transitions of Hybrid Systems
Hybrid systems can be embedded into transition systems
H = (V,<n,X0, F, Inv,R) TH = (Q,Q0,Σ,→,O,< á>)
Q = Vâ<n

Q0 =X0

Σ =E∪ {ü}
→òQâΣâ Q

(l1, x1)à→(l2, x2) iff x1 ∈ Guard(e), x2 ∈ Reset(e, x1)

(l1, x1)à→(l2, x2) iff l1 = l2 and ∃î õ 0 x(á ) : [0, î]→<n

x(0) = x1, x(î) = x2, and ∀t ∈ [0, î]

xç ∈ F(l1, x(t)) and x(t) ∈ Inv(l1)

Discrete transitions

Continuous (time-abstract) transitions

Observation set and map 
depend on desired properties

e

ü
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Rectangular hybrid automata
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exit

Rectangular sets :  
V

ixi ø ci ø∈ {<,ô,=,õ,>}, ci ∈ Q

Rectangular hybrid automata are hybrid systems where 

are rectangular sets  

Init(l), Inv(l), F(l, x),Guard(e),Reset(e, x)i

Multi-rate automata
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Multi-rate automata are rectangular hybrid automata where 

are singleton sets  

Init(l), F(l, x),Reset(e, x)i

2l

Timed automata
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Timed automata are multi-rate automata where 

for all locations l and all variables. 

F(l, xi) = 1
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Initialized automata

Rectangular hybrid automata are initializedinitialized if the following holds:

After a discrete transition, if the differential inclusion (equation) for
a variable changes, then the variable must be reset to a fixed interval.

Timed automata are always initialized. 
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exit

Bad news

Undecidability Undecidability barriers barriers 
Consider the class of uninitialized multi-rate automata with n-1 clock
variables, and one two slope variable (with two different rates).

The reachability problem is undecidable for this class.

No algorithmic procedure exists.

Model checking temporal logic formulas is also undecidable

Initalization is necessary for decidability  

Timed automata

5y <

1l3l

0x =

3y >1x
.

=

10x < true

0:y 9x =→>
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All timed automata admit a finite All timed automata admit a finite bisimulation bisimulation 
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Hence CTL* model checking is decidable for timed automata 
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Timed automata
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Approach : Discretize the clock dynamics using region equivalence

Region equivalence

3l

 x

y

Equivalence classes : 6 corner points 
14 open line segments
8 open regions

Multi-rate automata
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All initialized multiAll initialized multi--rate automata admit a finite rate automata admit a finite bisimulation bisimulation 

Rectangular automata
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All initialized rectangular automata admit a finite All initialized rectangular automata admit a finite bisimulation bisimulation 

Rectangular automata
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All initialized rectangular automata admit a finite All initialized rectangular automata admit a finite bisimulation bisimulation 

No finite bisimulation

Bisimulation algorithm never terminates 
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but…

All initialized rectangular automata admit a finite language All initialized rectangular automata admit a finite language 
equivalence quotient which can be constructed effectively. equivalence quotient which can be constructed effectively. 

0x ≥

nearfar past

2000x ≥
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.
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exit

LTL model checking of rectangular automata is decidable. LTL model checking of rectangular automata is decidable. 

More complicated dynamics?

Bisimulation algorithm 
never terminates    !!

4}x0|{(x,0)P1 ≤≤=

0}x-4|{(x,0)P2 <≤=

)P(P\RP 21
2

3 ∪=

Sets Sets 

211
.

x0.2xx +=

Dynamics Dynamics 

212
.

0.2x-xx +=

Basic problems

Finite Finite bisimulations bisimulations of continuous dynamical systems of continuous dynamical systems 
Given a vector field F(x) and a finite partition of       

1. Does there exist a finite bisimulation ?
2. Can we compute it ?

nR

Representation issues
Symbolic representation for infinite sets
Rectangular sets ? Semi-linear ? Semi-algebraic ?

Operations on sets
Boolean (logical) operations
Can we compute Pre and Post ? 
Is our representation closed under Pre and Post ?

Algorithmic termination (decidability)
No guarantee for infinite transition systems
We need “nice” alignment of sets and flows
Globally finite properties

Reminder

First-order logic
Every theory of the reals has an associated language

(<,<,+ ,à ,0,1)

Universe Relation Functions Constants

x1, x2, x3, . . .Variables :

TERMS :  Variables, constants, or functions of them

ATOMIC FORMULAS : Apply the relation and equality to the terms

(FIRST ORDER) FORMULAS :  Atomic formulas are formulas
If          are formulas, then  ϕ1,ϕ2 ϕ1∨ϕ2,¬ϕ1,∀x.ϕ1,∃x.ϕ1

x1àx2 +1,1 +1,àx3

x1 +x2 <à1,2x1 = 1, x1 = x3

First-order logic
Useful languages 

(<,<,+ ,à ,0,1)

(<,<,+ ,à ,â ,0,1)

(<,<,+ ,à ,â , ex,0,1)

∃x.ax2 +bx+c = 0

∃t.(t õ 0)∧ (y = etx)

∀x∀y(x+2y õ 0)

A theory of the reals is decidabledecidable if there is an algorithm which in 
a finite number of steps will decide whether a formula is true or not

A theory of the reals admits quantifier eliminationquantifier elimination if there is an 
algorithm which will eliminate all quantified variables.

∃x.ax2 +bx+c = 0 ñ b2à4ac õ 0
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First-order logic

(<,<,+ ,à ,0,1)

(<,<,+ ,à ,â ,0,1)

(<,<,+ ,à ,â , ex,0,1)

Decidable ? Quant. Elim. ?

YES

YES

YES

YES

NO?

Theory

Tarski’s Tarski’s result : result : Every formula in                               can be decided
1. Eliminate quantified variables
2.Quantifier free formulas can be decided

(<,<,+,à,â,0,1)

A definable set is

A theory of the reals is called oo--minimalminimal if every
definable subset of the reals is a finite union of
points and intervals

Example:                                    for polynomial p(x)
Recent o-minimal theories

O-Minimal Theories

Exponential flows

Spirals ?

Y = {(x1, x2, . . ., xn) ∈ <n | ϕ(x1, . . ., xn)}

(<,<,+,à,0,1)

(<,<,+,à,â,0,1)

(<,<,+ ,à ,â , ex,0,1)

(<,<,+ ,à ,â ,fê,0,1)

(<,<,+,à,â, fê, ex,0,1)

Y = {(x) ∈ < | p(x)õ 0}

Related to Hilbert’s 16th problem

Basic answers

Finite Finite bisimulations bisimulations of continuous dynamical systems of continuous dynamical systems 
Consider a vector field X and a finite partition of  where  

1. The flow of the vector field is definable in an o-minimal theory
2. The finite partition is definable in the same o-minimal theory

Then a finite bisimulation always exists.

nR

Corollaries

Consider continuous systems where
Finite partition is polyhedral (semi-linear)
Vector fields have linear flows (timed, multi-rate)

Then a finite bisimulation exists.

Consider continuous systems where
Finite partition is semialgebraic
Vector fields have polynomial flows

Then a finite bisimulation exists.

(<,<,+,à,0,1)

(<,<,+,à,â,0,1)

Corollaries

Consider continuous systems where
Finite partition is semi-algebraic
Vector fields are linear with real eigenvalues

Then a finite bisimulation exists.

Consider continuous systems where
Finite partition is sub-analytic
Vector fields are linear with purely imaginary eigenvalues

Then a finite bisimulation exists.

(<,<,+,à,â, ex,0,1)

(<,<,+,à,â, fê,0,1)

Corollaries

Consider continuous systems where
Finite partition is semi-algebraic
Vector fields are linear with real or imginary eigenvalues

Then a finite bisimulation exists.

(<,<,+,à,â, fê, ex,0,1)

xx

x

x

x x

Conditions are sufficient but tight
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Computability
Finite bisimulations exist, but can we compute them ?

Need to : Check emptiness 
Perform boolean operations 
Compute Pre (or Post)

BisimulationBisimulation AlgorithmAlgorithm

initialize

while such that

end while

Q/ø = {p ø q iff < q >=< p >}
∅ 6= ò P ∩ Pre(P0)6= ò P0

P1 := P ∩ Pre(P0)
∃P,P0 ∈ Q/ø

P2 := P \ Pre(P0)
Q/ø := (Q/ø \ {P}) ∪ {P1, P2}

(<,<,+,à,â,0,1)Use

Computing reachable sets
Consider a linear system

and a semi-algebraic set Y.   If

Then

dt
dx=Ax A∈Qnân

Y={y ∈<n |p(y)}

Problem?

Pre(Y) = {x ∈ <n | ∃y∃t.p(y)∧ t õ 0∧x = eàtAy}

Rational entries

Nilpotent Linear Systems
Nilpotent matrices:

Then flow of linear system is polynomial

Therefore Pre(Y) completely definable in  

eàtA =
P

k=0

nà1(à1)k
k!
tkAk

∃n õ 0 An = 0

(<,<,+,à,â,0,1)

∃y∃t.p(y)∧ t õ 0 ∧ x =
P

k=0

nà1(à1)k
k!
tkAky}Pre(Y) = {x ∈ <n |

Diagonalizable, rational eigenvalues
Example system :

Compute all states that can reach the set Y = { y=5 } 

Let              , then 

xç = 2x

∃y∃t. y = 5 ∧ t õ 0 ∧x = eà2ty}Pre(Y) = {x ∈ < |

s= eàt

∃y∃t. y = 5 ∧ 1 õ sõ 0∧ x = s2y}Pre(Y) = {x ∈ < |

0 <x ô 5}Pre(Y) = {x ∈ < |

Diagonalizable, rational eigenvalues
More generally

Therefore 

1. Rescale rational eigenvalues to integer eingenvalues.
2. Eliminate negative integer eigenvalues
3. Perform the substitution 

xç =Ax⇒x(t) = TeΛtTà1x(0)

eàtA = [
P

k=1

n aijke
àõkt]ij

s= eàt

Consider diagonalizable linear vector fields with real, 
rational eigenvalues, and let Y be a semi-algebraic set.
Then Pre(Y) is also semi-algebraic (and computable)

eàtA =
âP

k=1

n aijke
àõkt

ã
ij

Diagonalizable, imaginary eigenvalues
Procedure is similar if system is diagonalizable with purely 

imaginary, rational eigenvalues

Equivalence is obtained by
Suffices to compute over a period

Composing all computability results together results in… 

eàtA = [
P

k=1

n aijke
àõkt]ij

Consider diagonalizable linear vector fields with real, 
rational eigenvalues, and let Y be a semi-algebraic set.
Then Pre(Y) is also semi-algebraic (and computable)

z1 = cos(t) z2 = sin(t)
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Decidable problems for continuous systems

Consider linear vector fields of the form F(x)=Ax where

A is rational and nilpotent
A is rational, diagonalizable, with rational eigenvalues
A is rational, diagonalizable, with purely imaginary, rational eigenvalues

Then 

1. The reachability problem between semi-algebraic sets is decidable.

2. Consider a finite semi-algebraic partition of the state space.
Then a finite bisimulation always, exists and can be computed.

3. Consider a CTL* formula where atomic propositions denote
semi-algebraic sets. Then CTL* model checking is decidable.

Decidable problems for hybrid systems

A hybrid system H is said to be o-minimal if
1. In each discrete state, all relevant sets and the flow of the vector 

field are definable in the same o-minimal theory.
2. After every discrete transition, state is reset to a constant set 

(forced initialization)

All o-minimal hybrid systems admit a finite bisimulation.

CTL* model checking is decidable for the class of o-minimal hybrid systems.

Decidable problems for hybrid systems

Consider a linear hybrid system H where
1. For each discrete state, all relevant sets are semi-algebraic
2. After every discrete transition, state is reset to a constant 

semi-algebraic set (forced initialization)
3. In each discrete location,  the vector fields are of the form F(x)=Ax 

where
A is rational and nilpotent
A is rational, diagonalizable, with rational eigenvalues
A is rational, diagonalizable, with purely imaginary, rational eigenvalues

Then 

CTL* model checking is decidable for this class of linear hybrid systems.

The reachability problem is decidable for such linear hybrid systems.

Safety games
Consider the following differential game

Objective for control : Remain in semi-algebraic set F
Objective for disturbance : Exit semi-algebraic set F

xç =Ax+Bu+Ed u ∈ U d ∈D

Winning set for u

Winning set for d

∀d(t) ∃u(t) x(t) ∈ F

∃d(t) ∀u(t) ♦x(t) 6∈ F

F = {x ∈ <n | h(x)> 0}

Optimal control
The Hamiltonian 

must satisfy the Hamilton-Jacobi-Isaacs condition

Optimum (bang-bang) policies satisfy

maxu∈Umind∈DH(x,p, u, d) =mind∈Dmaxu∈UH(x, p, u, d)

H(x, p, u, d) = pTAx+pTBu+pTEd

uã = arg maxu∈U pTBu

dã =arg mind∈D pTEd

xç =
∂p
∂H

pç =
à
∂x
∂H
á
T

p(x,0) =
∂x
∂h

Encoding game as hybrid system
q0 = (0,0) q1 = (0,1)

q2 = (1,0) q3 = (1,1)

xç =Ax+Bu+Ed

pç =ATp

(pTB < 0)∧ (pTE < 0) (pTB < 0)∧ (pTE > 0)

pç =ATp

xç =Ax+Bu+Ed

(pTB > 0)∧ (pTE > 0)

pç =ATp
xç =Ax+Bu+Ed

(pTB > 0)∧ (pTE < 0)

pç =ATp

xç =Ax+Bu+Ed
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Pontryagin Maximum Principle

If the linear system is normal with respect to both control and 
disturbance, then for any initial state the optimal control and 
optimal disturbance are well-defined, unique and piece-wise 
constant taking values on the vertices of U and D.

If the linear system is normal and A has purely real 
eigenvalues, then there is a global, uniform upper bound, 
independent of the initial state on the number of switchings of 
the optimal control and optimal disturbance.

A linear system                             is normalnormal if for each input
column      ,  the pair              is completely controllable.

xç =Ax+Bu
bi (A, bi)

Decidable games
Combining optimal control and decidable logics we get…

Consider the differential game

with target set   

If the system is normal and A has real eigenvalues, 
then the differential game can be decided.

Winning sets for u and d can be computed.
Least restrictive controllers can be computed.

xç =Ax+Bu+Ed u ∈ U d ∈D

F = {x ∈<n | h(x)> 0}

Extension to chained form
Consider chained system

Construct Hamiltonian

Co-state dynamics

Optimal control satisfies maximum principle:

Polynomial flows 
Dynamics in discrete state (optimal input is constant ) 

Polynomial flow in each discrete state

Conflict Resolution in ATM* Conflict Resolution Protocol

away milesa until Cruise1.  1

∆Φ byheading Change2.
 ddistancelateraluntilheading Maintain3.

heading original toChange 4.
∆Φ-by heading Change 5.

d-distance lateral until headingMaintain 6.
heading originalto Change 7.

Is this protocol safe ?
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Conflict Resolution Maneuver Computing Unsafe Sets

Safe Sets

≈≡ /TT

≈/T

Continuous to discrete (Lectures 3 & 4)

Lecture 3

Restricted dynamical systems
Semi-algebraic partitions
Verification semantics

≈≡ /TT

≈/T

Lecture 4

Linear control systems
Restricted partitions
Synthesis semantics

dt
dx=Ax

dt
dx=Ax+BuT T


