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Abstract

As time-driven and event-driven systems are rapidly coming together, the field of opti-
mal control is presented with an opportunity to expand its horizons to these new “hybrid”
dynamic systems. In this paper, we consider a general optimal control problem formulation
for such systems and describe a modeling framework allowing us to decompose the problem
into lower and higher-level components. We then show how to apply this setting to a class of
switched linear systems with a simple event-driven switching process, in which case explicit
solutions may often be obtained. For a different class of problems, where the complexity lies
in the nondifferentiable nature of event-driven dynamics, we show that a different type of
decomposition still allows us to obtain explicit solutions for a class of such problems. These
two classes of problems illustrate the differences between various sources of complexity that
one needs to confront in tackling optimal control problems for discrete-event and hybrid
systems.

1 Introduction

The theory and extensive applications of optimal control for dynamic systems are documented
in several books, including “Applied Optimal Control” [1], co-authored by Bryson and Ho. Since
this paper, along with the rest in this collection, is dedicated to the second author, it is most
appropriate that its topic covers two areas to which Larry Ho has made fundamental contribu-
tions: optimal control and discrete event systems. The emergence of hybrid systems, which has
largely motivated the work presented here, arguably owes its rapid growth to the foundations
laid by the development of modeling frameworks and analytical techniques for discrete event
systems.

∗This material is based on work supported in part by the National Science Foundation under Grants ACI-98-
73339 and EEC-00-88073, by AFOSR under contract F49620-01-0056, and by the Air Force Research Laboratory
under contract F30602-99-C-0057.
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Optimal control methodologies have been based on a modeling framework for dynamic systems
which revolves around the differential equation

ẋ = f(x, u, t) (1)

describing the dynamics of a system whose state at time t is captured by a vector x(t) and
whose behavior is dependent upon some input or control vector u(t). We refer to this class
of systems as time-driven because their state continuously changes as time evolves. Typical
examples include mechanical systems whose state consists of variables representing physical
position and velocity, or chemical systems whose state includes the temperature or pressure for
certain physical processes. In contrast, Discrete Event Systems (DES) are characterized by event-
driven dynamics. In this case, state variables are usually discrete and change only as a result
of the occurrence of events; they do not continuously change over time. One encounters DES
in modern technological settings such as automated manufacturing, communication networks,
and computer operating systems. As an example, let x(t) be the number of packets waiting in a
buffer to be processed by some network switch at time t. The only way this quantity can change
is if a packet is removed from the buffer and transmitted (in which case the state changes by
−1) or if a new packet is added to the buffer (in which case the state changes by +1). Both
changes occur instantaneously when the event “packet processed” or the event “new packet
arrives” respectively takes place. Clearly, (1) is neither natural nor appropriate for describing
the dynamics of such an event-driven system: the state in between events is unchanged and
the derivative of x(t) is not defined at event times (at least not in a strict sense that can make
it useful for analysis purposes). Modeling frameworks for DES were developed over the 1980s
along several different directions, including untimed and timed automata and Petri nets (for a
comprehensive overview, see [2]). Because these modeling frameworks are drastically different
form (1), optimal control methodologies developed on the basis of time-driven dynamics are
simply not transferable to the DES setting, although fundamental principles (e.g., dynamic
programming) obviously still apply. To complicate matters, many interesting optimal control
problems one encounters in DES involve some form of uncertainty (e.g., in the example of a
packet buffer, the processes that describe arrival and processing events are generally stochastic);
this implies that ideas and techniques from stochastic optimal control need to be invoked.

The advent of hybrid systems makes the development of optimal control beyond classical time-
driven systems an even greater challenge. The term “hybrid” is used to characterize systems that
combine time-driven and event-driven dynamics. Broadly speaking, two categories of modeling
frameworks have been proposed to study hybrid systems: Those that extend event-driven models
to include time-driven dynamics; and those that extend the traditional time-driven models to
include event-driven dynamics; for an overview, see [3]. A simple way to think of a hybrid
system is as one characterized by a set of operating “modes”, each one evolving according to
time-driven dynamics of the form (1). The system switches between modes through discrete
events which may be controlled or uncontrolled. Controlling the switching times, when possible,
and choosing among several feasible modes, whenever such choices are available, gives rise to a
rich class of optimal control problems. This has motivated efforts to extend classical optimal
control principles [4],[5],[6] and to apply dynamic programming techniques [7],[8]. While in
principle this is possible, the computational complexity involved becomes prohibitive: not only
does one have to deal with the well-known “curse of dimensionality” in such problems, but there
are at least two additional sources of complexity to deal with, i.e., the presence of switching
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events causing transitions from one mode to another (which introduces a combinatorial element
into the control), and the presence of event-driven dynamics for the switching times (which
introduce nondifferentiabilities). Therefore, keys to the successful development of optimal control
methods for hybrid systems are: (i) seeking structural properties that allow the decomposition
of such systems into simpler components, and (ii) making use of efficient numerical techniques.
Along these lines, progress has been reported for classes of hybrid systems whose structure
may be exploited. For example, in [9] a Mixed Logical Dynamical (MLD) system framework is
proposed, which allows the use of efficient methods developed for piecewise affine systems, and
in [10] optimal controllers are presented for the class of autonomous switched linear systems.

The hybrid system modeling framework we consider in this paper is motivated by the fact that
it is often natural to hierarchically decompose systems into a lower-level component representing
physical processes characterized by time-driven dynamics and a higher-level component repre-
senting discrete events related to these physical processes (e.g., switching from one mode of
operation to another, as in shifting gears in an automotive system). Our objective is to for-
mulate and solve optimal control problems associated with trade-offs between the operation of
physical processes and timing issues related to the overall performance of the system. For a
class of such optimal control problems, a hierarchical decomposition method was introduced in
[11]. This method enables us to design a controller which has the task of communicating with
both components and jointly solving coupled optimization problems, one for each component.
The same basic idea is also independently proposed in [12]. The explicit solution of the lower
and higher-level problems depends on the specifics of the time-driven and event-driven dynamics
involved.

In the remainder of this paper, we first describe a convenient modeling framework for hybrid
systems allowing us to decompose them into lower (time-driven) and higher (event—driven) level
components. Subsequently, we formulate an optimal control problem and present a solution
approach based on this decomposition. In Section 3 we describe how to apply this setting
to a class of hybrid systems where all operating modes have linear time-driven dynamics and
the event-driven switching process is very simple. In this case, we find that the hierarchical
decomposition approach requires solving a nonlinear parametric optimization problem coupled
with a number of standard optimal control problems subject to purely time-driven dynamics;
explicit solutions of such problems are occasionally possible, as illustrated by an example. In
Section 4, we consider a different class of problems where the complexity lies in the event-
driven dynamics which are nondifferentiable. In this case, we show that a different type of
decomposition allows us to obtain explicit solutions for a class of such problems. While the
approaches presented for solving these two classes of problems help to lay the foundations for
extending classical optimal control theory, they also serve to identify the differences between
various sources of complexity that one needs to understand and address in order to handle the
challenges of new technological environments where these complexities manifest themselves.
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2 Optimal Control Problem Formulation

In the hybrid systems we consider, the state of the system consists of temporal and physical
components. The temporal components keep track of the time information for events that may
cause switches in the operating mode of the system. Let i = 1, 2, . . . index these events. We
denote the physical state of the system after the ith event by zi(t) with dynamics:

żi = gi(zi, ui, t), zi(xi−1) = z0i , t ∈ [xi−1, xi) (2)

where ui is the control applied over an interval [xi−1, xi) defined by two event occurrences at
times xi−1 and xi. In what follows, we shall write ui to denote a function ui(t) defined over
[xi−1, xi); similarly for zi(t). We shall assume that ui(t) is allowed to be piecewise continuous
and is in general an n-dimensional vector.

In the case of a single event process in the system, the event-driven dynamics characterizing the
temporal states xi are given by

xi = xi−1 + γi(zi, ui) (3)

for i = 1, 2, . . ., where γi(·) represents the amount of time between switches, which generally
depends on the physical state zi and control ui over [xi−1, xi).

In the case of multiple asynchronous event processes in the system indexed by j = 1, . . . ,M , we
need to introduce a Timed Automaton which determines which of the M events in the system
triggers the next switch and at what precise time. The exact structure of a timed automaton is
described in [2]. We limit ourselves here to a brief review of its definition and basic operation.
An Automaton, denoted by G, is a five-tuple G = (Q,E, f,Γ, x0) where Q is the set of states; E
is the finite set of events associated with the transitions in G; f : Q× E → Q is the transition
function, where f(q, e) = r means that there is a transition labeled by event e from state q to
state r (in general, f is a partial function on its domain); Γ : Q→ 2E is the active event function
(or feasible event function), where Γ(q) is the set of all events e for which f(q, e) is defined and
it is called the active event set (or feasible event set) of G at q; and q0 is the initial state.

The automaton G operates as follows. It starts in the initial state q0 and upon the occurrence of
an event e ∈ Γ(q0) ⊆ E it makes a transition to state f(q0, e) ∈ Q. This process then continues
based on the transitions for which f is defined. Note that an event may occur without changing
the state, i.e., it is possible that f(q, e) = q.

As it stands, this model is based on the premise that a given event sequence {e1, e2, . . .} is pro-
vided, so that, starting at state q0, we can generate a state sequence {q0, f(q0, e1), f(f(q0, e1), e2), . . .}.
We extend our modeling setting to Timed automata by incorporating a Clock Structure associ-
ated with the event set E which now becomes the input from which a specific event sequence
can be deduced. This clock structure is a set V = {vi : i ∈ E} of clock (or lifetime) sequences

vi = {vi,1, vi,2, . . .}, i ∈ E, vi,k ∈ R+, k = 1, 2, . . .

With this in mind, the original automaton now becomes a six-tuple (Q,E, f,Γ, x0,V) where
V = {vi : i ∈ E} is a clock structure. The timed automaton generates a state sequence

q0 = f(q, e0) (4)
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driven by an event sequence {e1, e2, . . .} generated through
e0 = arg min

i∈Γ(q)
{yi} (5)

with the clock values yi, i ∈ E, defined by

y0i =
½

yi − y∗ if i 6= e0 and i ∈ Γ(q)
vi,Ni+1 if i = e0 or i /∈ Γ(q) i ∈ Γ(q0) (6)

where the interevent time y∗ is defined as

y∗ = min
i∈Γ(q)

{yi} (7)

and the event scores Ni, i ∈ E, are defined by

N 0
i =

½
Ni + 1 if i = e0 or i /∈ Γ(q)
Ni otherwise

i ∈ Γ(q0) (8)

In addition, initial conditions are: yi = vi,1 and Ni = 1 for all i ∈ Γ(q0). If i /∈ Γ(q0), then yi
is undefined and Ni = 0.

In this setting, the clock structure V is assumed to be fully specified in a deterministic sense. A
Stochastic Timed Automaton is obtained when the clock sequences are specified only as stochastic
sequences {Vi,k} = {Vi,1, Vi,2, . . .}, in which case each {Vi,k} is characterized by a distribution
function Gi(t) = P [Vi ≤ t].

In the sequel, the details of the timed automaton that controls the mode switches are not required
and are suppressed by simply representing the event-driven dynamics in the form

xi = xi−1 + γi(yi,1, . . . , yi,M , zi, ui) (9)

where yi,1, . . . , yi,M are the event clocks of the timed automaton (through which the triggering
event and its occurrence time for the next switch are determined) after the (i−1)th switch. We
note, that γi(·) above generally involves the min operation seen in (5), introducing nondifferen-
tiabilities which can significantly complicate the analysis. Looking at (2) and (9), note also that
the choice of control ui affects both the physical state zi and the temporal state xi. Thus, the
switches at times x1, x2, . . . are generally not exogenous events that dictate changes in the state
dynamics, but rather temporal states intrically connected to the control of the system; this is
one of the crucial elements of a “hybrid” system.

The optimal control problem we now consider has the general form

min
u

J =
NX
i=1

[φi(xi−1, xi) + ψi(xi)] (10)

subject to (2) and (9), where

u =


u1(t) t ∈ [x0, x1)
...

...
uN (t) t ∈ [xN−1, xN)

(11)

5



The function φi(xi, xi−1) is the cost of operating the system with control ui over the interval
[xi−1, xi), which results in the physical state {zi(t), t ∈ [xi−1, xi)}. This is generally expressed
as

φi(xi−1, xi) = h(zfi ) +

Z xi

xi−1
Li(zi(t), ui(t))dt

where h(zfi ) is a terminal cost associated with the physical state z
f
i = zi(xi) and Li(zi(t), ui(t))

is a cost function dependent on the physical state and control during the ith mode. Note that
φi(·) is expressed as a function of the starting and ending times for the ith mode, but it obviously
depends on the choice of control used over [xi−1, xi).

The function ψi(xi) is the cost associated with the occurrence time xi of the ith event. The
intent is to penalize switching times that occur later rather than earlier, which creates a trade-off
with the requirement that a certain desired physical state zi(xi) be attained, which may not be
possible if xi is too short.

In (10), the time horizon is determined by a given number of switches N and the control does
not include selecting the next mode. Thus, it is assumed that the sequence of modes to be
used is prespecified (e.g., as in changing gears in an automobile). Moreover, note that in this
formulation the only control is u, through which the physical and tempoiral states are affected.
In some variations of this problem, it is possible that the switching times x1, . . . , xN may be
exogenous controllable variables as well.

Let si = xi − xi−1 ≥ 0, i = 1, 2, . . . Assuming stationarity of the cost φi(·) in the sense that
φi(xi−1, xi−1 + si) = φi(0, si) ≡ φi(si), we can write

φi(si) = h(zfi ) +

Z si

0
Li(zi(t), ui(t))dt (12)

Thus, the optimal control problem we consider can be written as

min
u

J =
NX
i=1

[φi(si) + ψi(xi)] (13)

subject to (2) and (9) with u as defined in (11) and φi(si) as defined in (12).

2.1 Hierarchical Decomposition

Consider an interval [xi−1, xi) and suppose the initial and final physical states, z0i = zi(xi−1)
and zfi = zi(xi), as well as the length of the time interval si = xi − xi−1, are fixed. If this were
the case and ui(t), t ∈ [xi−1, xi), is given, then {zi(t), t ∈ [xi−1, xi)}, is specified through (2).
Thus, with z0i , z

f
i , and si fixed, each mode can be individually analyzed and an optimal control

for it can be sought, which will be parameterized by z0i , z
f
i , and si. Since actually z0i , z

f
i , and

si are also unknown and part of the desired solution, it follows that we can rewrite (13) as

min
z0,zf ,s

NX
i=1

"
min

ui(z0i ,z
f
i ,si)

φi(si) + ψi(xi)

#

6



where s = [s1, . . . , sN ], z0 = [z01, . . . , z
0
N ], and z

f = [zf1 , . . . , z
f
N ]. This imposes a decomposition

that gives rise to a collection of inner minimization problems subject to (2), and an outer
minimization problem subject to (9). At the lower level of this decomposition we first seek to
determine the cost

θi(z
0
i , z

f
i , si) ≡ minui φi(si) (14)

subject to (2) for all i = 1, 2, . . ., which we view as the minimal cost for a given time interval si
and boundary conditions z0i and zfi for the physical state. Accordingly, the optimal control is

u∗i (z
0
i , z

f
i , si) ≡ argminui φi(si) (15)

Note that u∗i (z
0
i , z

f
i , si) is in general time-varying over [xi−1, xi). It is the control that minimizes

(12) when applied to z0i = zi(xi−1) with a target state zfi = zi(xi−1 + si), given si. Once
u∗i (z

0
i , z

f
i , si) and θi(z

0
i , z

f
i , si) are determined, we can proceed with the higher-level optimization

problem:

min
z0,zf ,s

NX
i=1

[θi(z
0
i , z

f
i , si) + ψi(xi)] (16)

subject to (9) where we try to determine the optimal event times and physical states at these
times. Once these are known, the relationship (15) is used to determine the optimal controls for
the N time intervals involved in the operation of the system.

The hybrid controller for coordinating the two problems above operates as follows (see Figure
1):

1. System identification: the physical dynamics, g, the costs associated with the physical dy-
namics, φ, the temporal dynamics, f , and the costs associated with the temporal dynamics,
ψ, are all input to the controller.

2. Lower-level problem, parameterized by si: The lower level controller solves (14) to deter-
mine θi(z0i , z

f
i , si) and u∗i (z

0
i , z

f
i , si) for all i = 1, . . . , N .

3. Higher-level problem: The higher level controller solves (16) to determine the optimal
values s∗i , (z

0
i )
∗, and (zfi )

∗ for all i = 1, . . . , N .

4. Lower-level problem, given s∗i : The lower level controller evaluates u
∗
i = u∗i ((z

0
i )
∗, (zfi )

∗, s∗i )
for all i = 1, . . . , N .

The explicit solutions of the two problems depend on the nature of the respective cost functions
and dynamics. In some cases, the higher-level problem is greatly simplified when the event-
driven dynamics involve a single exogenous event process, while in other cases the event-driven
dynamics introduce nondifferentiabilities that prohibit the use of standard optimization methods.
In the next two sections, we consider two different classes of hybrid systems with different
characteristics, illustrating the major differences between the two problem levels (see also [13]).
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Figure 1: Hybrid Controller Operation

3 Switched Linear Systems

Let us consider a class of hybrid systems consisting of linear time-invariant time-driven dynamics
and associated quadratic criteria for all modes. In order to illustrate the hierarchical decom-
position approach and obtain some explicit numerical results, we limit ourselves to a specific
two-mode example as follows:

ż1 = u1, z1(x0) = z0

ż2 = αz2 + u2, z2(x1) = z1(x1)

The event-driven dynamics determining how to switch between modes have the simple form
given in (3):

x1 = x0 + s1(z1, u1)

x2 = x1 + s2(z2, u2)

The cost to minimize is
J = φ1(s1) + φ2(s2) + ψ2(x2)

Note that the cost is separable so the decomposition approach previously described may be
applied. We consider quadratic costs for the physical process, so that (12) in this case becomes

φi(si) =
1

2
h
°°°zfi − zdi

°°°2 + 1
2

Z si

0
r kui(t)k2 + q kzi(t)k2 dt

where a quadratic cost is imposed on the deviation of the final state zfi = zi(xi) from some
desired value zdi . In particular, let

φ1(s1) =

Z s1

0

1

2
r1u

2
1(t)dt

φ2(s2) =
1

2
h(zf2 − zfd )

2 +

Z s2

0

1

2
r2u

2
2(t)dt
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We also consider a quadratic cost on the final time x2:

ψ2(x2) = βx22

Let us now consider the lower-level problem which, for each mode, is a standard Linear Quadratic
(LQ) problem [1]. The Hamiltonian for the first stage [x0, x0 + s1) of the physical process is

H1(t) =
1

2
r1u

2
1(t) + p1(t)u1(t)

where p1(t) is the costate for the first stage, hence the optimality conditions for the first stage
are

ż1(t) = u1(t)

ṗ1(t) = 0

r1u1(t) + p1(t) = 0

Therefore, the optimal control in the first stage is a constant u1and we get

u1 =
z1(x1)− z1(x0)

s1
≡ zf1 − z01

s1

and

θ1(z
0
1 , z

f
1 , s1) = minu1

φ1(s1) =
1

2
r1u

2
1s1

=
1

2

r1
s1

h
zf1 − z01

i2
Similarly, for the second stage the Hamiltonian is

H2(t) =
1

2
r2u

2
2(t) + p2(t)u2(t) + αp2(t)z2(t)

where p2(t) is the costate for the second stage, hence the optimality conditions for the second
stage are

ż2(t) = αz2(t) + u2(t)

ṗ2(t) = −αp2(t)
r2u2(t) + p2(t) = 0

Therefore,

u2(t) = −
2α
³
zf2 − z02e

αs2
´

(e−αs2 − eαs2)
e−αt

and

θ2(z
0
2 , z

f
2 , s2) = minu2

φ2(s2)

=
1

2
h(zf2 − zfd )

2 +
r2α

³
zf2 − z02e

αs2
´2

(eαs2 − e−αs2)
e−αs2
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The higher-level optimization problem (16) becomes

min
s1,s2,z01 ,

z02 ,z
f
1 ,z

f
2

1
2

r1
s1

³
zf1 − z01

´2
+
1

2
h
³
zf2 − zfd

´2
+

³
zf2 − z02e

αs2
´2

αr2

(e2αs2 − 1) + βx22


subject to z01 = z0, z02 = zf1 , s1, s2 ≥ 0, and x2 = s1 + s2. The resulting reduced optimization
problem is

min
s1,s2,

zf1 ,z
f
2

·
1

2

r1
s1

³
zf1 − z0

´2
+
1

2
h
³
zf2 − zfd

´2
(17)

+

³
zf2 − zf1 e

αs2
´2

αr2

(e2αs2 − 1) + + β((s1 + s2)
2
i

where s1, s2 ≥ 0.

The optimality conditions are given in terms of four algebraic equations which can be solved to
yield s1, s2, z

f
1 , and zf2 , assuming s1 > 0 and s2 > 0 (if we allow s1 = 0 and s2 = 0, we get

zf1 = z0 and zf2 = zf1 , respectively):

r1
s1
(zf1 − z0) =

2
³
zf2 − zf1 e

αs2
´
αr2

(eαs2 − e−αs2)

h(zf2 − zfd ) = −
2
³
zf2 − zf1 e

αs2
´
αr2

(e2αs2 − 1)
r1(z

f
1 − z0)

2 = 4βs21(s1 + s2)

β(s1 + s2) =
α2r2

³
zf2 − zf1 e

αs2
´
(zf1 e

αs2)

(e2αs2 − 1) +
α2r2e

2αs2
³
zf2 − zf1 e

αs2
´2

(e2αs2 − 1)2
For a numerical example, setting r1 = 2, r2 = 10, h = 10, zd = 10, z0 = 0, α = 1 and β = 10,
yields the following solution: It is optimal to start operating in the first mode with constant
control u1(t) = 5.72 for t ∈ [0, x1) and switch to the second mode at time x1 = 0.4 when
zf1 = 2.29. The system operates in the second mode with control u2(t) = 1.66e−t until time
x2 = 1.64 when zf2 = 9.67.

In this type of a simple switched linear system, the main complexity lies in the fact that the LQ
problems involved are coupled through the continuity requirements z0i = zfi−1 associated with
the ith mode switch. This leads to a higher-level nonlinear optimization problem such as (17).
Obtaining an analytic form for this nonlinear optimization problem depends on the availability
of a closed-form solution for the LQ problems associated with each mode at the lower level of
the decomposition. Except for relatively simple cases such as the one considered above, this
is not possible, and numerical techniques must be invoked. This has motivated recent work
by Xu and Antsaklis [12] making use of the sensitivities of the optimal cost at the lower level
with respect to the switching times x1, . . . , xN involved. On the other hand, the presence of
more challenging event-driven dynamics shifts the main complexity burden to the higher-level
problem, as discussed in the next section.
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4 Switched Systems with Nondifferentiable Event-Driven Dy-
namics

In the problem of the previous section, the switching time dynamics are determined through

xi = xi−1 + si(zi, ui) (18)

which is a simple linear relationship. Thus, as already mentioned, the complexity is concentrated
in determining the optimal amount of time spent in mode i, si(zi, ui), whereas the event driven
dynamics yielding the switching time sequence {x1, x2, . . .} in this case are extremely simple.

The situation is very different when switching times are dependent upon two or more event
processes, in which case we must resort to (9) and analyze the timed automaton that coordinates
these processes. In what follows, we shall discuss a class of systems where the event-driven
switching time dynamics are described by

xi = max(xi−1, ai) + si(ui) (19)

where {ai}, i = 1, . . . ,N , is a given sequence of event times corresponding to an asynchronous
event process operating independently of the physical processes {zi(t), t ∈ [xi−1, xi)}. In fact,
the “max-plus” recursive equation (19) is the Lindley equation, well-known in queueing theory
[2], describing the times at which “customers” depart from a simple queueing system; in this case,
ai is the ith customer’s arrival time and si(ui) is the time required to process the ith customer,
dependent upon some control ui. In comparing (19) to (18), note that the key difference is the
presence of the max function, which introduces a nondifferentiable component into the solution
of the overall problem.

Thus, the problem we consider here is (13), subject to (2) and (19) and u as defined in (11).
This problem is largely motivated by the structure of many manufacturing systems: Discrete
entities (referred to as jobs) move through a network of workcenters which process the jobs so as
to change their physical characteristics according to certain specifications. Associated with each
job is a temporal state and a physical state. The temporal state of a job evolves according to
event-driven dynamics and includes information such as the waiting time or departure time of
the job at the various workcenters. The physical state evolves according to time-driven dynamics
which, depending on the particular problem being studied, describe changes in such quantities as
the temperature, size, weight, chemical composition, or some other measure of the “quality” of
the job. The interaction of time-driven with event-driven dynamics leads to a natural trade-off
between temporal requirements on job completion times and physical requirements on the quality
of the completed jobs. For example, while the physical state of a job can be made arbitrarily
close to a desired “quality target”, this usually comes at the expense of long processing times
resulting in excessive inventory costs or violation of constraints on job completion deadlines.
Our objective, therefore, is to formulate and solve optimal control problems of the form (13)
which capture such trade-offs.

In the context of manufacturing systems, the mode switches correspond to jobs that we index
by i = 1, . . . , N . We shall limit ourselves to a single-stage process modeled as a single-server
queueing system. The objective is to process N total jobs. The server processes one job at a
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time on a first-come first-served nonpreemptive basis (i.e., once a job begins service, the server
cannot be interrupted, and will continue to work on it until the operation is completed). Jobs
arriving when the server is busy wait in a queue whose capacity is ≥ N . As job i is being
processed, its physical state zi, evolves according to time-driven dynamics of the general form
(2), where xi−1 is the time when processing begins. The control variable ui will be assumed here
to be scalar and not time-dependent for simplicity; it is used to attain a final desired physical
state corresponding to a target “quality level”. Specifically, if the service time for the ith job is
si(ui) and Γi(ui) is a given set (e.g., a threshold above which zi satisfies a desired quality level),
then the control ui is chosen to satisfy the stopping rule

si(ui) (20)

= min

(
t ≥ 0 :

"
zi(xi−1 + t) =

Z xi−1+t

xi−1
gi(zi, ui, ν)dν + ζi

#
∈ Γi(ui)

)
where ui takes a fixed constant value during the interval [xi−1, xi−1 + t), and the “min” is
assumed to exist. On the other hand, the temporal state of the ith job, xi, represents the time
when the job completes processing and departs from the system. Letting ai be the arrival time
of the ith job, the event-driven dynamics describing the evolution of the temporal state are
given by (19). A typical state trajectory if this type of system is shown in Fig. 2. Note that the
interval (x1, a2] in this example corresponds to an “idle period” for the workcenter and causes
the second switching time to become, from (19), x2 = max(x1, a2) + si(ui) = a2 + si(ui).

…
x1 x2 xi xi+1  

= max(xi-1,ai) + si(ui) 

zi = gi(zi,ui,t) 
.

. . 
.

.

Physical State, z 

Temporal State, x 
a2 a3 

…

ai a1 

Figure 2: Typical state trajectory

To summarize, the optimization problem of interest here is

min
u1,...,uN

NX
i=1

[φi(ui) + ψi(xi)] (21)

s.t. xi = max(xi−1, ai) + si(ui)
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where a1, . . . , aN is a given input sequence of event times and si(ui) is specified through (20).
This is similar in form to classical discrete-time optimal control problems commonly found in
the literature (e.g., [1]) except for two issues. First, the index i = 1, . . . , N does not count time
steps, but rather asynchronously departing jobs. Second, the presence of the “max” function
in the state equation (19) prevents us from using standard gradient-based techniques, since it
introduces a nondifferentiability at the point where ai = xi−1. In effect, (21) formulates an
optimal control problem for a DES with dynamics given by (19), where the control variables
regulate interevent times.

In order to overcome the nondifferentiability introduced through the max in (19), one can resort
to nonsmooth optimization techniques, as in [14]. Under some reasonable assumptions on φi(ui)
and ψi(xi), it is shown that a unique solution exists and can be obtained explicitly through an
algorithm based on calculating generalized gradients and solving a Two Point Boundary Value
Problem (TPBVP). However, it turns out that one can exploit the structure of state trajectories,
as seen in Fig. 2, to decompose the overall problem (21) into a collection of simpler nonlinear
constrained optimization problems. A key observation is that, unlike the problem considered in
the previous section, there is no coupling of physical states when a mode switch occurs: after a
job is processed and departs at time xi with physical state zi(xi), the new mode corresponds to
a completely new job with physical state zi+1(x+i ) which is independent of zi(xi).

Taking a closer look at the state trajectory in Fig. 2, observe that it consists of periods during
which the workcenter is busy, separated by intervals during which it becomes temporarily idle,
as in (x1, a2). Recalling (19), note that all jobs processed within a busy period are such that
xi−1 ≤ ai, therefore, by (19) they satisfy

xi = xi−1 + si(ui)

where we allow for the possibility that a control ui is selected so that xi−1 = ai; we refer
to jobs with the property that they depart exactly when the next job arrives as “critical”, a
manifestation of the intuitive fact that processing jobs on a “just in time” basis is occasionally
(but not always) optimal. On the other hand, if a job initiates a busy period (equivalently,
terminates an idle period), then

xi = ai + si(ui)

To formalize this partition of the state trajectory into “busy” and “idle” periods, we make the
following definitions :

Definition 1. An idle period is a time interval (xk, ak+1) such that xk < ak+1 for any k =
1, ..., N − 1.

Definition 2. A Busy Period (BP) is a set of contiguous jobs {k, ...., n}, 1 ≤ k ≤ n ≤ N such
that the following conditions are satisfied

1. xk−1 < ak

2. xn < an+1

3. xi ≥ ai+1 for every i = k, ..., n− 1.
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Definition 3. A busy-period structure is a partition of the jobs 1, ...., N into busy periods.

Obtaining an explicit solution to problem (21) is tantamount to identifying the BP structure of
the optimal state trajectory (sample path) and then solving a nonlinear optimization problem
within each BP. If a BP is defined by the job indices (k, n), then we denote this problem by
Q(k, n):

Q(k, n) : min
u1,...,uN

NX
i=k

{φi(ui) + ψi(ak +
iX

j=k

sj(uj))} : si(ui) ≥ 0} (22)

s.t. ak +
iX

j=k

sj(uj) ≥ ai+1, i = k, ...., n− 1

Note that we have set ψi(xi) = ψi(ak +
Pi

j=k sj(uj)) since, within a BP, xj = aj + sj(uj) for all
i = k, ...., n−1. The constraint represents the requirement xi ≥ ai+1 for any job i = k, ...., n−1
belonging to the BP.

Let us also impose some basic conditions on the cost functions φi(ui) and ψi(xi):

Assumption 1: For each i = 1, . . . , N , φi(·) is strictly convex, twice continuously differentiable,
and monotonically decreasing with limui→0+ φi(ui) = − limui→0+

dφi
dui

=∞ and limui→∞ φi(ui) =

limui→∞
dφi
dui

= 0.

Assumption 2: For each i = 1, . . . , N , ψi(·) is strictly convex, twice continuously differentiable,
and its minimum is obtained at a finite point δi.

In addition, let restrict ourselves to controls ui that affect the processing time of the ith job
linearly:

Assumption 3: For each i = 1, . . . , N , si(·) is monotonically increasing and linear.

The latter assumption allows us, for simplicity, to replace si(ui) by ui and directly control all
processing times. Moreover, note that under the first two assumptions problem Q(k, n) is a
convex constrained optimization problem which is readily solved using standard techniques. We
denote the (unique) solution to this problem by u∗i (k, n), i = k, ...., n and the corresponding
event times by x∗i (k, n), i = k, .... Under these conditions, the following result provides a crucial
necessary and sufficient condition for identifying a BP on the optimal state trajectory making
use of solutions.

Theorem 4.1 (Cho et al. [15]) Jobs k, . . . , n constitute a single busy period on the optimal
sample path if and only if the following conditions are satisfied:

1. ak > x∗k−1

2. x∗i (k, i) ≥ ai+1 for all i = k, . . . , n− 1

3. x∗n(k, n) < an+1
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The significance of this necessary and sufficient condition is best understood as follows. Given
N jobs, the total number of possible BPs is given 2N−1. Thus, the complexity of exploring
all BP structutres in order to determine the optimal one is combinatorial in nature. However,
this complexity is reduced to linear using the theorem above: One proceeds forward in time
sequentially solving a problem of the form Q(k, n), with k = 1 initially, until the condition
x∗n(k, n) < an+1 is satisfied for some n ≥ k, at which point a BP defined by (k, n) is identified.
The process then repeats for a new problem Q(n+ 1,m) with m = n+ 1, n+ 2, . . . until a new
BP is similarly identified. This gives rise to the Forward Algorithm (FA) presented in [15]. It is
easy to see that the complexity of the FA is of the order of N convex constrained optimization
problems of the form (22). In fact, one can improve the efficiency of the FA even further, as
described in [16].

5 Conclusions

As time-driven and event-driven systems are rapidly merging, giving rise to a class of “hybrid”
dynamic systems, the field of optimal control is presented with an opportunity to expand its
horizons, combining the fundamental principles on which it was originally conceived with new
ideas that must tackle new forms of complexities. Some of these complexities are purely com-
binatorial in nature, the result of discrete elements in the problem such as switching events
and modes to choose form, which enlarge an already large state space. Others are the result
of nonlinear dynamics, including the type of nondifferential behavior one encounters in DES.
Yet another form of complexity, which was only briefly mentioned in Section 1, is due to the
stochastic nature of many state and/or input variables of interest.

In order to deal with these unavoidable and sometimes new types of complexities, it is clear
that we have to go beyond existing methods and to try and exploit any features present in the
structure of a system or the optimization problem itself. In this paper, we aimed to show how
a natural hierarchical decomposition of at least some classes of hybrid systems can simplify the
task of solving optimal control problems. Still, in most cases, one must resort to numerical
techniques in order to obtain explicit solutions, and this is before even considering the issue of
selecting over a set of feasible modes when a switch occurs or seeking solutions that are in some
sort of feedback form useful in practice.

In the case of the optimal control problem (21), we have been able to take advantage of a different
type of decomposition (over time, as opposed to over the system structure). However, we limited
ourselves to a scalar problem and it is unclear whether a similar efficient decomposition can be
used in a vector setting (e.g., a manufacturing system consisting of multiple workcenters).

Finally, an interesting issue that this new line of research has brought up is that of applying
Perturbation Analysis (PA) methods to hybrid systems in a way similar to the successful de-
velopment of PA for DES (see [2],[17]) that has contributed to the solution of some complex
optimization problems. Looking at problems in the fields of manufacturing, communication net-
works, transportation, and command-control systems, one is struck by the natural way in which
hybrid systems manifest themselves and optimization problems arise which the PA framework
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can help solve through on-line techniques that exploit the structure of sample paths and the
data one can readily extract from them. There are promising signs in this direction (e.g., see
[18]), a fact that should be gratifying to Larry Ho, since Perturbation Analysis for DES is also
an area that he pioneered in the early 1980s.
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