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SUMMARY

Energy systems influence many aspects of society, from the residential sector to the com-
mercial one. Improving the performance and efficiency of energy systems and guaran-
teeing their stability is a fundamental task of control engineers. In this regard, this thesis
presents modeling and control solutions for energy systems, with a focus on both elec-
tric and thermal ones. The thesis is divided in three parts. Firstly, we consider an online
partitioning and stability problem of a network applied to frequency regulation. Sec-
ondly, we present algorithms for energy management system of an electrical microgrid.
In particular, we focus on providing a trade-off between computational complexity and
performance of the obtained solution. Lastly, we focus on thermal energy systems by
designing an algorithm for room temperature control in commercial buildings.

In the first part of the thesis, we consider a linear switching large-scale system and
we focus on the problem of partitioning the system into smaller subsystems. We assume
that the different modes of the switching system are not known a priori, but they can be
detected. We propose an online scheme that can partition the system when the mode
switches, adapting therefore the partition to the mode of the switching system. The goal
of the partitioning algorithm is on the one hand to minimize the coupling between sub-
systems, in order to facilitate the task of a distributed/decentralized controller, and on
the other hand to obtain subsystems with similar sizes, in order to distribute the control
effort equally. Moreover, after the system has been partitioned, we apply a decentralized
state-feedback control scheme to stabilize the overall system. In order to prove stability,
we apply a dwell time stability scheme such that the closed-loop system remains sta-
ble even after both the mode and partition changes. The online partitioning method,
together with the control algorithm, is applied to an automatic generation control prob-
lem of frequency regulation in a large-scale power network.

In the second part of the thesis, we consider the energy management system problem
in a microgrid. We present several Model Predictive Control (MPC) approaches for opti-
mally managing the power flows in the microgrid, from an economical point of view. The
microgrid is modeled using the Mixed Logical Dynamical (MLD) framework. We provide
three different strategies that yield a trade-off between computational complexity and
performance by parameterizing the inputs to the system. First, we propose a parametric
MPC approach, in which the continuous inputs are expressed as parametric functions
and the binary variables are heuristically parameterized. Next, we propose an if-then-
else parametrization of the binary variables in the MLD model, so that they are assigned
a value before the optimization takes place, yielding therefore a real-valued optimization
instead of a mixed-integer one. Finally, we use past optimization results obtained from
simulations to develop two machine learning methods, i.e. decision trees and random
forests, that can provide a binary variable configuration so as to, once again, remove
the binary variables from the optimization problem. The results obtained show that the
methods can provide a very large decrease in computation time while having almost no
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14 SUMMARY

loss in performance. Simulation results show how the developed methods are able to
provide a large reduction in computation time while having a very little performance
loss.

Lastly, in the third part we focus on thermal networks. We propose a scenario-based
MPC approach to control the temperature room in office buildings. The building is
modeled using the tool Modelica that yields a better model description compared to
linearized models. The adopted scenario generation method improves upon the cur-
rent literature by considering that the marginal distributions depend both the predic-
tion time steps and on time itself and that the distributions of the disturbances are not
stationary. By combining scenario-based MPC together with Modelica, we can improve
the performance of the controller of the building and we show this by comparing our
method against a deterministic method using a Modelica model description, but also
against the same controllers with a linearized model.



SAMENVATTING

Energiesystemen beïnvloeden vele aspecten van de samenleving, waaronder de residen-
tiële en de commerciële sector. Het verbeteren van de prestaties en efficiëntie van ener-
giesystemen en het garanderen van hun stabiliteit is een fundamentele taak van regel-
technische ingenieurs. Dit proefschrift presenteert wiskundige modellen en regelaars
voor energiesystemen, met een nadruk op elektrische en thermische energiesystemen.
In total bestaat het proefschrift uit drie delen. Ten eerste beschouwen we een online
partitionerings- en stabiliteitsprobleem van een energienetwerk dat wordt toegepast op
frequentieregulatie. Ten tweede presenteren we regeltechnische oplossingen voor het
energiebeheersysteem van een elektrisch microgrid. We richten ons in het bijzonder op
de afweging tussen de benodigde rekentijd en de prestaties van de ontworpen regelaar.
Ten slotte richten we ons op thermische energiesystemen door een algoritme te ontwer-
pen voor het regelen van de kamer temperatuur in commerciële gebouwen.

In het eerste deel van het proefschrift beschouwen we een lineair schakelend groot-
schalig systeem en richten we ons op het probleem van het partitioneren van het sys-
teem in kleinere subsystemen. We gaan ervan uit dat de verschillende modi van het
schakelsysteem a priori niet bekend zijn, maar wel gedetecteerd kunnen worden. We
stellen een oplossing voor dat het systeem online kan partitioneren wanneer de modus
verandert, waardoor de partitionering wordt aangepast aan de modus van het schakel-
systeem. Het doel van het partitioneringsalgoritme is enerzijds het minimaliseren van de
koppeling tussen subsystemen om de taak van een gedistribueerde / gedecentraliseerde
regelaar te vergemakkelijken, en anderzijds het verkrijgen van subsystemen met verge-
lijkbare grootte om de benodigde rekenkracht evenredig te verdelen. Bovendien pas-
sen we, nadat het systeem is gepartitioneerd, een gedecentraliseerd regelaar met staat-
terugkoppeling toe om het algehele systeem te stabiliseren. Om stabiliteit te bewijzen
passen we een verblijfstijd stabiliteitsmethode toe zodat het gesloten-lus systeem stabiel
blijft, ook na modus- en partitiewijzigingen. De online partitioneringsmethode wordt
samen met de regelaar toegepast voor frequentieregulatie in een grootschalig elektrici-
teitsnetwerk.

In het tweede deel van het proefschrift beschouwen we het energiebeheer in een mi-
crogrid. We presenteren verschillende Model Predictive Control (MPC) regelaars voor
het economisch optimaal beheren van de stroom in het microgrid. Het microgrid is
gemodelleerd in de Mixed Logical Dynamical (MLD) omgeving. We stellen drie ver-
schillende regelstrategieën voor die een compromis opleveren tussen de benodigde re-
kenkracht en de prestaties van de regelaar. Eerst stellen we een parametrische MPC-
benadering voor, waarbij de ingangen naar het systeem worden uitgedrukt als parame-
trische functies en de binaire variabelen heuristisch worden benaderd. Vervolgens stel-
len we een als-dan-anders-parametrisering voor van de binaire variabelen in het MLD-
model zodat ze een waarde krijgen toegewezen vóórdat de optimalisatie plaatsvindt, wat
een optimalisatie in het reële domein oplevert in plaats van een gemengde integer op-
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16 SAMENVATTING

timalisatieprobleem. Ten slotte gebruiken we optimalisatieresultaten verkregen uit si-
mulaties om twee machine learning oplossingen te ontwikkelen, namelijk beslissings-
bomen en willekeurige bossen. Deze oplossingen bieden de mogelijkheid om binaire
variabelen uit het optimalisatieprobleem te verwijderen. De resultaten laten zien dat de
verwijdering van binaire variabelen een zeer grote afname van de benodigde rekentijd
kunnen opleveren, terwijl ze tot vrijwel geen prestatieverlies leiden. Simulatieresultaten
laten zien hoe de ontworpen oplossingen in staat zijn de benodigde rekentijd significant
te verkleinen zonder een merkbaar verlies in de potentie van de oplossing.

Ten slotte richten we ons in het derde deel op thermische netwerken. We stellen
een scenario-schakelende MPC-regelaar voor om de temperatuur in kantoorgebouwen
aan te sturen. Het gebouw is gemodelleerd met de software Modelica, die een betere
modelbeschrijving oplevert dan vergelijkbare lineaire modellen. De methode die wordt
gebruikt voor het genereren van verschillende scenario’s is nieuw ten opzichte van de
huidige literatuur door mee te nemen dat de marginale kansverdelingen zowel afhangen
van de voorspellingstijdstappen als van de tijd zelf. Daarnaast neemt deze vernieuwende
aanpak mee dat de kansverdelingen van de verstoringen niet stationair zijn. Door deze
scenario-schakelende MPC-regelaar te combineren met Modelica kunnen we de presta-
ties van de temperatuur regelaar verbeteren. Dit laten we zien in tweevoud, ten eerste
door onze methode te vergelijken met een deterministische methode met behulp van
een Modelica-modelbeschrijving, en ten tweede door een vergelijking met dezelfde re-
gelaars met een lineair model.







1
INTRODUCTION

1.1. OUTLINE
This chapter presents a brief explanation about the evolution that electrical grids have
undergone in the last years, together with the motivation for the research, the contri-
butions and research goals, and the thesis outline. In Section 1.2, we discuss briefly the
transition from “traditional” power networks to so called Smart Grids. In Section 1.3 we
present the motivation behind our research and we discuss its main contributions in
Section 1.4. Lastly, the outline of the rest of the thesis is presented in Section 1.5.

1.2. FROM TRADITIONAL GRIDS TO ‘SMART GRIDS’
The power network, designed around 100 years ago, was used for many decades with
any major modification. Energy was delivered from centralized power plants to the cus-
tomers, which were acting only as energy-takers. If more energy was required, then the
power plants would simply produce more energy to maintain the power balance. The
production would, therefore, adapt to the needs of the demand [1].

Things started to change with the introduction of renewable energy sources, e.g. so-
lar power, wind power. At the beginning, the share of this kind of energy in the total
production was low, but it began to increase rapidly in the last years. The reasons for this
increase are many: climate change and related carbon emission reduction policies, elec-
tronics improvement, new low-carbon technologies, new market structures, and market
profitability. With new sources in the power network, new paradigms also arose. Differ-
ently from traditional power plants, renewable energy sources cannot provide a desired
amount of power, but they just provide the power that is available at that moment [2].
Moreover, energy generation started to become more and more distributed across the
territory, since private citizens started to install photo-voltaic panels or small wind tur-
bines in their homes or farms. These changes led therefore to the creation of small elec-
trical grids, or “microgrids”, which are self-contained small networks with energy stor-
age systems, loads, production units, a centralized control unit, and a connection to the
main grid [3, 4]. Lastly, technology advancements e.g. faster communication, smaller de-
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2 1. INTRODUCTION

vices, larger memories, have also reshaped power networks from a control perspective,
since they opened many more possibilities in the control architecture.

Many characteristics have therefore changed in the power network. Consumers that
produce energy are now referred to as “prosumers” [5], from the merging of the words
“producer” and “consumer”, and they take an active part in the grid. Moreover, given
the higher volatility of production due to renewable energy sources, now the flexibility
is demanded on the customers side, i.e. it is the demand that has to adapt to the supply,
and not vice versa. This strategy is referred to as “demand side management” [6]. Lastly,
the architecture of power networks has changed from a centralized one to a distributed
one [7].

In the same way, building heating systems have also benefited from the technology
advancements [8, 9]. New sensors, data collection, weather forecast, intelligent devices
are all new concepts from the last years that are changing and reshaping building au-
tomation. It is now possible to completely automate a building and control all its units
related to heating, ventilation, and cooling remotely. Moreover, disturbance data can
be gathered and predicted and therefore a smart controller can be implemented. These
changes have led therefore to an increase in the level of automation in a building and
have radically changed buildings and opened new opportunities. For instance, build-
ings are now also active actors in the energy grid since they can also be energy flexible
and help when there is an excess or lack of generation [10, 11].

All these changes have introduced new opportunities but also new challenges. In
this thesis we focus on some aspects of control strategies related to energy networks.
The interested reader is referred to [12] for a survey about smart grids and to [8, 9, 13] for
surveys about smart buildings.

1.3. MOTIVATION OF THE RESEARCH
Given the previous discussion, it is clear that the evolution of energy networks opened
also new challenges that have to be faced using new control paradigms. We present here
three different challenges that are the main motivation of the work presented in this
thesis.

Guaranteeing the stability of large-scale power networks is of the utmost importance.
This goal can be achieved through a stabilizing control action that, based on information
of the system, can keep it close to its nominal point. This is the case e.g. for frequency
regulation, application in which the frequency has to stay close to its nominal value,
otherwise instability might occur. In some cases, however, the controller might not work,
due to e.g. faults in the network such as broken link. In these cases, the controller, and
the control architecture, should be updated to maintain the stability.

Together with stability, computational tractability of control algorithms must be
taken into account, such that the controller can still be applied successfully even in
the case of low computational power or a big size of the problem. In this regard, the
models used to manage the power flows inside microgrids contain both integer and
continuous variables. Thus, when solving an optimization-based control problem with
these models, the resulting problem will be a mixed-integer one, which results in a
large computational complexity that has to be explicitly considered in the design phase.
Therefore, control tools that can provide a reduction in computational complexity while
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yielding similar performance, or that can provide a trade-off between computational
complexity and performance, are needed.

Another important aspect in energy networks is the stochasticity of the processes
that affect the system under control. In particular, in building heating systems, both
exogenous disturbances, e.g. solar irradiance, ambient temperature, and endogenous
ones, e.g. occupancy, are important processes to consider when defining the control ac-
tion. Most of the controllers currently implemented in buildings either consider a simple
and inefficient rule-based controller or they use more advanced control techniques, by
making, however, many simplifications that might reduce the performance of the con-
trollers. In order to improve the efficiency of building heating systems, and in turn to
reduce energy consumption and carbon emissions, it is important to measure how these
simplifications done can undermine the performance of the control actions.

In this thesis, we present novel control techniques to tackle the three aforementioned
problems of energy networks. In particular, we consider an online partitioning and sta-
bility problem of a power network with the goal of performing frequency regulation.
Then, we present three different algorithms for the energy management system problem
within microgrids, focusing on particular on strategies that provide a trade-off between
computational complexity and performance. Finally, we design a control algorithm for
room temperature control in commercial buildings that explicitly considers stochasticity
of the processes that affect the building under control and we compare it against other
commonly applied methods from the literature.

1.4. CONTRIBUTIONS
This thesis focuses on three main parts as explained in the previous paragraph. Two
parts focus on electrical networks while the last one focuses on building heating systems.
Based on the literature survey background that will be presented in Chapter 2, we have
identified several gaps in the literature that we want to cover with the work presented
here. Therefore, the main contributions of this thesis are the following:

• Providing an online partitioning algorithm. We present a novel partitioning al-
gorithm to divide a large-scale system into smaller subsystems. The goal of the
algorithm is to minimize the coupling between subsystems and at the same time
to obtain subsystems of similar size. The algorithm can be executed online so that
partitions can be changed if there is a change in the underlying large-scale system.

• Proving stability of large-scale partitioned switching systems. After a large-scale
switching system has been partitioned into smaller subsystems, we show how to
stabilize the overall system by applying a decentralized state-feedback controller.
Moreover, we prove how stability is preserved even if there are changes in the over-
all system, i.e. if the overall large-scale switching system switches to another mode.

• Designing control algorithms that provide a trade-off between complexity and
performance for microgrids. We present different model predictive control
algorithms for energy management problems in microgrids. These algorithms
can provide a trade-off between computational complexity and performance. In
particular, these methods aim to reduce the computational complexity of energy



4 1. INTRODUCTION

management problems by reducing or removing the amount of binary variables
in the problem. When all the binary variables are removed, the optimization
problem becomes a real-valued one. Moreover, these algorithms show a very
large decrease in computational complexity while having almost no loss in
performance.

• Developing rule-based and machine learning methods for assigning the value
to binary variables in mixed logical dynamical models. We propose a novel rule-
based framework that uses if-then-else rules to assign the value to binary variables
in mixed logical dynamical models. The rules are based on available external in-
formation, e.g. electricity prices and loads profiles, and parametrize all the binary
variables in the model. We also develop a second algorithm that applies the same
concept, but uses two machine learning tools, i.e. binary decision trees and ran-
dom forests, instead of a set of heuristic rules.

• Developing a stochastic building heating controller using a nonlinear model. In
the context of building heating systems, we present a novel model predictive con-
trol algorithm that uses both a stochastic scenario-based controller and a nonlin-
ear model description, which provides a richer level of detail of buildings com-
pared to a linear model. In the literature of building heating systems, there have
been so far either stochastic model predictive control algorithms that use a lin-
earized model or deterministic model predictive control algorithms that use non-
linear models. We fill this gap by merging the two frameworks in one single con-
troller.

The thesis is based on the works [14–18]. In particular, [16–18] are a joint work with
other researchers.

1.5. THESIS OUTLINE
The structure of the thesis and its division in different chapters is shown in Figure 1.1.
The arrows show the preferred reading sequence of the chapters. After the current intro-
duction chapter, Chapter 2 presents a literature background of the three different topics
that will be discussed in Chapters 3-5.

In Chapter 3, we present a partitioning algorithm that can be performed online to-
gether with a stabilizing decentralized state-feedback controller for large-scale switching
systems. Stability of the overall scheme is proved using concepts from switching systems
theory. The partitioning algorithm, together with the stabilizing controller, is applied to
a frequency regulation problem.

Chapter 4 discusses three different model predictive control algorithms that use dif-
ferent parameterizations for the control variables in mixed logical dynamical models. In
particular, the first method parametrizes the continuous control variables using para-
metric functions and the binary control variables using if-then-else rules. The second
method parametrizes only the binary control variables using heuristic if-then-else rules
that are based on information about external variables e.g. loads, renewables, and prices.
Lastly, a third method follows the same idea of the second one, but using machine learn-
ing methods for assigning the value to the binary decision variables instead of if-then-
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Chapter 2:
Background on modeling and

control of energy systems

Chapter 
:
Introduction

Chapter 4:
Parametric methods for energy

management system in

microgrids

Chapter 3:
Online partitioning and

decentralized control of

large�scale systems

Chapter 6:
Conclusions and future research

Chapter 5:
Scenario�based control

strategies for heating systems

in buildings

Figure 1.1: Structure of the thesis. Arrows indicate logic reading order.

else rules. All the methods are applied to a microgrid energy management system prob-
lem.

In Chapter 5 we present a control algorithm for room temperature control in com-
mercial buildings. In particular, we develop a scenario-based model predictive con-
troller using a nonlinear model designed with the tool Modelica that can provide a higher
model accuracy. Moreover, our developed controller explicitly considers stochasticity of
the processes that affect the building under control, e.g. solar irradiance, outside ambi-
ent temperature, and we compare it against other commonly applied methods.

Lastly, Chapter 6 presents conclusions for the whole thesis and also some remarks
for future extensions of the work presented here.





2
BACKGROUND ON MODELING AND

CONTROL OF ENERGY SYSTEMS

2.1. INTRODUCTION
This chapter presents some literature background for the three core parts of this thesis,
i.e. Chapters 3–5. Section 2.2 discusses the literature background about system parti-
tioning and serves as an introduction to Chapter 3. In Section 2.3, some literature back-
ground of different MPC algorithms is presented. The background on energy manage-
ment problems of microgrids is presented in Section 2.4. Sections 2.3 and 2.4 serve as
literature background of Chapter 4. Section 2.5 discusses the current literature about
control of building heating systems and Section 5.4.1 presents a literature background
about scenario generation methods for building heating systems. Sections 2.3, 2.5, and
5.4.1 introduce Chapter 5. Lastly, conclusions are drawn in Section 2.6.

2.2. SYSTEM PARTITIONING FOR LARGE-SCALE SYSTEMS
Large-scale systems (LSSs) are systems in which the number of compositional elements
are both large in number and geographically widespread [19–24]. Examples include wa-
ter networks [20], traffic networks [21], and power networks [22]. Moreover, LSSs can
also be time-varying, in the sense that some characteristics or parameters, such as their
topologies, may not be constant along time.

Due to the large amount of data and elements in the network, control of LSSs is
not a trivial task [25]. Although in small-sized plants a centralized controller can make
the closed-loop system achieve a suitable performance, in LSSs a centralized controller
would have to face many issues related to the amount of data, the distance between ele-
ments, and the large number of control variables [26, 27]. One of the problems is related
to the communication between elements of the network, since the distance between
them might cause problems such as delays or packet loss [25, 27, 28]. This fact holds
in cases in which a centralized controller would have to collect information about the
states from many or all the other nodes, e.g. state feedback control or MPC. Moreover,

7
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for some optimization-based control strategies, the computational complexity arising
from centralized control of the LSS might make the central optimization problem too
difficult to solve in a limited amount of time. An idea to overcome these problems is to
partition the system into subsystems and to apply a non-centralized controller, which
can be either decentralized or distributed. In both cases, some problems of the central-
ized scheme could be overcome, since the control input is computed and applied locally.
In decentralized control approaches, controllers do not exchange information amongst
themselves and they apply a control input that does not take directly into account the
coupling between different subsystems [26, 29, 30]. As one could expect, this strategy
works better when the coupling between subsystems is weak. On the other hand, dis-
tributed control strategies consider that a communication infrastructure is present in
the system and thus the different subsystems can exchange information amongst them-
selves [27, 28]. This information can be either related to the local state, or the local con-
trol action, or to both. Therefore, the local controllers can include extra information into
their control problem. In both cases, the communication flow and the computational
complexity per controller are reduced, since the LSS control problem is split into smaller
control problems among several subsystems.

Prior to applying a non-centralized controller, partitioning or decomposition of the
LSS into smaller subsystems is required. Some early works that propose an automatic
system decomposition approach were published in the 1980s, e.g. [31, 32]. In these ar-
ticles, the system is described as a graph and the partitioning objective is to minimize
coupling between the resulting subsystems. Some recent papers, e.g. [33–36] also con-
sider system decomposition as a graph partitioning problem. In this regards, the meth-
ods that are proposed in the aforementioned papers, can be classified into three broad
classes: global methods, which take a graph as their input and produce a partition, e.g.
spectral bisection methods [33, 34]; local improvement methods, which refine an initial
partition [35]; and multi-step methods, which combine a simple global method and a
local improvement method [36] in order to obtain a compromise between the computa-
tional burden and the quality of the solution.

However, to the best of our knowledge, little or no interest has been given to parti-
tioning of time-varying systems. In the literature, the partitioning procedures are con-
sidered as an offline task that is carried out only once, before applying a non-centralized
control approach. This fact could lead however to instability when the system under
control is time-varying. Indeed, since a change in the dynamics implies, in general, a
change in the couplings between subsystems, a control scheme based on a previous de-
scription of the system might not be able to stabilize the system under control after that
change1.

We consider linear switching LSSs in which we assume that, at certain moments in
time, the description of the current system changes and the dynamics in the state space
are described by a new (A,B) pair. Note that since we assume that we cannot control the
switching sequence of the system towards different modes, we have a switching system.

Definition 2.1. A linear switching system is a system with dynamics given by

x(k +1) = Aσ(k)x(k)+Bσ(k)u(k),

1This is shown in Example 3.1 in Chapter 3.
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where x is the state vector, Aσ(k) is the state matrix, Bσ(k) is the input matrix, u(k) is the
input vector, k is the current time step, and σ(·) is a piecewise constant function called
switching signal that takes discrete values and associates to each time step k a different
mode. Moreover, if one can arbitrarily choose the switching signal σ(k), then the system is
called switched [37]. ♦

When studying stability of switching systems, one has to take directly into account
the switchings of the system since guaranteeing stability of each mode is not enough
to guarantee stability of the overall system [38, 39]. Indeed, as shown in [40], switching
between two asymptotically stable modes might result in a divergent trajectory; on the
other hand, switching between two unstable modes can result in a stabilizing trajectory.

2.3. MODEL PREDICTIVE CONTROL ALGORITHMS

This section presents different Model Predictive Control (MPC) algorithms that will be
used in Chapters 4–5.

2.3.1. STANDARD MPC

MPC is an established control approach that has been extensively studied and success-
fully applied in many fields in the last forty years [41–45]. At each time step k, an online
optimal control problem is solved, using a model of the system under control for com-
puting predictions of the future states up to a certain prediction horizon Np. The opti-
mization problem results in a sequence of optimal inputs, but only the first element in
the sequence is applied to the system. At the following time step k +1 the system state
is sampled and a new optimization problem is solved, shifting the prediction horizon
one time step forward. Thanks to this strategy, MPC controllers are able to handle, to a
certain extent, uncertainties, model mismatches, and disturbances, since they can com-
pensate for these errors when the system is sampled again and a new optimization prob-
lem is carried out [41–43]. Moreover, since the MPC strategy turns the control problem
into an optimization one, constraints on the inputs, states, and outputs can be naturally
included into the control problem.

Figure 2.1 shows the rationale behind MPC. At the current time step k, the system is
sampled and the current state is measured or estimated. Based on this, an optimization
problem is solved to find the optimal inputs to the system. The optimization problem is
based on constraints of the system under control and a cost function to be minimized,
which can be defined according to the specific problem. Many different kinds of cost
functions can be defined; however, in most of the cases, a linear or quadratic cost func-
tion is used in order to obtain a convex problem or at least to avoid the complexity arising
from nonlinear, non-quadratic optimization problems.
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past future

current state
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computed control inputs

k k +1 k +Np

u(k)

u(k +1)

prediction horizon

Figure 2.1: Illustration of the rationale behind MPC.

A standard MPC optimization problem can be written as

minimize
u

Np−1∑
i=0

J (x(k + i ),u(k + i )) (2.1a)

subject to g (x(k + i ),u(k + i )) ≤ 0, for i = 0, . . . , Np −1, (2.1b)

x(k + i +1) = f (x(k + i ),u(k + i )) , for i = 0, . . . , Np −1, (2.1c)

x(k) = x0 (2.1d)

where J (·) is the cost function, x represents the state vector, u represents the input vector,
k is the current time step, x0 is the initial state, Eq. (2.1b) represents the constraints on
the states and inputs, and Eq. (2.1c) represent the dynamics of the states. Problem (2.1)
refers to a generic system with any kind of cost function, constraint, and dynamic, but it
can be adapted according to the system and problem under control, e.g. linear systems
with a quadratic cost function.

2.3.2. MPC FOR HYBRID SYSTEMS
Systems containing both discrete and continuous variables, as the one considered in
Chapter 4, are called hybrid systems. These systems arise in many applications, e.g. au-
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tomotive systems [46], electrical systems [47], water management [48], traffic systems
[49], aerospace applications [50]. In particular, hybrid systems arise whenever in the
system are present e.g. valves or switches that cannot be modeled with real variables
[51]. Many models have been proposed during the years to represent such systems in
an efficient way. In this thesis, we use in particular the Mixed-Logical Dynamical (MLD)
framework proposed in [52] that allows to model hybrid systems using only continuous
variables, binary variables, and a set of linear inequalities. Moreover, MLD models can
be applied in an efficient manner together with an MPC controller. A standard MLD
model is represented as

x(k +1) = Ax(k)+B1u(k)+B2δ(k)+B3z(k) (2.2)

y(k) =C x(k)+D1u(k)+D2δ(k)+D3z(k) (2.3)

E1x(k)+E2u(k)+E3δ(k)+E4z(k) ≤ E5, (2.4)

where k is the current time-step, x(k) ∈Rn is the state vector, u(k) ∈Rm is the input vec-
tor, and z(k) ∈ Rrz and δ(k) ∈ {0,1}rb are auxiliary variables, which are needed to model
the logical statements in algebraic terms. The constraints of Eq. (2.4) are interpreted
component-wise.

When it comes to solving an MPC optimization problem using an MLD model (from
here on we will refer to this problems as MLD-MPC problems), the problem (2.1) be-
comes a mixed-integer one. In particular, MLD-MPC problems result in a Mixed-Integer
Linear Programming (MILP) problem or in a Mixed-Integer Quadratic Programming
(MIQP) problem if a linear or a quadratic cost are used, respectively, and all the
constraints are linear. MILP and MIQP problems are NP-hard and have a worst case
complexity that is considered to be exponential in the number of optimization variables
[44, 53]. This is also related to the fact that properties e.g. convexity are lost due to
the binary variables. Furthermore, one could think about enumerating all the possible
combinations of binary variables and solve all the respective linear programming (or
quadratic programming) problems, taking the solution with the lowest cost as the
optimal one. However, this is in general not possible, due to high amount of binary
variables in MPC-MLD problems. As a simple example, consider that an MLD-MPC
model with 10 binary variables and a prediction horizon Np = 48, entails a total number
of 210 ·48 = 49152 possible combinations. Therefore, efficient solvers that use advanced
techniques, e.g. branch-and-bound [54], have to be considered.

2.3.3. PARAMETRIZED MPC
Parametrized MPC [55] is a useful tool when the MPC optimization problem is hard to
solve and therefore the computational complexity has to be reduced. In this framework,
the inputs are parametrized as a function of parameters θ, external known (or estimated)
variables y , and states x, i.e. u(k) = f (x(k), y(k),θ(k)). The optimization is carried out
over the parameters, instead of over the inputs. The advantage of parametrized MPC
is that the computational complexity can be decreased since the number of decision
variables is reduced, if the number of components of θ(k) is less than the number of
components of u(k), or if θ(k) is taken constant over the prediction window. Moreover,
while in strategies in which the input is blocked the value of the input remains constant
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Figure 2.2: Illustration of possible choice of number of parameters in the parametrized MPC.

[41], in parametrized MPC the inputs can change since they depend not only on the
parameters but also on the states or other variables.

Different numbers of parameters can be used in parametrized MPC, as explained in
[55] and as shown in Figure 2.2. For instance, it is possible to allow the parameters θ to
vary at every time step to increase the performance, as in the bottom of Figure2.2, or to
block the value of the parameters so that they cannot vary over the prediction window, as
in the top of Figure 2.2, yielding a faster solution. Therefore, the number of parameters
acts as variable that can be tuned and it provides a trade-off between performance and
computational complexity. Note that even if the parameters are “blocked” for the whole
prediction horizon, as shown in the top of Figure 2.2, the inputs u would still be different
since they also depend on the states x and variables y .

2.3.4. SCENARIO-BASED MPC
When disturbances act into the system under control, it is possible to improve the per-
formance of the deterministic MPC of Section 2.3.1 by considering several scenarios of
the disturbances. This approach, known as scenario-based MPC (SBMPC), and it con-
siders multiple realizations (or scenarios) of the disturbances, different system states for
each scenario, and a cost function that consists of the average of the original cost func-
tions across all scenarios, as approximation of the expected value of the cost. For the
control inputs, two possibilities exist: shared control inputs across all scenarios and dif-
ferent control inputs for each scenario (as with the system state), except for the first time
step for which the same input for all the scenarios is kept. While the latter has the ad-
vantage of being less conservative, the former is more computational friendly.
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2.4. MIXED-INTEGER ENERGY MANAGEMENT SYSTEMS FOR

MICROGRIDS

As explained in Section 1.2, energy transition from fossil fuels to renewable energy sour-
ces is taking place in many countries, with the goal to improve the sustainability and to
decrease the environmental impact of energy production while trying to keep the same
services that are provided with the traditional power grid [56]. Indeed, the integration
of renewable energy sources poses many challenges, especially for what concerns their
intermittent nature [4, 12]. In this context, in recent years, the concept of microgrids has
been extensively considered in the scientific literature within the framework of smart
grids; see [3, 4, 12, 57] and the references therein about smart grids and microgrids,
and [47, 58–67] for recent microgrid-related work. Microgrids are small size electrical
grids that include elements such as local production units, local loads, and local energy
storage systems. There are many benefits related to the adoption of the concept of mi-
crogrids in the presence of renewable energy sources [12], e.g. the easier integration of
low-carbon technologies, the fact that energy produced locally is also used locally, thus
transportation costs and a decrease in efficiency are avoided.

In order to optimize the power flows within the microgrid, a control strategy must
be implemented and recently some MPC schemes for energy management of micro-
grids have been presented [47, 62–67]. The work [62] discusses a two-layer energy man-
agement system in which the upper layer minimizes the total operational costs and the
lower layer tries to mitigate the fluctuations induced by the forecast errors, by using sev-
eral energy storage systems. The authors of [47] present a procedure for modeling the
different components of the microgrid and they apply an MPC algorithm that uses an
economical cost function. This work is extended in [63] to a stochastic MPC approach,
considering a stochastic controller that uses forecasts of loads and renewable energy
sources. A stochastic MPC approach is used also in [64], which presents a hierarchical
controller structure, in which the upper level solves an off-line open-loop optimal con-
trol problem and the lower level, with knowledge about the stochastic processes within
the microgrid, takes care of tracking the solution provided by the upper level. The ap-
proach considered in [66] involves a two-level hierarchical MPC controller, where the
upper level solves on a long time scale the unit commitment problem, i.e. the problem
of deciding whether to turn off or on the local generators, and the lower level solves on
a smaller time scale the economic dispatch problem, i.e. the problem of choosing the
optimal power flows, once the unit commitment problem is solved. In all the mentioned
papers, the overall MPC optimization problem is cast as a MILP problem, which is hard
to solve, as explained in Section 2.3.2.

Many works have been proposed to solve MILP problems in an efficient way [54, 68–
70]. In particular, decomposed methods [71, 72] split a specific problem into a “master”
problem and one or more “slave” problems. In [71, 72], a set of so called complicat-
ing variables, which are the main source of complexity in the problem, are identified
in the integer program. The non-complicating variables are projected out of the inte-
ger program. The master problem then seeks for a solution to the new integer program,
while the slave problem either determines that the master problem is feasible for the
original integer program or produces a constraint that it violates. The resulting “Bender
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cuts” are then added to the original master problem. Another approach is the so called
“branch-and-price” method [73, 74], where instead of adding new constraints to the (pri-
mal) master problem, a separation between feasible and infeasible solutions for the dual
of the master problem is used to add new constraints to the dual problem. This approach
was first described in [75], together with a decomposition method called Dantzig-Wolfe
decomposition. The interested reader is referred to [54, 68, 69] and the references therein
for more details on MILP methods.

Nevertheless, the worst-case computational complexity of MILP problems, like the
MLD-MPC problem with a long horizon related to microgrid energy management sys-
tems, remains exponential in the number of integer variables. Moreover, although nowa-
days there are some efficient solvers to solve this kind of programming problems, e.g.
Gurobi [76] or CPLEX [77], the overall complexity of MILP problems is NP-hard. Com-
bining this with the fact that usually in microgrid operation optimization the prediction
horizon is quite long, i.e. 24h, the overall computational complexity of the MPC-MILP
problem can be too high. In Chapter 4 we explore some solutions to alleviate the com-
putational complexity of MLD-MPC problems in energy management systems for mi-
crogrids.

2.5. MODEL PREDICTIVE CONTROL FOR HEATING AND COOL-
ING SYSTEMS

MPC algorithms have been proposed to deal also with heating and cooling systems in
buildings using information available on the current room temperature and forecasts of
the disturbances. In general, MPC can deal well with disturbances by using a robust or
stochastic controller [42], which can achieve a better performance than the determinis-
tic counterpart. However, despite having a better constraint satisfaction, a robust MPC2

controller is often too conservative for the task of controlling the temperature of a room
and it could result in a high amount of energy used; therefore, usually a stochastic MPC
controller is preferred for building heating systems [78, 79]. Indeed, by considering the
stochastic properties of the disturbance or by considering several disturbance scenarios,
stochastic MPC controllers can potentially achieve a better control performance com-
pared to deterministic controllers, leading therefore to a reduced energy consumption
while limiting the discomfort. In particular, SBMPC methods, presented in Section 2.3.4,
stand out as a useful tool in building heating systems, since they can use past data of the
disturbances, which are available in the case of building heating systems, and they can
successfully be applied to nonlinear models as well [78].

In this regard, several types of MPC algorithms have been applied to building heating
systems in the literature [79–89]; see also [13, 90] and the references therein. In partic-
ular, [80] presents two stochastic MPC algorithms, i.e. a disturbance-feedback approach
and a chance-constraint one. The results show that the stochastic controllers achieve
a better performance than deterministic MPC and rule-based control. The authors of
[79, 81] develop an SBMPC controller that does not make assumptions on the distribu-
tion of the uncertain variables and it uses copulas. The concept is also extended to an
explicit SBMPC controller in [83] and to a distributed case in [84]. In all these articles it is

2In robust MPC, the constraint satisfaction is guaranteed for any disturbance realization.
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shown how stochastic MPC strategies can achieve a better performance than determin-
istic MPC. The article [85] presents an MPC algorithm in which a linear model is used
to control a building including an active cold thermal storage in order to implement a
demand response program. All these works, i.e. [79–81, 83–85], use a linearized model
description and do not use a nonlinear model nor other modeling tools, e.g. Modelica
[91, 92]. Such tools and nonlinear models are important for building heating control
because they can provide a more accurate description of the building and on the in-
fluence of each disturbance, reducing therefore the modeling error and improving the
overall performance. The article [93] adopts a nonlinear model arising from the heat
pump and a battery inverter considered, but the considered MPC controller is a deter-
ministic one. For what concerns nonlinear models, while some works did consider their
usage for building heating systems systems, e.g. [82, 86–88], all of them considered a de-
terministic setting instead of a stochastic one. To the best of our knowledge, no work
has considered a nonlinear model description obtained through Modelica together with
a stochastic controller, which would improve the performance by taking into account a
more accurate model and the stochastic properties of the disturbances. Such controller,
i.e. a SBMPC controller that uses a nonlinear Modelica model, is presented in Chapter 5
and applied to building heating control.

2.6. CONCLUSIONS
In this chapter, we have introduced a literature background that serves as introduction
for the next chapters. In particular, we have introduced the topic of partitioning a large-
scale into smaller subsystems that will be further analyzed in Chapter 3. Secondly, we
have introduced the control tool MPC that will be used in Chapters 4–5. We have first
discussed the standard, deterministic MPC problem and then we have introduced other
three kinds of MPC that will be used in the subsequent chapters of this thesis, i.e. hybrid
MPC, parametrized MPC, and scenario-based MPC. Lastly, we have presented a litera-
ture background on MPC for heating and cooling systems, which will be considered in
Chapter 5.

From this chapter and from the topics here presented, many challenges arise. In
particular, for what concerns the partitioning of large-scale systems, a lack of results in
the context of large-scale time-varying systems appears. At the same time, in order to
partition such large systems efficiently, an algorithm that can provide a trade-off be-
tween computational complexity and performance is needed. Such algorithm is pre-
sented in Chapter 3. Moreover, on a related topic, we have presented how energy man-
agement system problems in microgrids are cast as MILP problems and can, therefore,
lead to a large computational complexity. We address this issue in Chapter 4 by propos-
ing three different methods that provide a trade-off between performance and computa-
tional complexity. Furthermore, we have discussed how controllers for building heating
systems can benefit both from a scenario-based MPC controller and a nonlinear model.
This topic is dealt with in Chapter 5, in which we propose a novel scenario-based MPC
controller using a nonlinear building model and providing a new method to generate
disturbance scenarios in the context of building heating systems.





3
ONLINE PARTITIONING AND

DECENTRALIZED CONTROL OF

LARGE-SCALE SYSTEMS 1

3.1. INTRODUCTION
In this chapter, we deal with decentralized control design of linear switching large-scale
systems (LSSs). Firstly, we propose an online partitioning method that is suitable for
linear switching large-scale systems. Furthermore, we also provide convergence guar-
antees for the proposed partitioning algorithm. The algorithm consists of an initial par-
titioning algorithm and a refining step and it is inspired by [35, 36]. However, differently
from the multi-step method presented in [36], we prespecify the number of subsystems
and already group together highly coupled components in the same subsystem in the
initial partitioning procedure, so that the outcome of the initial partitioning procedure
provides a warm start for the refining step. Secondly, we show that a decentralized state
feedback control scheme for LSSs and stability results on switching systems under the
average dwell time condition can be combined to stabilize the system. The overall pro-
posed control scheme consists of a central coordinator and decentralized controllers.
The central coordinator adjusts the partition and the decentralized state feedback gains
in response to the mode of the system while the decentralized controllers stabilize the
overall system via a decentralized state feedback scheme. Lastly, we show our proposed
approach through an application of the partitioning algorithm and stabilizing decen-
tralized state-feedback controller to a large network in which each node represents an
electrical generator.

This chapter is structured as follows. In Section 3.2, we provide a description of LSSs
and of the partitioning problem that we consider. In Section 3.3, we present our parti-
tioning algorithm. Sections 3.4 and 3.5 are devoted to the adopted decentralized state-
feedback control scheme and to the stability analysis, respectively. In Section 3.6, we

1This chapter is based on [16] and it is a joint work with other researchers.

17
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explain the overall control scheme and how the online partitioning procedure is carried
out. We apply our proposed approach to an automatic generation control problem in
Section 3.7 and lastly we provide some concluding remarks in Section 3.8.

Notation In this chapter, we use calligraphic letters to denote sets, e.g. P . The set
cardinality and the 2-norm operators are denoted by | · | and ‖ · ‖2, respectively. We use
bold math symbols, e.g. x , A, for the centralized system. By dim(·) we denote the dimen-
sion of a vector. Moreover, R>a denotes all real numbers in the set {b : b > a, b, a ∈ R}.
A similar definition can be used for the non-strict inequality case. For vectors vi with
i ∈ L = {l1, . . . , l|L |}, the operator [v>

i ]i∈L denotes the column-wise concatenation, i.e.
[v>

i ]i∈L = [v>
l1

, · · · , v>
l|L |

]. For matrices Mi j ∈ Rni×n j with L = {l1, . . . , l|L |} and (i , j ) ∈
L ×L , the operator [Mi j ](i , j )∈L×L denotes the matrix-wise concatenation, i.e.

[Mi j ](i , j )∈L×L =

 Ml1l1 · · · Ml1l|L |
...

. . .
...

Ml|L |l1 · · · Ml|L |l|L |

 .

Finally, discrete-time instants are denoted by k.

3.2. PROBLEM FORMULATION
Consider a linear switching large-scale system that can be represented as a directed
graph G (k) = (V ,E (k)), where V = {1,2, . . . , |V |} denotes the set of components (vertices)
and E (k) ⊆ V ×V denotes the set of edges that describes the interaction of the compo-
nents among each other, i.e. edge ( j , i ) ∈ E (k) indicates that component j influences the
dynamics of component i . Furthermore, the components of the network can be divided
into two disjoint sets, which are denoted by Vx and Vu , i.e. V = Vx ∪Vu and Vx ∩Vu = ;.
The set Vu contains all the input components, while Vx consists of all components that
have dynamics as follows:

xi (k +1) = ∑
j∈Vx

Ai j (k)x j (k)+ ∑
j∈Vu

Bi j (k)u j (k), ∀i ∈ Vx , (3.1)

where xi ∈ Rni , denotes the state vector of component i and u j ∈ Rm j , denotes the
input from the components in Vu . Additionally, for each i ∈ Vx , Ai j ∈ Rni×n j , and
Bi j ∈ Rni×m j , are the state-space matrices, where ‖Ai j ‖2 6= 0, if and only if (i , j ) ∈ E (k),
i.e. if and only if there is an edge between vertices i and j , and, similarly, ‖Bi j ‖2 6= 0, if
and only if (i , j ) ∈ E (k).

Note that in Eq. (3.1) we explicitly highlight the different sets of input and state com-
ponents. This kind of partitioning is done in order to support the controller design, in-
dependently from the choice of the controller.

We assume that the overall system belongs to the class of linear switching systems
(see Definition 2.1) and that it can be written as follows:

x(k +1) = A(k)x(k)+B (k)u(k), (3.2)
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5

1 2 3 4

6 7 8 9 10

Vu

Vx

Figure 3.1: An illustration of an LTI system with |V | = 10. The set Vu = {1,2,3,4} and Vx = {5,6,7,8,9,10}. The
dots represent the components and the arrows represent the edges.

where x(k) = [
x>

i (k)
]>

i∈Vx
∈ Rn is the state of the overall system, u(k) = [

u>
i (k)

]>
i∈Vu

∈ Rm

is the input of the overall system, A(k) = [
Ai j (k)

]
(i , j )∈Vx×Vx

∈Rn×n , B (k) =[
Bi j (k)

]
(i , j )∈Vx×Vu

∈ Rn×m , n =∑
i∈Vx ni , and m =∑

i∈Vu mi . An example can be found in

Figure 3.1. Note that for simplicity and so as not to overload the notation, in this chapter
we omit the subscript related to the switching signal σ(k) introduced in Definition 2.1.

Although all the (A(k),B (k)) pairs of the system are unknown a priori, we assume
that a change in the pair can be detected instantly. Note that the detection method is out
of scope of this work. Moreover, we assume that each mode is not active only once but it
has a recurrent behavior.

In this chapter, we address the problem of stabilizing such systems with a decentral-
ized state feedback control approach. Consider the discrete-time process described in
(3.2). The state-feedback control law is obtained by applying the input u(k) =−K (k)x(k)
to the system, where K (k) ∈Rm×n is a time-varying gain matrix, obtaining the overall law
x(k +1) = (A(k)−B (k)K (k))x(k). The matrix A(k) might not have asymptotically stable
eigenvalues, but K (k) can be computed such that the final matrix A(k)−B (k)K (k) has
asymptotically stable eigenvalues for all k.

In a decentralized control scheme, the system must be partitioned into several sub-
systems, to which local controllers are assigned. In this regard, the system must be par-
titioned such that the coupling between subsystems is minimized. Since the system is
time-varying, the partition must also be adapted so that a stabilizing decentralized state-
feedback controller can be designed. Example 3.1 shows the importance of changing
partition when the mode of the system changes.

Example 3.1. Consider a simple switching LTI system with two states (x1, x2 ∈ R), two
inputs (u1,u2 ∈R), and two modes (denoted by M1 and M2). The system has the following
dynamics: [

x1(k +1)
x2(k +1)

]
=

[
a 0
0 a

][
x1(k)
x2(k)

]
+B (k)

[
u1(k)
u2(k)

]
,

where the matrix A(k) =
[

a 0
0 a

]
is the same for both modes with a ∈ R>1, while the

matrix B (k) =
[

1 b
b 1

]
, for mode M1, and B (k) =

[
0 1
1 0

]
for mode M2, with 0 < b <

1/a. Furthermore, consider that when 0 ≤ k ≤ k1, mode M1 is active and the system is
partitioned into two subsystems (denoted by subsystem i and j ) as follows: subsystem i
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consists of one state component and one input component, i.e. it consists of x1 and u1,
and its dynamics are x1(k + 1) = ax1(k)+u1(k)+ bu2(k), while subsystem j consists of
one state component and one input component, i.e. x2 and u2, and its dynamics are
x2(k + 1) = ax2(k) + bu1(k) + u2(k). Thus, by considering decentralized state-feedback
gains Ki (k),K j (k) ∈ R for subsystem i and j , respectively, i.e. the control laws are u1(k) =
−Ki (k)x1(k) and u2(k) =−K j (k)x2(k), the resulting centralized closed-loop system is[

x1(k +1)
x2(k +1)

]
=

[
a −Ki (k) −bK j (k)
−bKi (k) a −K j (k)

][
x1(k)
x2(k)

]
,

where Ki (k) and K j (k) can be chosen such that the closed-loop matrix is asymptotically
stable, e.g. Ki (k) = K j (k) = a. Now, consider that the system switches to mode M2, at
k = k1 +1. If we keep the same partition, implying the same control laws, the centralized
closed-loop system becomes[

x1(k +1)
x2(k +1)

]
=

[
a −K j (k)

−Ki (k) a

][
x1(k)
x2(k)

]
,

which is not asymptotically stable for any Ki (k),K j (k) ∈ R since a > 1, which in turn im-
plies that one of the eigenvalues will be outside the unit circle. Therefore, the system is
not stabilizable due to its structure and due to the control law that we selected. How-
ever, if we change the partition such that subsystem i consists of x1 and u2 and its control
law is u2(k) =−Ki (k)x1(k), while subsystem j consists of x2 and u1 and its control law is
u1(k) =−K j (k)x2(k), the centralized closed-loop system becomes[

x1(k +1)
x2(k +1)

]
=

[
a −Ki (k) 0

0 a −K j (k)

][
x1(k)
x2(k)

]
,

implying that it is stabilizable by the decentralized state-feedback gains Ki (k),K j (k), e.g.
the gains can be set to Ki (k) = K j (k) = c, where a−1 < c < a+1, to obtain an asymptotically
stable system. ♦

3.3. SYSTEM PARTITIONING
In this section, a time-varying partitioning approach is proposed such that a decentral-
ized state feedback control scheme can be designed for the large-scale system.

3.3.1. FORMULATION OF THE PARTITIONING PROBLEM
The system is partitioned into p non-overlapping subsystems and the objectives of the
partitioning procedure are to minimize the coupling among subsystems and to balance
the number of inputs and states in each subsystem. Minimal coupling among subsys-
tems is desirable for decentralized control structures, as reported in [29, 32] and shown
before in Example 3.1. Furthermore, the computational burden would be equally dis-
tributed among the local controllers when the number of inputs and states of all subsys-
tems are similar.

We consider system partitioning as a graph partitioning problem [35, 36]. Let P (k) =
{V1(k),V2(k), . . . ,Vp (k)} be the partition of G (k), where V`(k), for each ` ∈ {1,2, . . . , p}, in-
dicates the set of vertices of subsystem `. The partitioning problem at time step k can be
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stated as follows:

minimize
P (k)

p∑
`=1

fc(V`(k)) (3.3a)

subject to
p⋃
`=1

V`(k) = V , (3.3b)

V`(k)∩V j (k) =;, ` 6= j , ∀`, j ∈ {1, . . . , p}, (3.3c)

where the cost function fc(V`(k)), ∀` ∈ {1, . . . , p} is formulated according to the partition-
ing objectives, i.e.

fc(V`(k)) =α1 fwc(V`(k))+α2 fim(V`(k)), (3.4)

where fwc(V`(k)) denotes the weighted cut cost, i.e. the sum of the weights (wi j (k)) of
the edges that connect subsystem ` and other subsystems, as follows:

fwc(V`(k)) = ∑
i∈V`(k)

∑
j∈V \V`(k)

(
wi j (k)+w j i (k)

)
,

and fim(V`(k)) denotes the internal imbalance cost, i.e. the cost imposed to ensure that
the number of inputs and states in every subsystem is nearly the same, as follows:

fim(V`(k)) =
∣∣∣∣|Vu,`(k)|− |Vu |

p

∣∣∣∣+ ∣∣∣∣|Vx,`(k)|− |Vx |
p

∣∣∣∣ ,

in which Vu,`(k) = V`(k)∩ Vu and Vx,`(k) = V`(k)∩ Vx . Note that the weight of the edge
wi j (k) ∈R≥0, is defined as

wi j (k) =


‖Ai , j (k)‖2/‖A(k)‖2, if i , j ∈ Vx ,

‖Bi , j (k)‖2/‖B (k)‖2, if i ∈ Vx , j ∈ Vu ,

0, otherwise.

(3.5)

Moreover, α1,α2 ∈ R>0 in (3.4), are tuning parameters that measure the importance of
the objectives. Problem (3.3) is a combinatorial optimization problem that must be
solved online. We propose a multi-step heuristic method that is able to find a local min-
imum of such a problem. The method is deeply explained in the next subsection.

3.3.2. PARTITIONING ALGORITHM
The partitioning algorithm is divided into two main steps. In the first step, an initial par-
tition is obtained, and it is refined in the second step. In the initial partitioning, vertices
that are highly coupled are grouped together, while maintaining a balanced number of
vertices in each subsystem. The refining algorithm is a variation of the Kernighan-Lin al-
gorithm [94] and similar to the method presented in [95, 96]. However, differently from
our proposed approach, the method in [95, 96] considers balancing number of vertices
as a constraint and is not particularly suitable for a system partitioning problem. Fur-
thermore, while in [36] there are different steps taken for the two objectives, in our ap-
proach both objectives are merged in a single cost function that we minimize. Addition-
ally, unlike the method in [35] and as explained later in Proposition 3.1, by considering
only one vertex at each iteration, we can ensure that the total cost is non-increasing
among two consecutive iterations.
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INITIAL PARTITIONING ALGORITHM

The number of subsystems, p, is determined such that p ≤ |Vu | in order to ensure that
at least one input is assigned to every subsystem. In this step, we want to have an initial
partition P (0)(k) = {V (0)

1 (k), . . . ,V (0)
p (k)}. To this end, the following algorithm is proposed:

1. Calculate the sum of the edge weights of all input vertices, as follows:

ws,i (k) = ∑
j∈Ni (k)

w j i (k), ∀i ∈ Vu ,

where Ni (k) is the set of neighbors of vertex i , i.e. Ni (k) = { j : j 6= i , (i , j ) ∈ E (k)}.

2. Choose the centers of the subsystems, c`, for all ` ∈ {1,2, . . . , p}, as the p input
vertices that have the largest weight ws,i (k), and order them according to ws,i (k).
At the end of this step, each subsystem has one input vertex.

3. Sequentially, starting from subsystem 1, find a vertex that is not assigned and has
the highest coupling with one of the vertices in the evaluated subsystem, i.e. for
subsystem `,

θ` ∈ argmax
θ

{
wiθ(k)+wθi (k)

∣∣∣∣θ ∈ V \

(
p⋃
`=1

V (0)
`

(k)

)}
,

for all i ∈ V (0)
`

(k). The vertex θ` is randomly selected from the set of maximizers.

Then, update V (0)
`

(k) ← V (0)
`

(k)∪ {θ`}. After θ` has been assigned to subsystem `,
we consider subsystem `+1. If we reach subsystem p but there are still unassigned
nodes, we go back to subsystem 1. This step is repeated until all the vertices are
assigned to a subsystem.

The complexity of the initial partitioning algorithm is polynomial, i.e. O ((n +m)2). Al-
though the resulting partition has a balanced number of vertices at each subsystem, it is
possible that the number of inputs and the number of states are not balanced. Further-
more, the weighted cut cost might also still be improved.

REFINING ALGORITHM

Consider the partition obtained from the initial partitioning algorithm, P (0)(k). In the
refining step, we improve the partition by moving one vertex at a time among subsys-
tems. Denote subsystem ` as the subsystem that is selected to provide a proposal, i.e.
one of its vertices that is considered to be moved to another subsystem. Furthermore,
let V̂`(k) be the set of all vertices that belong to subsystem ` and that have at least an
edge with a vertex that belongs to a different subsystem, i.e. V̂`(k) = {i : (i , j ) ∈ E (k), i ∈
V`(k), j ∈ V \V`(k)}. Moreover, denote the iteration index by the superscript (r ). The
refining algorithm at the r th iteration works as follows:

1. In order to select the subsystem `, all subsystems are sorted in a descending order
based on their costs, i.e. fc(V j (k)), for all j ∈ {1,2, . . . , p}. Then, the subsystem that
has the highest cost is selected. Furthermore, once selected, it is discarded from
the sorted list and when the sorted list is finally empty, a new sorted list is created
using the same procedure.
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2. Subsystem ` computes its current local cost f (r )
c (V`(k)) according to (3.4) and a

proposal, i.e. a vertex that is offered to be moved to one of its neighbors, as follows:

θ` ∈ arg min
θ∈V̂`(k)

fc(V`(k)\{θ}). (3.6)

The vertex θ` is randomly selected from the set of minimizers according to
(3.6). Notice that the set of minimizers in (3.6) might be empty, implying that
f (r )

c (V`(k)) < fc(V`(k)\{θ}), for any θ ∈ V̂`(k). This means that no vertex is moved
and the algorithm jumps to the next iteration. Otherwise, subsystem ` computes
the expected local cost difference as follows:

∆ f (r )
c,` (k) = fc(V`(k)\{θ`})− f (r )

c (V`(k)). (3.7)

Finally, it shares θ` and ∆ f (r )
c,` (k) with its neighbor subsystems, i.e. with all j ∈

NP ,`(k), where NP ,`(k) = { j : (i ,θ`) ∈ E (k), i ∈ V j (k), j 6= `, j = 1,2, . . . , p}.

3. All the neighbors, i.e. all j ∈ NP ,`(k), compute the updated cost fc(V`(k)∪ {θ`}) if
θ` is moved to them, according to (3.4). Then, the neighbors compute ∆ f (r )

ct, j (k) as

follows:
∆ f (r )

ct, j (k) = fc (V`(k)∪ {θ`})− f (r )
c (V j (k))+∆ f (r )

c,` (k), (3.8)

where f (r )
c (V j (k)) is the current cost, computed according to (3.4). Note that

∆ f (r )
ct, j (k) indicates the total cost difference when θ` moves from V`(k) to V j (k).

Finally, the neighbors send ∆ f (r )
ct, j (k) to subsystem `.

4. Subsystem ` decides to which subsystem it will send θ` as follows:

j? ∈ arg min
j∈NP ,`

∆ f (r )
ct, j (k). (3.9)

If ∆ f (r )
ct, j?

(k) > 0, the algorithm jumps to the next iteration. Otherwise, the subsys-

tem j? is randomly selected from the set of minimizers according to (3.9).

5. The partition is updated as follows:

V`(k) ← V`(k)\{θ`}, (3.10)

V j? (k) ← V j? (k)∪ {θ`}. (3.11)

The refining procedure, which is a polynomial time algorithm with respect to the num-
ber of vertices, i.e. O ((n+m)3), is summarized in Algorithm 1, whereΘ denotes an auxil-
iary set that contains vertices that have at least one edge with a vertex in another subsys-
tem, but that do not improve the total cost if they are moved. Furthermore, Vso denotes
an auxiliary ordered set that is used to select subsystem ` and cst denotes the variable
used to determine the stopping condition. Lastly, Vso[1] denotes the first element of Vso.

Proposition 3.1. The solution of the refining algorithm (Algorithm 1) converges to a local
minimum. Furthermore, Algorithm 1 stops when a local minimum is reached. ♦
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Proof. In order to show the convergence, we will show that the total cost, denoted by
F (r )(k) =∑p

`=1 f (r )
c (V`(k)), is non-increasing. Denote the initial partition at the r th refin-

ing iteration by V (r )
`

, for all ` ∈ {1,2, . . . , p}. At the end of the r th iteration, suppose that
vertex θ` is moved from subsystem ` to subsystem j?. Thus, we have

∆F (k) =F (r+1)(k)−F (r )(k)

= fc(V (r+1)
j?

(k))− f (r )
c (V (r )

j?
(k))+ fc(V (r+1)

`
(k))− f (r )

c (V (r )
`

(k))

=∆ f (r )
ct, j?

(k) ≤ 0.

The second equality follows from the fact that only the cost of subsystems ` and j?

changes when vertex θ` is moved. The last inequality follows from the condition im-
posed in Step 3, in which vertex θ` is not moved if ∆ fct, j? (k) > 0. Note that when no

vertex is moved, F (r+1)(k)−F (r )(k) = 0.
The proof of the second claim is as follows. Algorithm 1 stops if cst = 2p −1. Further-

more, the counter cst only increases if

f (r )
c (V`(k)) < fc(V`(k)\{θ`}) (3.12)

holds (see lines 10, 22, and 23). Moreover, if (3.12) is not satisfied, then cst is reset to 0 (see
line 12). Therefore, the algorithm only stops if (3.12) holds for at least 2p −1 consecutive
iterations. Note that if (3.12) holds for all ` ∈ {1, . . . , p}, then a local minimum is reached
since no more vertex from any subsystem is moved.

First, we show that condition (3.12) can be satisfied. Condition (3.12) holds if moving
any vertex from V̂`, defined in line 8, leads to the increasing of local cost f (r )

c (V`(k)) or if
V̂` is empty. Furthermore, notice that θ`, which improves the local cost and is selected
in line 9, might not be moved to a different subsystem because moving it might increase
the total cost. In this case, to ensure the algorithm does not have an infinite loop, θ`
will not be considered anymore for some iterations in the future (see lines 17 and 8). It
also implies that, when a subsystem selects a potential vertex to be moved, it disregards
vertices that have been identified in such a way that, if moved at the current iteration,
the total cost will increase. Thus, line 8 might yield an empty V̂`.

Now, we need to show that if the condition (3.12) holds for at least 2p−1 consecutive
iterations, then we guarantee that (3.12) holds for all subsystems. This is a consequence
of the way in which we select subsystem `, i.e. lines 4 and 6. In the worst possible case,
2p − 1 consecutive iterations are required to ensure all subsystems have been selected
to propose θ`. Consider that at iteration r1, V

(r1)
so is generated to select the subsystems

for the next p iterations, starting from r1. Suppose that subsystem p has the highest
cost and, thus, is selected at r1. Now, suppose that at iteration r1 + 1, condition (3.12)
is satisfied for the first time. Furthermore, (3.12) also holds for r = r1 +2, . . . ,r1 + p −1.
Note that at r1 + p − 1, all subsystems, but subsystem p, have been selected and have
satisfied (3.12). At iteration r1 + p, suppose that subsystem p has the lowest local cost
and a new ordered set of Vso is generated. Therefore, subsystem p will only be selected
at iteration r1 +2p −1, implying the necessity to evaluate 2p −1 consecutive iterations.
For any other case, (3.12) must only hold for a number of consecutive iterations that is
fewer than 2p −1.
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Algorithm 1 Refining Procedure

1: Input: P (0)(k)
2: Initialize r ← 0, cst ← 0, and Θ`←;, ∀` ∈ {1,2, . . . , p}
3: while cst < 2p −1 do
4: Sort the indices of the subsystems based on the descending order of their local

cost in Vso

5: for h = 1 to p do
6: `← Vso[1]
7: Vso ← Vso\{Vso[1]}
8: Compute V̂`, i.e. V̂` = {i : (i , j ) ∈ E (k), i ∈ V`(k), j ∈ V \V`(k)}\Θ`
9: Compute f (r )

c (V`(k)) and solve (3.6)
10: if f (r )

c (V`(k)) ≥ fc(V`(k)\{θ`}) then
11: θ(r )

`
is selected

12: cst ← 0
13: Compute ∆ f (r )

c,` (k) according to (3.7)

14: Compute ∆ f (r )
ct, j (k) according to (3.8) for all j ∈NP ,`(k)

15: Decide the subsystem j? that will receive θ` according to (3.9)
16: if ∆ f (r )

ct, j?
(k) > 0 then

17: Θ`←Θ`∪ {θ`}
18: else
19: Θ j ←;, ∀ j ∈NP ,`(k)∪ {`}
20: Move θ` from subsystem ` to subsystem j?, i.e. the partition is updated

according to (3.10)-(3.11)
21: end if
22: else
23: cst ← cst +1
24: end if
25: r ← r +1
26: end for
27: end while
28: Output: P (k)
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Remark 3.1. The number of iterations can be upper bounded by a constant rmax defined
by the user. This condition is useful when the available time to compute the partition is
limited. ♦

Remark 3.2. The main design parameters in the partitioning approach are α1 and α2,
which determine the trade-off between two partitioning objectives: 1) minimum cou-
pling among subsystems and 2) balanced number of components per subsystem. There-
fore, since these parameters affect the outcome of the partitioning process, i.e. the struc-
ture of the subsystems (A and B matrices of the subsystems), they shape the block of the
state-feedback gain K , which determines the performance of the controlled system. Since
a decentralized control scheme takes advantage from minimal coupling, it is better to pri-
oritize objective 1 such that stabilizing controllers can be achieved. This can be done by
setting α1 À α2. However, one might also want to set α2 À α1 as long as stabilizing con-
trollers can still be designed so that the communication and computational burden are
evenly distributed across subsystems.

The proposed partitioning method is applied along with a decentralized state feed-
back control scheme, which will be explained in Section 3.4. However, the application of
the partitioning approach is not limited only to this type of controllers and can also be
applied to design other types of decentralized or distributed controllers, e.g. Model Pre-
dictive Control [41–43]. Furthermore, different partitioning objectives, depending on the
system or control requirements, can also be considered by substituting the cost function
(3.4) with the desired cost function.

3.4. DECENTRALIZED STATE FEEDBACK CONTROL

3.4.1. DECENTRALIZED STATE FEEDBACK CONTROL SCHEME

Consider now a set of all partitions that have been computed until time instant k using
the partitioning approach described in Section 3.3, i.e. P = {P (κ),κ = 0, . . . ,k} and con-
sider a given partition I . Note that here we drop the time dependency of the matrices on
k, since we are considering a single partition I . We indicate the dynamics of subsystem
i of partition I using the expression

xI ,i (k +1) = AI ,i i xI ,i (k)+BI ,i i uI ,i (k)+ ∑
j∈NI ,i

(
AI ,i j xI , j (k)+BI ,i j uI , j (k)

)
, (3.13)

where xI ,i ∈RnI ,i denotes the state vector of partition I , subsystem i , and the matrices
AI ,i j ∈ RnI ,i×nI , j , BI ,i j ∈ RnI ,i j ×mI , j , for all j ∈ NI ,i

⋃
{i }, are respectively the state

matrices and the input matrices of the dynamics of partition I , subsystem i . The state
vectors xI , j ∈ RnI , j with j ∈NI ,i are the state vectors of the neighbors of subsystem i in
partition I . Similarly, the inputs uI ,i ∈ RmI ,i are the inputs to subsystem i of partition
I , while uI , j ∈ RmI , j with j ∈ NI ,i are the inputs of the neighbors of subsystem i in
partition I .

It is possible to describe the dynamics of the centralized system of a single partition
I as

xI (k +1) = AI xI (k)+BI uI (k), (3.14)
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where the state vector is xI = [x>
I ,1 · · ·x>

I ,p ]> ∈Rn , the input vector is uI =
[u>

I ,1 · · ·u>
I ,p ]> ∈ Rm , the state matrix is AI = [

AI ,i j
]

(i , j )∈{1,··· ,p}×{1,··· ,p} ∈ Rn×n , and the

input matrix is BI = [
BI ,i j

]
(i , j )∈{1,··· ,p}×{1,··· ,p} ∈Rn×m .

Let us now apply to (3.13) a decentralized static state feedback scheme. For each
input uI ,i , we apply the control law uI ,i =−KI ,i xI ,i , where KI ,i ∈ RmI ,i×nI ,i is a gain
matrix. We can then combine (3.14) with the decentralized state feedback control law
and obtain

xI (k +1) = (AI −BI KI )xI (k), (3.15)

where KI = diag(KI ,1, . . . ,KI ,p ) is the centralized gain matrix of partition I . The de-
centralized gain matrices KI ,i , ∀i ∈ {1, . . . , p}, are designed such that for each partition
the closed-loop centralized matrices (AI −BI KI ), ∀I ∈ P , are Schur stable.

Although the closed-loop matrix of each partition, i.e. AI −BI KI , is Schur stable,
due to the switching nature of the system under consideration, stability of the overall
system is not guaranteed. Indeed, as explained in Section 2.2, stability might arise from
the switching between two different asymptotically stable modes. Thus, the continu-
ous change in time of the system dynamics and its partition must be taken directly in
account in the stability analysis. In Section 3.5, we provide a stability analysis using con-
cepts from switching systems theory and directly taking into account the switchings be-
tween different dynamics. Before doing that, we make the following assumption:

Assumption 1. For every partition I ∈ P , it is possible to obtain a state feedback gain
matrix KI such that the closed-loop system (3.15) is Schur stable. ♦

Remark 3.3. Assumption 1 is needed to prove Proposition 3.2 but it is not a limiting as-
sumption, since there exist many methods that can provide the matrices KI , as explained
in Section 3.4.2.

3.4.2. COMPUTATIONAL ISSUES

The gain matrices KI , ∀I ∈ P , can be computed in a centralized fashion with the lin-
ear matrix inequality method proposed in [97, 98], explained in Section 3.4.3. With this
method, we can obtain KI matrices that stabilize both the centralized system and the
single decentralized subsystems. Moreover, the problem can be solved efficiently using
an linear matrix inequality solver.

When the size of the system is large, a centralized solution could be computationally
inefficient. In this case, we have to look for other approaches that can compute the gain
matrices KI in a non-centralized fashion. As explained in [99], one idea could be to ap-
ply the concepts from [29], adapted to the discrete-time case. With this strategy, we first
stabilize each subsystem separately and then we check the stability of the centralized
system in a distributed fashion using a small-gain like condition. As one would expect
and as it is highlighted in [29], this method works better when the subsystems are weakly
coupled.
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3.4.3. LMI METHOD FOR DECENTRALIZED STATE-FEEDBACK CONTROL DE-
SIGN

The following procedure is presented in [97, 98]. Note that it refers to a specific set of A
and B matrices, therefore in this subsection the time step index k is dropped for simplic-
ity.

In order to find the gain matrices K for decentralized state-feedback control of a sys-
tem that consists of p subsystems, the problem of finding a gain matrix K and a matrix
P Â 0, such that {

P Â 0,

(A +B K )>P (A +B K )−P ≺ 0,
(3.16)

is solved using an LMI procedure. We define two matrices S and Y such that K = Y S−1

and S = P−1 and we solve with respect to S and Y the following LMI procedure:[
S S A>+Y >B>

AS +B Y S

]
Â 0, (3.17)

[
Si i Si i A>

i i +Y >
i i B>

i i
Ai i Si i +Bi i Yi i Si i

]
Â 0, (3.18)

subject to

Si j = 0,Yi j = 0, ∀i , j = 1, . . . , p, (i 6= j ), (3.19)

where, for i , j = 1, . . . , p, Si j ∈ Rni×n j , Yi j ∈ Rmi×n j are the block entries of the matrices
S and Y . The LMI (3.17) guarantees the stability of the centralized system, while (3.18)
stabilizes each subsystem. A more detailed procedure can be found in [98].

3.5. STABILITY OF THE TIME-VARYING PARTITIONING SCHEME
In this section, we study the stability of the proposed time-varying partitioning scheme.
Before proceeding with the proposition, we present some properties, definitions, and
assumptions needed to illustrate the stability of our system.

3.5.1. PRELIMINARIES
Suppose now that the system dynamics (3.2) are controlled with a decentralized state
feedback strategy, as explained in Section 3.4. Here, we would like to represent the evo-
lution of the centralized system with a single expression. However, note that the state
components in each partition might be grouped differently. In other words, when we
consider different partitions, the state components in the centralized state vectors will
not be in the same order, in general. To make this concept clearer, let us consider a sim-
ple example.

Example 3.2. Consider a 5-state component system partitioned into two subsystems, one
of them with two state components and the other one with three. Suppose also that the B
matrices are all null. There are two partitions and they are denoted by J and L . Then,

let us define the centralized state vector as x = [
x1 x2 x3 x4 x5

]> ∈ R5, where x1,
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x2, x3, x4, and x5 are the state components, and the partitions are

J :


{

xJ ,1(k +1) = AJ ,1xJ ,1(k),{
xJ ,2(k +1) = AJ ,2xJ ,2(k),

L :


{

xL ,1(k +1) = AL ,1xL ,1(k),{
xL ,2(k +1) = AL ,2xL ,2(k),

where xJ ,1 = [
x1 x2 x3

]>
, xJ ,2 = [

x4 x5
]>

, xL ,1 = [
x1 x3 x5

]>
, xL ,2 =[

x2 x4
]>

. Then, xJ =
[

x>
J ,1 x>

J ,2

]> = [
x1 x2 x3 x4 x5

]>
and xL =[

x>
L ,1 x>

L ,2

]> =[
x1 x3 x5 x2 x4

]>
. As can be seen, vectors xJ and xL have the same components,

but they are ordered differently. ♦
Although the centralized state vectors - and thus the closed-loop matrices - are or-

dered differently, we can still express the equations of the centralized system in a com-
pact form. We can indeed obtain the same order in the state components by applying a
permutation transformation with matrices TI to the closed-loop matrices AI −BI KI ,
∀I ∈ P . After this transformation is applied, we obtain a common order of the state
components for all the different partitions. The closed-loop matrix after the transforma-
tion would then be AI = T −1

I
(AI −BI KI )TI . Note that permutation transformations

applied to a matrix do not change its eigenvalues. This means that if AI−BI KI is Schur,
then AI is Schur too. We can then finally express the centralized dynamics as

x(k +1) = A(k)x(k), (3.20)

where A(k) is the AI matrix and partition I is the active partition at time step k, i.e.
I =P (k).

We can now present the proof on exponential stability of the time-varying partition-
ing scheme of Section 3.3, which is given in the next subsection. Before proceeding with
the proof, let us introduce some useful properties, assumptions, and definitions.

Property 1 ([100, 101, Th. 3.5]). If A is a Schur matrix, then ∃h ∈ R≥1, ∃λ1 ∈ (0,1) :,
∀k ∈N, ‖Ak‖2 ≤ hλk

1 .

Property 2. Suppose xsub is a sub-vector of x , so that dim(xsub) < dim(x). Then, ‖xsub‖2 ≤
‖x‖2 since components of xsub are included in x . Furthermore, if x and xsub are finite and
such that when ‖xsub‖2 = 0 it also holds that ‖x‖2 = 0, then it is always possible to find a
scalar d ∈R>0 such that ‖x‖2 ≤ d‖xsub‖2.

Proof. It is enough to set d = ‖x‖2
‖xsub‖2

and the inequality holds. If both ‖x‖2 and ‖xsub‖2

are 0, then any d ∈R>0 will let the inequality hold.

Definition 3.1 ([102, 103]). Consider the discrete-time switching scheme (3.20). Recall
σ(k) from Definition 2.1. Each time there is a switch, the dynamics of the system change.
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Let the number of mode switches between the time steps 0 and k be denoted by Nσ(0,k).
We define τa ∈ R>0 as a constant called average dwell time for all the signals σ(k) if, for a
given N0 ≥ 0,

Nσ(0,k) ≤ N0 + k

τa
. (3.21)

Definition 3.2. We denote with λM the minimum constant such that Property 1 holds for
all matrices AI , ∀I ∈P . Moreover, hmax is the maximum of all h constants in Property 1

for matrices AI , ∀I ∈P , i.e. if ‖A
k
I ‖2 ≤ hIλ

k
M, ∀I ∈P and k ∈N, then hmax = max

I∈P
hI .

Assumption 2. The average mode dwell time τ∗a of the scheme (3.20) is lower bounded as

τ∗a >− loghmax
logλM

.

Assumption 3. The initial state of each subsystem is such that ‖xI ,i (0)‖2 6= 0,
∀i ∈ {1, . . . , p}, ∀I ∈P .

Remark 3.4. In the framework of slow switching, it is reasonable to suppose that the aver-
age dwell time τ∗a of Assumption 2 should be higher than a certain lower bound [38, 102–
104].

Remark 3.5. As explained later in Remark 3.6, Assumption 3 is needed to prove Proposi-
tion 3.2. Assumption 3 can be easily checked by looking at the initial values of the state
vectors of every subsystem. Moreover, it is still reasonable to assume that, at the initial time
instant, none of the state vectors is already at the origin. Nevertheless, in Remark 3.6 we
analyze the case in which Assumption 3 is not satisfied.

3.5.2. STABILITY ANALYSIS
Here, the stability of system (3.20) is presented in the following proposition.

Proposition 3.2. Assume that system (3.20) follows scheme (3.21) in which N0 is given,
and that Assumptions 1-3 hold. Then, the time-varying partitioned system (3.20) is glob-
ally exponentially stable for any average dwell time τa ≥ τ∗a .

Proof. We follow the proof from [102, 103] using matrices AI , ∀I ∈ P , that we know
to be Schur by Assumption 1. In particular, we define ki , i = 1,2, . . . as the time steps at
which a mode change occurs, i.e. k0 = 0 < . . . < ki < ki+1 < . . . . Let Ai be the matrix A(k)
in (3.20) for k between the time steps ki−1 and ki . Then, for any k satisfying ki ≤ k < ki+1,
we can write the overall state vector x(k) at time step k as

x(k) = Ak−ki
i+1 Aki−ki−1

i ...Ak1
1 x(0).

Applying to both sides the norm operator, we get

‖x(k)‖2 ≤ ‖Ak−ki
i+1 ‖2 · ‖Aki−ki−1

i ‖2...‖Ak1
1 ‖2 · ‖x(0)‖2. (3.22)

Consider now Property 1 and let us apply it to all the matrices Ai in (3.22). Let hi be
the constant h in Property 1 associated to Ai and let λM ∈ (0,1) be the constant defined
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in Definition 3.2. We can then replace every matrix norm ‖Ai‖ in (3.22) by hiλ
ki−ki−1
M ,

yielding

‖x(k)‖2 ≤ hi+1hi ...h1λ
k
M‖x(0)‖2 =

(
i+1∏
j=1

h j

)
λk

M‖x(0)‖2.

Let hmax be as in Definition 3.2. Then,

‖x(k)‖2 ≤
(

i+1∏
j=1

h j

)
λk

M‖x(0)‖2 ≤ chNσ(0,k)
max λk

M‖x(0)‖2, (3.23)

where c = hmax and Nσ(0,k) is defined in Definition 3.1. Since hmax ≥ 1, we define

h0 = hN0
max and from Assumption 2 we can define a λ ∈ (λM,1) such that λ = λMh

1
τa
max.

From (3.21) we then obtain

hNσ(0,k)
max ≤ hN0

maxh
k
τa
max = h0h

k
τa
max = h0

(
λ

λM

)k

. (3.24)

We apply (3.24) to (3.23) to get

‖x(k)‖2 ≤ ch0λ
k‖x(0)‖2. (3.25)

Lastly, we apply Assumption 3 and Property 2 and get

‖xI ,i (k)‖2 ≤ ‖x(k)‖2 ≤ ch0λ
k‖x(0)‖2 ≤ cdh0λ

k‖xI ,i (0)‖2, (3.26)

∀i ∈ {1, . . . , p}, ∀I ∈ P . Thus, each subsystem in P is globally exponentially stable for
any average dwell time τa ≥ τ∗a . Since (3.26) holds for each possible subsystem in each
partition of P , it holds simultaneously for all the subsystems in all the partitions. There-
fore, each subsystem of the closed-loop system is exponentially stable.

Remark 3.6. Without Assumption 3, we cannot apply the second part of Property 2 to
(3.25). However, we can still guarantee (simple) exponential stability, since for (3.26) we
can write ‖x(k)‖2 ≤ cλk‖x(0)‖2 ≤ cλ‖x(0)‖2 and choosing c1 = cλ‖x(0)‖2 we get ‖xI ,i‖2 ≤
‖x(k)‖2 ≤ c1, ∀i ∈ {1, . . . , p}, ∀I ∈P . Then, the state xI ,i is simply stable as in [105] with
c1 as specified before and ∀c2 > 0.

Remark 3.7. According to Proposition 3.2, stability is not guaranteed if the time-varying
partitioning scheme switches faster than τ∗a . This result is related to the slow switching
systems, in which stability is guaranteed only if the average dwell time is higher than a
certain lower bound [38].

3.6. OVERALL CONTROL SCHEME
In this section we explain the overall partitioning and control scheme of our approach.
Moreover, we also explain how to update the average dwell time τ∗a that guarantees ex-
ponential stability in view of Proposition 3.2.
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Controller 1

Local
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: : :

u, x

x u x u

: : :

V1; K1 Vp; Kp

A;B

Figure 3.2: Overall control scheme, with a centralized coordinator, the system, and its subsystems. The dashed
arrows represent the exchange of information. The solid arrows represent the coupling between subsystems.

3.6.1. CONTROLLER STRUCTURE

The overall control scheme is shown in Figure 3.2. The controller has a hierarchical struc-
ture and it is divided in two different parts: a centralized one, the coordinator, and de-
centralized controllers. The tasks of the coordinator are to detect changes in the system,
to update the partition, and to compute the decentralized state-feedback gains and the
bound of the average dwell time. These updates are only carried out when a mode switch
is detected. Once the updates have been communicated to the decentralized controllers
and subsystems have been created, then there is no further task for the coordinator, ex-
cept for checking for changes in the system at each time step. Indeed, if there is no
change in either the mode or the partition of the controlled system, then the system can
be controlled only by the decentralized state feedback controller, which can stabilize the
overall system in view of the result of Proposition 3.2. In addition, it is assumed that the
time required for the coordinator to perform its tasks is smaller than the sampling time.
It implies that the partition, state feedback gains, and the bound of the average dwell
time are updated at the same time instant as the one at which the switch is detected. In
practice, the satisfaction of this assumption depends on the computational power of the
coordinator and the instrumentation of the system.

3.6.2. UPDATING SCHEME

For the purpose of updating the partition and the decentralized state feedback gains,
the coordinator records the modes and their corresponding partition and state feedback
gains in a library. The advantage of this approach is to speed up the updating process.
This approach is particularly effective for systems that have periodical behavior, i.e. the
modes of the system appear periodically. Therefore, when the coordinator detects a
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Figure 3.3: The network topology considered. Vertices represent areas and edges represent couplings between
the areas. In mode 1, all links are working correctly, while in the other two modes some links are broken. A red
‘×’ marker indicates the broken links in mode 2, while a red ‘©’ marker indicates the broken links in mode 3.

switch, it firstly checks its library. If the current mode has been recorded, it can immedi-
ately provide a suitable partition and stabilizing state feedback gains to the decentralized
controllers. Otherwise, it will perform the partitioning method proposed in Section 3.3.
Afterwards, the coordinator will compute the new decentralized gain matrix. The new
mode, partition, and gain matrix will then be recorded in the library.

If a new mode appears in the system, we have to update the value of τ∗a , because
it depends on the characteristics of the current matrices AI . Moreover, the update of
the value of τ∗a is needed since, as explained in Section 3.2, the modes have a recur-
rent behavior, i.e. they might be active again after some time during which other modes
were active. Therefore, when updating the value of τ∗a , we need to consider the inactive
modes. We then present the following procedure for updating τ∗a :

1. For each new mode, we consider the closed-loop matrix AI and we compute the
h and λ1 constants associated to this matrix as in Property 1;

2. We check whether h > hmax and in case this is true, we update hmax as hmax = h.
We also check whetherλ1 >λM and if the answer is true, we updateλM asλM =λ1.
If no updates are carried out at this step, we skip the next step;

3. We update the value of τ∗a as

τ∗a = ln(hmax)

ln(1−ε)− ln(λM)
, (3.27)

where ε is a small positive constant.

Remark 3.8. Note that in Step 3 of the above procedure, we have updated τ∗a following
Assumption 2 and maximizing the value of λ, which is set to 1−ε. By doing so, we choose
the least conservative value for τ∗a while still satisfying Assumption 2.
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Figure 3.4: The deviation in frequency and tie-line power of areas 10 and 21 in the case in which the partition
is changed together with the modes. The time steps at which the switches occur are indicated by a vertical
dashed black line.

3.7. CASE STUDY

We consider the problem of controlling a power network consisting of 30 areas (vertices)
that are connected by tie-lines as shown in Figure 3.3 through automatic generation con-
trol, inspired by [106]. Each area has a thermal turbine as the generator and load pertur-
bations. Since the areas are interconnected, electrical power may flow between them.
The control objective is to stabilize the frequency and tie-line power deviation of each
area. For modeling each area, we follow the dynamical model provided in [107]. The
state vector of area i ∈ Vx is x>

i = [
∆ fi ∆PGi ∆PRi XEi ∆Prefi ∆Ptiei

]
, where the

state components represent respectively the deviation with respect to the nominal value
in frequency ∆ fi , turbine output power ∆PGi , mechanical power during steam reheat
∆PRi , governor valve position XEi , variable achieving integral control ∆Prefi , and the tie-
line power ∆Ptiei . Furthermore, dynamical coupling is present in the model, since the
dynamics of the states of one area are influenced by the states of some of the neighbor-
ing areas. The state space matrices used in the numerical simulations, which are adapted
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Figure 3.5: The deviation of frequency and tie-line power of areas 10 and 21 in the case in which both the
partitioning topology and the gain matrix related to mode 1 are kept for the whole simulation, even after a
mode switch. The time steps at which the switches occur are indicated by a vertical dashed black line.

from [106], are as follows:

Ai i =



−0.05 6 0 0 0 −6
0 −0.1 −1.01 1.11 0 0
0 0 −3.33 3.33 0 0

−2.08 0 0 −5 5 0
−0.0255 0 0 0 0 −0.06

γi 0 0 0 0 0

 ,

Bi i =
[
0 0 0 5 0 0

]>
, where γi =∑|Ni |

j=1 0.056.

Furthermore, for all the couplings (i , j ) ∈ {(5,1), (1,2), (4,3), (8,4), (9,5), (2,6), (5,6),
(7,6), (3,7), (4,7), (1,9), (13,9), (6,10), (9,10), (6,11), (10,11), (13,12), (10,13), (18,13),
(10,14), (13,14), (15,14), (11,15), (15,16), (19,16), (18,17), (15,18), (19,18), (22,18),
(23,19), (16,20), (19,20), (17,21), (25,21), (21,22), (27,23), (20,24), (23,24), (12,25),
(29,25), (25,26), (29,26), (22,27), (28,27), (24,28), (27,29), (29,30)}, the coupling state
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Mode Subsystem Areas

1 {29,23,27,30,24,28}
2 {2,6,11,15,16,10}

1 3 {3,7,18,17,19,20}
4 {4,8,22,21,25,26}
5 {5,1,9,14,13,12}

1 {29,23,27,30,24,28}
2 {2,6,11,15,16,1}

2 3 {3,7,18,17,19,20}
4 {4,8,22,21,25,26}
5 {5,9,10,14,13,12}

1 {26,29,27,30,23,28}
2 {11,15,16,19,20,24}

3 3 {3,7,14,13,18,12}
4 {4,8,22,21,17,25}
5 {5,1,2,9,6,10}

Table 3.1: Partitioning results

space matrices are the following:

Ai j =
[

05×1 05×5

−0.055 01×5

]
, A j i =

 04×1 04×4 04×1

0 01×4 0.06
−0.055 01×4 0

 .

In this network, there are some vulnerable links that might be temporarily broken
during the operation of the system. Since these faults may arise in the system, the system
has switching behavior. Moreover, since we assume the faults do not happen so fastly, we
are in the framework of slow switching systems. We design a decentralized state feedback
controller for this network as explained in Section 3.4.

In our simulation, we consider 3 different modes. Mode 1 represents the normal
operation, while the other modes represent the network with physical faults, i.e. broken
links as shown in Figure 3.3, but we consider that nodes can still communicate with each
other. Furthermore, we assume that we have five decentralized controllers, implying
that the system must be partitioned into five subsystems. The scenario of the simulation
is as follows: for k ≤ 26, the system operates normally, i.e. in mode 1. At k = 27, the
system switches to mode 2, and at k = 134, the system switches to mode 3. Following the
proposed approach, the system is partitioned with the algorithm proposed in Section 3.3
and stabilizing decentralized state-feedback gains are computed by using the method
proposed in [97] at k = 0,27,134, when the system switches its mode. The partitioning
results of all modes are shown in Figure 3.6. With the three different network topologies,
the partitioning algorithm produces also three different partitioning topologies; thus the
partition is adapted to the mode.

In this simulation, the sampling time is T = 1 s and the closed-loop sys-
tem is simulated for 200 time steps. The initial state of each area i ∈ Vx is
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xi (0) = [
1 0 0 0 0 0

]>
, which represents an impulse disturbance in the

frequency deviation. The value of τ∗a for the first mode and the first partition is 23.76
and then it is updated to 24.05 at k = 27 and finally it is updated again to 26.63 at k = 124.
Since the average dwell time of the system is 80.5, which is larger than τ∗a , the stability of
the system is guaranteed.

The frequency deviation ∆ f and the power ∆Ptie at some areas are shown in Fig-
ure 3.4. It is possible to observe that the time-varying partitioned closed-loop system is
asymptotically stable, even after the system switches to other modes, as expected from
Proposition 3.2. Moreover, Figure 3.5 shows that the system becomes unstable if the
partition and the decentralized state-feedback gains are not switched after the mode
changes, i.e. the system switches to different modes but the partition and the gain ma-
trices of mode 1 are kept for the whole simulation. This behavior was also presented in
Example 3.1. It is also interesting to notice in Figure 3.5, between time steps 27 and 134,
that, although partitioning topologies 1 and 2 do not differ too much, instability arises
if the partitioning topology of mode 1 is applied to mode 2. This is therefore a further
motivation for the time-varying partitioning approach proposed in this chapter.

3.8. CONCLUSIONS
This chapter has presented a multi-step graph-based partitioning method for a class of
large-scale linear switching systems. The proposed algorithm is computationally inex-
pensive and can be applied online when a change in the system occurs. Moreover, a
decentralized state-feedback controller is applied to the obtained subsystems in order
to stabilize the system. A further analysis of the closed-loop system, modeled as an
autonomous switching system, has been provided. The stability of the system is guar-
anteed if the average dwell time of the system is larger than a lower bound. Addition-
ally, a case study of automatic generation control of multi-area power network, in which
some link failures might happen, has been discussed. The results show that the proposed
method can stabilize the closed-loop system while, if not applied, the system might be-
come unstable.

As future work, the proposed method can be extended by considering a dynamic
partitioning, i.e. a method in which nodes are moved dynamically between subsystems,
rather than computing a whole new partition. Moreover, another interesting related
work is to apply other types of control algorithms to the system, e.g. distributed or de-
centralized model predictive control. In that case, different sets of tools are required to
show the stability of the closed-loop systems. In addition, another research direction is
to extend the approach presented here to switching systems in which some of the modes
are not stabilizable.
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c� Partitioning result of mode 3�

Figure 3.6: The partitioning results of all modes. Vertices in subsystem 1 are indicated by •, vertices in subsys-
tem 2 are indicated by ◦, vertices in subsystem 3 are indicated by ä, vertices in subsystem 4 are indicated by ■,
and vertices in subsystem 5 are indicated by ×, while the edges that couple different subsystems are indicated
by dashed-dotted lines.



4
PARAMETRIC METHODS FOR

ENERGY MANAGEMENT SYSTEM IN

MICROGRIDS 1

4.1. INTRODUCTION
In this chapter, we present an energy management system problem in a microgrid set-
ting. The model of the microgrid is a Mixed-Logical Dynamical (MLD) one and in order
to optimally manage the power flows, a Model Predictive Control (MPC) controller is
used. The MLD model together with the MPC controller yield a mixed-integer program-
ming problem, which is NP-hard and has therefore a worst-case exponential computa-
tional complexity. Therefore, we explore three different solutions to alleviate the com-
putational complexity and provide a tool that acts as a trade-off between performance
and computation time.

The first method consists in a parametrized MPC controller that parametrizes the
continuous inputs in the system and removes the binary variables by using a heuristic
parametrization. The second method consists in a rule-based MPC controller that
parametrizes the binary variables in the model before the optimization takes place,
by using if-then-else rules based on information available in the microgrid. The third
method is an extension of the second one, where instead of if-then-else rules, machine
learning methods are used to parametrize the values of the binary variables.

Moreover, a novel single-level two-model controller is introduced. The two models
have two different sampling times and they are used in the MPC algorithm to predict
the future evolution of the microgrid. A model with a lower sampling time is used for
predictions closer to the current time instant while a model with a higher sampling time
is used for predictions that are farther in time from the current time instant.

This chapter is structured as follows. In Section 4.2, we present the novel single-level
two-model controller introduced in the previous paragraph. In Section 4.3, we discuss

1This chapter is based on [14, 15, 18]. Article [18] is a joint work with other researchers.

39
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Main grid
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Energy
storage
systems
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Figure 4.1: Scheme of the considered microgrid.

the parametrized MPC controller for microgrid energy management systems. Section 4.4
is devoted to present the rule-based algorithm based on if-then-else rules. In Section 4.5,
the machine learning method for assigning the value to binary variables is presented.
We present simulation results for the three methods in Section 4.6 and lastly we provide
some concluding remarks in Section 4.7.

4.2. SINGLE-LEVEL MICROGRID DESCRIPTION AND CONTROL
We consider in this chapter a microgrid that includes several elements, as shown in Fig-
ure 4.1. These elements are storage units (i.e. batteries and ultracapacitors), sources (i.e.
renewable sources and local dispatchable units), a bidirectional connection to the main
grid (i.e. energy can be bought or sold), and uncontrollable loads. Moreover, we consider
the operational economical costs of the microgrid, i.e. the costs for producing electric-
ity locally and buying electricity from the main grid. The goal in microgrid operation
optimization is to minimize the economical costs, optimally choosing the power flows
within the microgrid and the exchange of power with the main grid.

In this section, we first describe the model of the system under control, then we in-
troduce the novel single-level controller, and lastly we introduce the model constraints,
which are both related to the power exchange and the modeling framework.

4.2.1. MICROGRID MODEL

The microgrid model that we consider is similar to the one presented in [47], with some
modifications, in order to better adapt it to our case.

Dynamics of the energy storage systems: The dynamics of the Energy Storage Systems
(ESSs) are expressed with the simplified formulation presented in [108] with respect to
[47], i.e.

xst(h +1) =
{

xst(h)+ Ts
ηd,st

Pst(h), Pst(h) < 0

xst(h)+Tsηc,stPst(h), Pst(h) ≥ 0
, (4.1)
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where xst(h) indicates the level of energy stored at the ESS at time step h, ηc,st and
ηd,st are the charging and discharging efficiencies, respectively, Pst(h) is the power ex-
changed with the ESS at time step h, and Ts is the sampling interval of the discrete-
time system. At each time step h, the ESS can only be in one of the two modes, i.e.
either in the charging or in the discharging mode. In order to model this hybrid behav-
ior, we follow the modeling approach of [47] using a Mixed Logical Dynamical (MLD)
model [52] to model the two different modes of the batteries. The boolean variable δst(h)
indicates whether the ESS is in the charging or discharging mode at time step h, i.e.
δst(h) = 1 ⇐⇒ Pst(h) ≥ 0, and δst(h) = 0 ⇐⇒ Pst(h) < 0. Then we define a new auxiliary
variable zst as zst(h) = δst(h)Pst(h) and we can write (4.1) more compactly in linear form
as

xst(h +1) = xst(h)+Ts

(
ηc,st − 1

ηd,st

)
zst(h)+ Ts

ηd,st
Pst(h). (4.2)

In this chapter we consider two different ESSs: an ultracapacitor used for fast re-
sponse and a battery for storing larger amounts of energy for a longer time span. Note
that for simplicity of expression, the number of storage devices here is kept limited but
our approach can also be applied to systems with a higher number of ESSs. Moreover,
our approach can be used with any kind of ESSs and it is not specific only for batteries
and ultracapacitors.

Loads: We consider critical loads, i.e. loads that must be satisfied at all times. We de-
note by Pload(h) the total power required by the loads at time step h. It is assumed that
the information on the values of Pload is available, either through available information
in the microgrid or through forecasting methods.

Generators: We consider two different kinds of generators, i.e. dispatchable gener-
ators, whose output power can be controlled with a certain degree of freedom, and
non-dispatchable generators, whose output power cannot be controlled. Renewable
sources are considered as non-dispatchable generators and their output is considered
as a known disturbance, since it is a signal that cannot be controlled. We denote by
Pres the variable representing the power produced by renewable energy sources and
Pdis the vector representing the power produced by dispatchable generators, where

Pdis =
[

P dis
1 , . . . ,P dis

Ngen

]>
and P dis

i indicates the power produced by dispatchable unit i ,

i ∈ {1, . . . , Ngen}, with Ngen denoting the total number of generators. Moreover, we use a
variable δon

i (h) to indicate whether dispatchable generator i is active at time step h, i.e.
δon

i (h) = 1, or not, i.e. δon
i (h) = 0.

Energy prices: We consider time-varying electricity prices, such that prices for pur-
chase and sale of electricity are different. We denote with csale(h) and cpur(h) the price
for selling and purchasing electricity to and from the main grid, respectively. We also
consider a time-varying tariff cprod(h) for producing electricity with the local dispatch-
able production units.



42 4. PARAMETRIC METHODS FOR ENERGY MANAGEMENT SYSTEM IN MICROGRIDS

Main grid: The microgrid is connected to the main grid and power can flow bidirec-
tionally. We model the connection with the grid using a binary variable δgrid(h) that in-
dicates the direction of the power flow at time step h, i.e. whether energy is being bought
from the main grid or sold to it. Denoting by Pgrid the power exchanged with the main
grid, we have {

δgrid(h) = 0 ⇐⇒ Pgrid(h) < 0, (exporting case)

δgrid(h) = 1 ⇐⇒ Pgrid(h) ≥ 0, (importing case)
(4.3)

We can then define an auxiliary variable Cgrid as{
Cgrid(h) = csale(h)Pgrid(h) ⇐⇒ Pgrid(h) < 0,

Cgrid(h) = cpur(h)Pgrid(h) ⇐⇒ Pgrid(h) ≥ 0.
(4.4)

As will be explained in Section 4.2.3, we can link together δgrid and Cgrid by resorting
to a set of linear constraints. The auxiliary variable Cgrid is used in the cost function,
presented in Section 4.2.4.

Remark 4.1. In this chapter, we consider that the renewable energy source profiles, the
load profiles, and the time-varying prices are known in advance. For what concerns the
prices, this is not a limiting assumption, since in some cases these are known some time
in advance; see e.g. [109], where authors use a day-ahead pricing scheme. As regards the
loads and the renewable energy sources, some works [47, 63, 64] have considered a pre-
diction scheme that provides a predicted load or renewable energy signal to the MPC con-
troller. Although in the this chapter we do not consider a prediction scheme, it can be easily
included in the control scheme presented here and predicted signals can be used instead
of signals known a priori.

4.2.2. FAST AND SLOW MODEL
In this section, we propose a novel method that uses two different microgrid models,
namely a ‘fast’ one and a ‘slow’ one. The ‘fast’ model is used for predictions that are
close to the current sampling time, while the ‘slow’ one is used for predictions that are
farther away in time. The reason for choosing such a control structure is twofold. Firstly,
the ultracapacitor cannot hold electric charge efficiently for a long time, i.e. it has a high
self-discharge rate [110]; this holds for other similar ESSs with small capacity. Therefore
we assume that the ultracapacitor is available only close to the current sampling time,
hence it is used only in the ‘fast’ model, when a quick response is needed for providing or
absorbing a small amount of energy. Secondly, the available future data on prices, load,
and renewables profiles is denser in time steps close to the current one, while it becomes
more sparse far from the current time step. The previous discussion implies that the
number of state components and input components of the two models are different.
Indeed, the ‘slow’ model does not consider the dynamics of the ultracapacitor and only
considers the dynamics of the battery.

The advantage of this kind of controller structure is that, by having only one con-
troller, we reduce the complexity of the control architecture and we make the implemen-
tation easier, with respect to hierarchical controllers. Moreover, during each optimiza-
tion procedure the most updated information is used, compared to other approaches in
which information is only updated at a higher level after a certain amount of time.
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Figure 4.2: Scheme adopted in this chapter for the time steps of the two different models.

We show in Figure 4.2 the different sampling times and the time intervals during
which each model is used. We denote by T f

s and T s
s the sampling interval of the ‘fast’ and

‘slow’ model, respectively, and we denote by h and k the time steps of the ‘fast’ and ‘slow’
model, respectively. Moreover, we suppose that from time step Nf,s of the ‘fast’ model we
start using the ‘slow’ model for predictions. Therefore, the step Nf,s of the ‘fast’ model
coincides with time step 0 of the ‘slow’ model. We also assume that Nf,sT f

s = T s
s , i.e. the

‘fast’ model is used for exactly one time step of the ‘slow’ model. Note that while here we
make these assumptions on Nf,s, T f

s , and Ts for simplicity and easiness of presentation,
if needed, the ‘fast’ model could be used for a larger or smaller amount of time than Ts,
i.e. one could choose Nf,s, T f

s , and Ts such that Nf,sT f
s < T s

s or Nf,sT f
s > T s

s .
The dynamic equations of the fast model, by using (4.2), are

xf(h +1) = xf(h)+B f
1zf(h)+B f

2uf(h), (4.5)

where xf(h) = [
xf,b(h) xf,uc(h)

]>
, with xf,b and xf,uc being the storage level of the battery

and of the ultracapacitor, respectively, zf is the auxiliary variable for the ‘fast’ model,

and B f
1 ∈ R2×2, B f

2 ∈ R2×mf . We define the input vector as uf(h) = [
Pf,b(h) Pf,uc(h)

]>
,

uf(h) ∈ Rmf , which represents respectively the power exchanged with the battery and
the power exchanged with the ultracapacitor. The ‘slow’ model is defined in a similar
way, i.e.

xs(k +1) = xs(k)+B s
1zs(k)+B s

2us(k), (4.6)

where xs(k) = xs,b(k) is the storage level of the battery, zs is the auxiliary variable for
the ‘slow’ model, and B s

1,B s
2 ∈ R. The input vector is defined as us(k) = Ps,b(k) and it

represents the power exchanged with the battery. Note that, as highlighted before, the
number of states and inputs is different between the two models.

We consider the power balance constraint in the microgrid:

Pf,b(h) =
Ngen∑
i=1

P dis
i (h)+Pres(h)+Pgrid(h)−Pf,uc(h)−Pload(h), (4.7)

∀h ≥ 0, and apply it to (4.5) to write the expression of the dynamics of the stor-
ages as a function of Pgrid, Pload, and Pdis. Then, by introducing suitable matri-

ces M f
u , M f

w and defining uf(h) =
[

P>
dis(h) Pgrid(h) Pf,uc(h)

(
δon(h)

)>]>
and

wf(h) = [
Pload(h) Pres(h)

]>
, we can put together (4.5) and (4.9) as

xf(h +1) = xf(h)+B f
1zf(h)+B f

2

(
M f

u uf(h)+M f
w wf(h)

)
. (4.8)
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A similar expression is obtained for (4.6) by using the version of the ‘slow’ model of (4.7),
where, however, Pf,uc(h) does not appear, i.e.

Ps,b(k) =
Ngen∑
i=1

P dis
i (k)+Pres(k)+Pgrid(k)−Pload(k), (4.9)

∀k ≥ 0. Equation (4.7) is used only for the ‘fast’ model, while (4.9) is used only for the
‘slow’ model. Similarly to what we did before, we introduce suitable matrices M s

u , M s
w

and define us(k) =
[

P>
dis(k) Pgrid(k)

(
δon(k)

)>]>
and ws(k) = [

Pload(k) Pres(k)
]>

.

Next, we merge (4.6) and (4.9) as

xs(k +1) = xs(k)+B s
1zs(k)+B s

2

(
M s

u us(k)+M s
w ws(k)

)
. (4.10)

Since the ‘fast’ and the ‘slow’ model have different input components and state com-
ponents, it is necessary to define a way to link the two models. As stated before, we as-
sume that the ‘fast’ model is used only until the time instant T f

s Nf,s, i.e. time step Nf,s of
the ‘fast’ model and after that the ‘slow’ model is used. We can then link the two models
using

xs(0) = xf,b(Nf,s), (4.11)

which means that we can define a matrix Mf,s = [
1 0

]
to link the two models as xs(0) =

Mf,sxf(Nf,s).

Remark 4.2. Note that here we consider to have only one battery and one ultracapacitor
for simplicity. However, the model can be easily extended to a multi-battery or multi-
ultracapacitor case.

4.2.3. CONSTRAINTS

In this section, we introduce the constraints related to the models and the power flows
in the microgrid. Since we are using an MLD model for the storage units and the power
exchanged with the main grid, we define the constraints as in [47, 52] by defining matri-
ces E1,E2,E3,E4 such that we can write the constraints in a compact form. We define two
different sets of constraints, one for each model, denoting with a superscript ‘f’ and ‘s’
the constraints for the ‘fast’ and ‘slow’ model, respectively. We can then write compactly
the constraints for the ‘fast’ model as

E f
1δf(h)+E f

2zf(h) ≤ E f
3uf(h)+E f

4. (4.12)

A similar inequality holds for the ‘slow’ model, where we replace the matrices E f
i with

matrices E s
i , i ∈ {1, . . . ,4} and we replace the variables of the ‘fast’ model with the ones

related to the ‘slow’ model.

We define also constraints on the upper and lower bounds for the states and the in-
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puts, i.e.

P b ≤Pb(h) ≤ P b (4.13)

P uc ≤Puc(h) ≤ P uc (4.14)

P grid ≤Pgrid(h) ≤ P grid (4.15)

δon
i (h)P dis ≤P dis

i (h) ≤ δon
i (h)P dis (4.16)

xst ≤xf(h) ≤ xst (4.17)

for i ∈ {1, . . . , Ngen}, where xst =
[
xb xuc

]>
, and xb, xuc are the lower bounds for the

state of charge of the battery and the ultracapacitor, respectively, and xst =
[
xb xuc

]>
,

and xb, xuc are respectively the lower bound for the state of charge of the battery and the
ultracapacitor. The constraints (4.13)-(4.17) model the physical bounds on, respectively,
the power exchanged with the battery, the power exchanged with the ultracapacitor, the
power exchanged with the main grid, the power produced by each production unit, and
the level of charge of the ESSs. The constraints (4.13)-(4.17) are expressed using the sam-
pling time index of the ‘fast’ model, i.e. h, but they are also applied to the variables of the
‘slow’ model as well, where, however, the ultracapacitor does not appear, i.e.

P b ≤Pb(k) ≤ P b (4.18)

P grid ≤Pgrid(k) ≤ P grid (4.19)

δon
i (k)P dis ≤P dis

i (k) ≤ δon
i (h)P dis (4.20)

xst ≤xs(k) ≤ xst (4.21)

Moreover, we also consider constraints for the generators related to the amount of
time they should stay turned on or off. We denote by T f

on and T f
off the minimum amount

of time during which the generators should be turned on or off, respectively, expressed
in number of sampling times of the ‘fast’ model. Therefore, we can introduce the con-
straints

δon
i (h)−δon

i (h −1) ≤ δ(l ), from OFF to ON (4.22)

δon
i (h −1)−δon

i (h) ≤ 1−δ(l̄ ), from ON to OFF (4.23)

for l = 1, . . . ,min{h +T f
off −1, Nf,s} and l̄ = 1, . . . ,min{h +T f

on −1, Nf,s}. Again, this con-
straint is written using the sampling time of the ‘fast’ model, but it can applied to the
‘slow’ model too with proper adaptations. Notice, however, that since the two models
are used consecutively, it might happen that h+T f

on−1 ≥ Nf,s or h+T f
off−1 ≥ Nf,s, which

means that the constraint associated to the ‘fast’ model would extend over the time steps
of the ‘slow’ model. In that case, we extend constraints to the ‘slow’ model defining a k̂
as

k̂ =
⌈

T f
s (h +T f

on −1)

T s
s

⌉
, (4.24)

i.e. we extend the constraints until the smallest time step of the slow model that allows to
keep the generators on for at least T f

on. We then impose the adapted constraints (4.22),
(4.23) for the ‘slow’ model until time step k̂. The extension for T f

off is done in a similar
way.
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4.2.4. COST FUNCTION
We adopt a cost function that is a sum of several economic terms. In particular, we con-
sider the simple sum of costs and revenues, i.e. we sum up the costs for producing elec-
tricity locally and buying electricity from the main grid and the revenues obtained from
selling electricity to the main grid. The resulting cost function is defined as

J (Pp(h),Cgrid(h),cprod(h)) =
Nf,s−1∑

j=0

(
Cgrid(h + j )+ cprod(h)

Ngen∑
i=1

P dis
i (h + j )

)

+
Np−1∑
l=0

(
Cgrid(h +Nf,s + l )+ cprod(k)

Ngen∑
i=1

P dis
i (h +Nf,s + l )

)
,

(4.25)

where the first summation term corresponds to the ‘fast’ model, from time step h until
time step h +Nf,s −1, and the second summation term corresponds to the ‘slow’ model,
from time step h +Nf,s until time step h +Np −1 (recall Fig. 4.2).

Note that the total cost depends strongly on the prices csale, cpur, which are included
in the variable Cgrid, and on the price cprod. This fact will be exploited in Section 4.4 in
the proposed if-then-else procedure. Moreover, note also that the two objectives in Eq.
(4.25) could be weighted in order to penalize more one of the two objectives, e.g. to give
more importance to the ‘fast’ model.

4.3. PARAMETRIZED MODEL PREDICTIVE CONTROL
In this section, we present a parametrization of the control inputs based on functions
that represent different microgrid objectives and take as inputs different quantities of
the microgrid, e.g. renewable energy profile, energy prices. The binary variables are
parametrized through a heuristic if-then-else parametrization.

We consider only one set of parameters, i.e. the same parameters are kept for the
whole prediction horizon. In this way, we are able to reduce the computational com-
plexity, since we reduce the number of decision variables.

4.3.1. PARAMETRIZED INPUT LAWS
The parametrized MPC (PMPC) law of each input is defined as a weighted sum of func-
tions that depend on the states, on the previous continuous control inputs, and on some
external quantities, e.g. price of electricity. Moreover, we fix the value of the parameters
for the whole prediction horizon, in order to reduce the computational complexity of
the problem. The discrete control inputs are instead assigned according to if-then-else
rules.

The continuous components of uf are parametrized as

3∑
i=1

θi
fi

(
x(h), w(h), w(h −1),csale(h),cpur(h),uf(h −1)

)
f max

i

, (4.26)

where parameters θi and functions fi are different for each component of uf. The value
f max

i corresponds to the maximum of the function fi and it is used to normalize the term
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corresponding to the parameter θi . Since the parameters θi are constant, uf has 3 con-
tinuous components, and us has 2 continuous components, we have in total 15 param-
eters. For the ‘slow’ model, we obtain a similar equation to (4.26), where, as explained
below, the functions related to the ultracapacitor do not appear.

The functions fi depend either on the states or on variables such as Pload, csale, or
cpur. The idea behind the design of these functions is to assign more or less importance
to certain objectives. Following (4.26), we propose in total 9 different functions, 3 for
each of the continuous components of uf; we also denote them with the superscripts ‘uc’,
‘grid’, ‘dis’, which denote respectively the ultracapacitor, the main grid, the produced
power through the dispatchable units. The functions are defined as follows:

• f uc
1 = 0.5

(
xuc −xuc

)−xuc(h), in order to keep the value of the storage of the ultraca-
pacitor close to its medium value, so that the ultracapacitor can react to a change
in power by providing power or absorbing it;

• f uc
2 (h) =−Pload(h−1)+Pres(h−1)+∑Ngen

i=1 P dis
i (h−1), so that more power is stored

in the ultracapacitor if at the previous time step there was more power produced
than consumed locally, and vice versa;

• f uc
3 (h) = −cpur(h), to take more power from the ultracapacitor when the price for

buying electricity is high;

• f grid
1 (h) =−cpur(h), so that less power is bought from the main grid if the price for

buying electricity is high;

• f grid
2 (h) =−csale(h), in order to sell more electricity to the main grid if the price for

selling electricity is high (recall (4.3));

• f grid
3 (h) = − f uc

2 (h), so that more power is bought if at the previous time step the
local consumption was higher than the local production, and vice versa;

• f dis
1 (h) = Pload(h), in order to produce more power when the local demand is high;

• f dis
2 (h) = cpur(h), so that more power is produced locally when the price for buying

electricity is high;

• f dis
3 (h) = xb −xf,b(h), with the idea that more power is produced proportionally to

the level of charge of the battery, i.e. more power is produced if there is not too
much ‘reserve power’ in the battery.

The functions f uc
i , f grid

i , f dis
i , i ∈ {1,2,3} are used in the control law associated to the

‘fast’ model, while all the functions except for the functions f uc
i are used in the control

law associated to the ‘slow’ model.
Besides functions f uc

i , f grid
i , f dis

i , i ∈ {1,2,3}, we also propose a heuristic assignment

of the boolean control variables δon, δst, and δgrid in order to reduce the computational
complexity of the control problem. More specifically, we define a set of if-then-else rules
to assign the values 0 or 1 to the boolean values:
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• the generators are turned on, i.e. δon
i (h) = 1, for i ∈ {1, . . . , Ngen}, if Pres(h) <

Pload(h), so that the required power can be provided (at least partially) by the
generators;

• power is bought from the main grid, i.e. δgrid(h) = 1, if Pres(h) − Pload(h) < −α,
where α ∈ R+ is a threshold that can be defined by the user. The idea here is that
first we try to satisfy the local loads using the local production units, but if the
power required by the loads is quite high, then we also allow the controller to buy
energy from the main grid;

• at the same way, we allow the controller to use the energy stored in the battery, i.e.
δb(h) = 0, if Pres(h)−Pload(h) < −α, since the power balances (4.7)–(4.9) must be
always satisfied. Energy can be stored in the battery in the opposite case. More-
over, due to the smaller capacity of the ultracapacitor with respect to the battery,
and in order to add more flexibility to achieve the power balance (4.7), the ultraca-
pacitor is allowed to store energy when the battery is being drained and vice versa,
i.e. δuc(h) = 1, if Pres(h)−Pload(h) < −α.

The threshold α can be defined by the user with some insight in the problem. Note
that due to the power balance constraints (4.7), (4.9), an upper bound to α must be im-
posed, which results in α ≤ NgenP dis. Otherwise, in the worst case scenario, the power
balance (4.7), (4.9) cannot be satisfied.

Remark 4.3. Due to f uc
1 , f p

3 and to (4.26), the optimization problem becomes nonlinear.
Since we also parametrize the integer values, the problem does not have integer variables.
Note that the standard approach for MPC control of MLD systems in the literature results
in an MILP problem. While for small-sized problems the MILP approach could be faster,
its complexity is exponential in the number of integer optimization variables in the worst
case [44, 53, 68, 69, 111]. Although our approach results in a nonlinear bilinear program-
ming problem, it will be more scalable, since it does not suffer the exponential increase
complexity related to the number of binary variables.

4.3.2. COST FUNCTION AND OPTIMIZATION PROBLEM
Following (4.25), we define the optimization problem of the MPC controller as

minimize
θ

J (Pdis(h),Cgrid(h),cprod(h)) (4.27a)

subject to dynamics (4.8), (4.10), (4.27b)

constraints (4.7), (4.9), (4.11), (4.12)− (4.23), (4.27c)

parametrized input (4.26) (4.27d)

and xf(h) is initialized to the current state.
As standard in MPC controllers, we compute the optimal parameters θ and thus the

optimal inputs from the current time step h until time step h + Np − 1. We apply only
the first element of the optimal input sequence and at the next sampling time we solve
problem (4.27) once again.
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4.4. RULE-BASED MODEL PREDICTIVE CONTROL
In this section, we apply a parametrization based on if-then-else rules that take as input
the values of the electricity prices, the loads profile, and the renewable energy profile,
providing a binary variable configuration for the binary variables in the MLD model.

In the rule-based parametrization method, we assign the value of the binary vari-
ables in the MLD model through an if-then-else parametrization while optimizing the
continuous variables. In this way, the problem is not an MILP one anymore, since the
value of the binary variables is assigned before the optimization takes place. Therefore,
computational savings are achieved due to the removal of the binary variables in the op-
timization problem, which becomes then a linear program. We refer to this method as
Rule-Based MPC (RBMPC).

The if-then-else rules are designed in order to avoid losses on the performance,
which in this case is of an economic nature as explained in Section 4.2.4. Therefore,
the rules are based on economic quantities. Moreover, the rules also consider the local
renewable energy production and load profiles, since the decisions taken depend on
these two quantities too.

4.4.1. ASSIGNMENT OF THE VALUES TO THE BINARY DECISION VARIABLES
We will first analyze which are the causes that lead the controller to take certain actions,
i.e. what triggers the assignment of the binary decision variables in the optimization
problem. In the considered system, the economic cost (4.25) to be optimized depends
on two main quantities: the locally produced power Pdis and the power exchanged with
the main grid Pgrid. These two inputs are weighted in the cost function by the price of
producing energy locally, cprod, and the prices of electricity purchase or sale, cpur and
csale, respectively, according to whether the microgrid is purchasing electricity or selling
it. Since the quantities Pdis and Pgrid are two inputs of the system, these inputs directly
determine the overall cost. Note that the price cprod and the input Pdis appear directly in
the cost function (4.25), while the prices csale and cpur and the input Pgrid appear indi-
rectly inside the variable Cgrid.

Besides these two quantities, the system must satisfy the power balance constraints
(4.7), (4.9) at all times. Therefore, the decisions that the controller takes are based on the
satisfaction of these constraints. The cost of producing energy through the renewable
energy sources is null, because in our cost function (4.25) we consider only marginal
costs and revenues and not fixed ones. This means that in order to minimize the cost,
the controller will try to satisfy the loads with the renewable energy sources first. Only if
this power is not enough, it will either buy power from the main grid or produce it locally
through the dispatchable units. If the power produced by the renewable energy sources
is higher than the one required by the loads, then the surplus power can be stored in the
battery or it can be sold to the main grid. Moreover, we must also make a distinction
between whether the microgrid is able to completely satisfy the local demand or not, i.e.
whether it is necessary to acquire power from the main grid or not.

From the previous discussion, it is possible to notice that the actions that the con-
troller takes are based on two main facts. The first one is related to whether the micro-
grid can satisfy the local demand with the local production units or not and it is mainly
related to the feasibility of the control action, i.e. it is closely related to constraints (4.7),
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(4.9). The second one is related to the choice of the power source that will satisfy con-
straints (4.7), (4.9) and it deals with the optimality of the control action.

We can then determine the values of the binary decision variables by looking at whe-

ther the microgrid can locally satisfy the loads, i.e. we check whether NgenP
dis + Pres(h) <

Pload(h) and whether Pres(h) > Pload(h). Then, we check the relation between the energy
prices, i.e. we check whether cprod(h) < csale(h) ≤ cpur(h), csale(h) < cprod(h) ≤ cpur(h), or
csale(h) < cpur(h) ≤ cprod(h). Based on this, we have five different cases:

1. Pres(h) ≥ Pload(h), with cprod(h) < csale(h) ≤ cpur(h). In this case, the renewable
energy sources completely satisfy the loads. Since cprod(h) < csale(h), it is also con-
venient to produce energy and sell it to the main grid. Furthermore, due to the fact
that there is a surplus of energy, the battery is allowed to store energy, because it
could be useful to store energy for later usage. Therefore, in this case we impose
δgrid(h) = 0, δon

i (h) = 1, i ∈ {1, . . . , Ngen}, δb(h) = 1. In the resulting optimization
problem, it will be determined how much energy to sell to the main grid and to
store in the batteries, since these two actions are enabled.

2. NgenP dis + Pres(h) ≥ Pload(h) and Pload(h) > Pres(h), with cprod(h) < csale(h) ≤
cpur(h), or csale(h) < cprod(h) ≤ cpur(h). In order to satisfy the local loads, a certain
amount of energy has to be acquired, since the renewable energy sources do not
completely satisfy the loads. Producing energy is cheaper than buying it from the
main grid, so the required energy is produced locally. If cprod(h) < csale(h), then
extra energy will produced in order to be sold to the main grid, otherwise only the
necessary energy will be produced. The battery is allowed to store energy, as in
the previous cases. Therefore, we impose δgrid(h) = 0, δon

i (h) = 1, i ∈ {1, . . . , Ngen},
δb(h) = 1.

3. NgenP dis+Pres(h) < Pload(h), with cprod(h) < csale(h) ≤ cpur(h), or csale(h) < cprod(h)
≤ cpur(h). The local loads require more energy than the energy that can be lo-
cally produced together by the renewable energy sources and the dispatchable
units. Therefore, we set the production units to produce energy and we buy the
remaining required energy from the main grid. The battery is also allowed to pro-
vide the stored energy. In this case, there is no distinction between the cases
cprod(h) < csale(h) and cprod(h) ≥ csale(h), since in both cases it is necessary to
buy energy from the main grid. Therefore, we impose δgrid(h) = 1, δon

i (h) = 1,
i ∈ {1, . . . , Ngen}, δb(h) = 1.

4. Pres(h) ≥ Pload(h), with csale(h) < cprod(h) ≤ cpur(h). With these conditions, the re-
newable energy sources completely satisfy the loads. Since csale(h) < cprod(h), the
generators are turned off. Due to the surplus of energy, the battery is allowed to
store energy and the grid power exchange is set to the sale mode. The battery can
store energy in this case since the price for electricity might increase in the follow-
ing time steps, or the amount of available renewable energy could be smaller. The
optimization procedure will decide whether to sell energy, store it, or perform both
actions. For this case we impose δgrid(h) = 0, δon

i (h) = 0, i ∈ {1, . . . , Ngen}, δb(h) = 1.

5. NgenP dis + Pres(h) ≥ Pload(h) and Pload(h) > Pres(h), with csale(h) < cpur(h) ≤
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cprod(h). As in the previous case, some energy has to be acquired in order to satisfy
the local loads. Producing energy is more expensive than buying it from the main
grid, thus the required energy is bought from the main grid and the generators
are turned off. In order to reduce the cost, the battery is allowed to provide some
stored energy. In this case, we impose δgrid(h) = 1, δon

i (h) = 0, i ∈ {1, . . . , Ngen},
δb(h) = 0.

All the cases are summarized in Table 4.1. For what concerns the ultracapacitor, in all the
mentioned cases we opt to impose a mode of operation that is always the same as the
battery. Also, consider the two following observations on Table 4.1. The first one is that in
order to optimize the economic costs, in cases 1 and 2 of Table 4.1, we could add an extra
step and force the local dispatchable units to produce at full capacity, i.e. P dis, since that
would be the most convenient choice. However, we could run into infeasibility issues,
as will be discussed in the next subsection. Therefore, in these two cases we only force
the generators to be turned on and, if it is more profitable and feasible, the solver will set
the production output to its maximum value. The second observation is that in the first
column, Pload ≤ Pres implies that NgenP dis ≥ Pload−Pres, which means that the microgrid
is perfectly able to satisfy the local loads with the locally produced energy, therefore we
do not need to add the second condition NgenP dis ≥ Pload−Pres, which is instead present
in the second column.

4.4.2. ADDITIONAL CONSTRAINTS REQUIRED BY THE RULE-BASED DESIGN

AND FEASIBILITY ISSUES

When we apply the if-then-rules proposed in Section 4.4.1, we must devote special at-
tention to some of the constraints presented in Section 4.2.3. In particular, the generator
constraints (4.22)-(4.23) in combination with the power balance constraints (4.7), (4.9)
pose some issues in some of the cases presented in Table 4.1.

First of all, according to the if-then-else rules proposed in Section 4.4.1, it might hap-
pen that the generators are imposed to be turned off while according to constraint (4.23)
they should be kept turned on, or vice versa. In this case it is enough to override the pro-
posed if-then-else rules and keep the generators on (vice versa, off) in order to satisfy
constraints (4.22)-(4.23).

When taking into account the power balance constraints (4.7), (4.9), extra attention
is needed. Let us analyze the case in which, at time step ĥ, the generators are turned
off. Suppose now that at the prediction time step ĥ +1 the system is in case 2 of Table
4.1 and thus the if-then-else rules procedure would force the generators to be turned on,
but constraint (4.22) is active at ĥ+1. According to the rules proposed in Table 4.1, if the
generators cannot be turned on due to constraint (4.22), then the power balance (4.7),
(4.9) could not be satisfied, since the grid is set to be in the sale mode. In this case, we
must then set the grid to the purchase mode.

In all the other cases, the proposed if-then-else rules together with the generator
constraints (4.22)-(4.23) do not lead to an issue that requires extra attention. In some
cases, though, we must verify that some assumptions are guaranteed. For instance, sup-
pose that at the prediction time step ĥ +1 the if-then-else rules would make the system
switch from case 1 to case 4, but due to constraint (4.23), the generators cannot be turned
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Pload ≤ Pres
NgenP dis ≥ Pload −Pres

AND Pload > Pres
NgenP dis < Pload −Pres

c p
ro

d
<

c s
al

e
≤

c p
u

r
Case 1:

• Production units: ON
• Battery: charge
• Grid: sale mode

Case 2:

• Production units: ON
• Battery: charge
• Grid: sale mode

Case 3:

• Production units: ON
• Battery: discharge
• Grid: purchase mode

c s
al

e
≤

c p
ro

d
<

c p
u

r

Case 4:

• Production units: OFF
• Battery: charge
• Grid: sale mode

Same as case 2 Same as case 3

c s
al

e
≤

c p
u

r
≤

c p
ro

d

Same as case 4

Case 5:

• Production units: OFF
• Battery: charge
• Grid: purchase mode

Same as case 5

Table 4.1: Different cases of the if-then-else rules for the proposed controller.

off. In this case, the optimization problem is still feasible as long as

Pres(ĥ +1)−Pload(ĥ +1)+NgenP dis ≤ P grid. (4.28)

This constraint is satisfied as long as P grid is sufficiently large, which is usually the case
in the practical applications. A similar case is verified when the generators are turned
off and the if-then-else rules would impose case 3 of Table 4.1, but in this case we would
have the less restrictive constraint Pres(ĥ +1)−Pload(ĥ +1) ≤ P grid.

Lastly, we do not impose the generators to produce at full capacity in cases 2 and 3
since this could lead to infeasibility problems when the generators should be turned off
but they remain turned on due to constraint (4.23).



4.5. MACHINE LEARNING METHODS

C
h

ap
te

r
4

53

4.4.3. OPTIMIZATION PROBLEM
The overall optimization problem, after we have applied the proposed if-then-else rules
of Section 4.4.1, becomes

minimize
Pdis,Pgrid,
Pf,uc,δon

J (Pdis(h),Cgrid(h),cprod(h)) (4.29a)

subject to dynamics (4.8), (4.10), (4.29b)

constraints (4.7), (4.9), (4.11), (4.12)− (4.23), (4.29c)

parametrization of Sections 4.4.1, 4.4.2 (4.29d)

As standard in MPC controllers, we compute the optimal control inputs uf from the
current time step h until time step h + Np − 1. We apply only the first element of the
optimal input sequence and at the next sampling time we solve problem (4.29) once
again.

4.5. MACHINE LEARNING METHODS
In this section, we follow a similar approach to the one presented in the previous sec-
tion, i.e. we provide a binary variable configuration for the binary variables in the MLD
model before the optimization takes place, but we do so by training and sampling some
machine learning methods. Instead of defining a set of if-then-else rules based on do-
main knowledge, we obtain a configuration of binary variables through machine learn-
ing methods that have been trained with past simulation data.

As for the rule-based case, computational savings are achieved by removing the bi-
nary variables from the optimization problem. The adopted machine learning methods
are trained using data from the past simulation and the goal is to replicate the optimal
value of the binary variables obtained with MILP simulations. If the obtained binary
variable configuration results in an infeasible one, then some of the binary variables are
overridden to achieve feasibility.

4.5.1. MICROGRID MODEL
In this section, we use the model presented in Section 4.2, using, however, only the ‘slow’
model and only one battery without using the ultracapacitor. This is done in order to
avoid a very large computational complexity in the training phase of the machine learn-
ing methods when the ‘fast’ model is used too.

4.5.2. MACHINE LEARNING APPROACH
As mentioned before, solving an MILP problem is a NP-hard problem in general [53, 68,
69, 111]. Nevertheless, by treating xb(0), cpur, csale, cprod, Pload, Pres as parameters of the
problem, and by observing that the structure of the problem remains the same at each
time step, we can build a machinery that can lead to an explicit MPC controller. This
idea becomes even more appealing as we do not actually need to build such a predictor
for all the decision variables since, once the binary components are set, the real-valued
ones can be found separately. As practical matter, this would translate into relaxing the
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Figure 4.3: Proposed solution scheme.

original MILP based controller into a partially explicit controller that must solve only an
LP at each time step. Figure 4.3 shows the resulting optimization scheme.

In particular a possible approach to achieve this is then the following:

1. Extract a representative dataset of N examples of parametric realizations,

ZN =
{(

x0(k),c i
buy(k),c i

prod(k),c i
sale(k),P i

load(k),P i
res(k)

)}
(4.30)

with ZN ∈R(1+(Ngen+1+1)(Np−1))×N , ∀i ∈ {k, . . . ,k +Np −1}, ∀k ∈ {1, . . . , N }.

2. Solve off-line the corresponding optimization problems.

3. Extract the set of optimal binary tuples associated to the components of the grid
at each step in the prediction horizon:

Oi
N =

{(
δon(i )

1 (k), . . . ,δon(i )
Ngen

(k),δi
grid(k),δi

b(k)
)}

(4.31)

where each Oi
N ∈ {0,1}(Ngen+1+1)×N , ∀i ∈ {k, . . . ,k +Np −1}, ∀k ∈ {1, . . . , N }.

4. Use machine learning/function approximation methods to build a map from pa-
rameter values to binary tuples.

Multiple contributions have already explored the use of machine learning techniques
for predicting the optimal active set of optimization problems. However, most of such
approaches were meant to achieve the best possible predicting performance with little
regard of any secondary use the learned classifier may need to serve, e.g. providing fa-
cilities to assess the correctness and robustness of the given prediction. For this reason,
in this section, we focus on the idea of using more interpretable techniques. Therefore,
this work is closely related to the one presented in Section 4.4 and the two approaches
will be compared in the case study presented in Section 4.6.3.

As we are dealing with real-time applications, we also need a learning architecture
with a small computational footprint and possibly running also in bounded time for
throughput predictability. As the quantities we are trying to predict are binary in nature,
a natural choice is to resort to a decision-tree classifier [112] with a limited a-priori num-
ber of nodes for which both the decision path of each prediction is clearly inspectable
[113] and a vast literature about establishing the importance of each provided input fea-
ture exists. One of the principal limitations of decision trees is however their instability.
For this reason we also consider the use of random-forest classifiers [114], which try to
solve this issue by bagging more decision trees together, at the cost of both a more prob-
lematic interpretability and higher computational requirements.
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Each predictor is trained to predict the tuple of binary decision variables correspond-
ing to the action of a specific time step within the prediction window. In practice, this
means that we will have Np predictors, each one trained on a different dataset tuple(
ZN ,Oi

N

)
. The reason for this choice is twofold: on the one hand, very small decision

trees simply lack the approximation power required to efficiently predict hundreds of
outputs at the same time and, on the other hand, it would greatly facilitate the user in
establishing which input feature influences which output.

In both cases, the loss function used to grow the classifiers is the standard cross-
entropy loss figure commonly adopted when training classifiers, i.e.

L (y, ŷ) =−
p∑

i=1
(1− ŷi ) log(1− yi )+ ŷi log(yi )

where y ∈ {0,1}p is the optimal binary decision variable vector and ŷ is its estimate given
by the predictor.

Remark 4.4. The choice of the value of N depends on the kind of machine learning tech-
nique that is chosen. For the methods presented here, i.e. decision trees and random forest
classifiers, it is recommended to have at least 10000 samples to achieve a good perfor-
mance of the predictors.

4.5.3. PREDICTION OVERRIDE FOR AVOIDING INFEASIBILITY
The proposed approach is still not yet able to ensure the feasibility of the prediction with
respects to the constraints (4.9), (4.11), (4.12)–(4.23). A possible approach to avoid in-
feasibility in this case is to inspect the behavior of the proposed predictor, categorize
the cases of bad behavior, i.e. infeasible predictions, and implement a fail-safe override
mechanism that ensures feasibility in such specific occasions. While this is in general as
hard as designing a whole explicit controller, in many systems, including the one we an-
alyze, trivial feasible configurations are indeed simple to recover. Moreover, we note that
even in the case in which the prediction leads to an infeasible configuration, it will still
be close to the real optimal one. This means that the task the user is asked will not be to
design a complete substitute optimal controller as a whole, but rather to simply provide
a limited set of feasibility corrections, without the need of caring about optimality.

Based on the previous discussion, we consider the three following possible sources
of infeasibility:

1.
∑Ngen

i=1 δon
i (k)P

dis
i < Pload(k)−Pres(k) ANDδgrid(k) = 0, i.e. the local production units

alone are not able to satisfy the loads but the grid is set to export mode. We override
δgrid(k) and set it to δgrid(k) = 1, i.e. we set the grid to import mode, for the values
of k for which this condition is verified.

2. Pres(k)−Pload(k) > δb(k)|P b(k)| AND δgrid(k) = 1, i.e. there is a surplus of genera-
tion, higher than the power that the battery can absorb, but the grid is set to import
mode. In this case, δgrid(k) is set to 0, i.e. to export mode;

3. 0 < Pload(k)−Pres(k) < ∑Ngen

i=1 δon
i (k)P dis

i AND δgrid(k) = 1, i.e. the loads are higher
than renewable power and the minimum power that can be produced with the
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P TOT
dis P TOT

g,s P TOT
g,b Total cost

PMPC 116440 kW 14210 kW 13312 kW 4294.97e
MILP 127020 kW 24434 kW 12881 kW 4225.40e

Table 4.2: Comparison between PMPC and MILP simulation results

dispatchable units is higher than the necessary extra energy to satisfy the loads,
but the grid is set to import mode. In other words, in this specific case, there is a
small excess of energy coming from the dispatchable units that has to be exported
to the main grid. Therefore, we override the rules setting the main grid to export
case, i.e. δgrid(k) = 0.

4.5.4. OPTIMIZATION PROBLEM
The optimization problem is the following:

minimize
Pdis,Pgrid,

δon

JML
(
Pdis(k),Cgrid(k),cprod(k)

)
(4.32a)

subject to dynamics (4.10), (4.32b)

constraints (4.9), (4.12)− (4.23), (4.32c)

parametrization of Sections 4.5.2,4.5.3 (4.32d)

The cost function chosen is as in (4.25), but considering only the ‘slow’ model, as ex-
plained in 4.5.1, i.e.

JML
(
Pp(k),Cgrid(k),cprod(k)

)
) =

Np−1∑
j=0

(
Cgrid(k + j )+ cprod(k + j )

Ngen∑
i=1

P dis
i (k + j )

)
(4.33)

4.6. SIMULATIONS AND COMPARISON

4.6.1. SIMULATIONS FOR PARAMETRIZED MPC
We simulate the behavior of a microgrid that has local production units (both renewable
sources and dispatchable generators), local loads, and two energy storage systems, i.e.
a battery and an ultracapacitor. The values that we consider for the parameters of the
microgrid are: Ngen = 4, xuc = 40 kWh, xb = 250 kWh, P dis = 120 kW. Moreover, T f

s =
5 min, T s

s = 30 min, Nf,s = 6, Np = 24, α = 200. We simulate the control problem of
the microgrid for a simulation time of 24 h, comparing the results of a centralized MPC
MILP algorithm controller (as presented in [47]) with our proposed approach. We show
in Figure 4.4 the evolution of the states xst for both strategies, in Figure 4.5 the power
flows within the microgrid, while the variable energy prices are shown in Figure 4.6.

Figure 4.5 shows the power exchanged in the microgrid both for our proposed ap-
proach and for the MILP approach. Note that there are some differences in the solutions.
During the peak hours, i.e. from 9 h until 20 h, the two controllers propose two differ-
ent solutions: the MILP controller decides to produce power at the maximum capacity
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Figure 4.4: Stored energy in the storage devices when the PMPC controller is used (top) and when a MILP
controller is applied (bottom) for the case study of Section 4.6.1 related to the control algorithm presented in
Section 4.3.

and sell all the exceeding one to the main grid, while the PMPC controller produces less
power locally and sells less power to the main grid. Moreover, the usage of the storage
devices is slightly different: the MILP controller drains almost immediately the power
from the ESSs and uses them for mainly for balancing the power, while the PMPC con-
troller keeps charged the ultracapacitor for a longer time. This is also depicted in Figure
4.4, where we show the evolution of the states xst both for the MILP and the PMPC.

However, the total cost related to the two controllers is similar. A comparison is
shown in Table 4.2, where P TOT

dis , P TOT
g,s , and P TOT

g,b denote respectively the total power

produced, the total power sold to the main grid and the total power bought from the
main grid. It is possible to observe that the total cost associated to the PMPC controller
is very close the one of the MILP controller, although the PMPC controller decides to sell
less energy and buy more energy from the main grid, compared to the MILP controller.
Therefore, the two controllers have a comparable performance. However, with our pro-
posed approach we get rid of the integer variables and we parametrize the continuous
control inputs, therefore we can provide a scalable algorithm compared to the standard
MILP approach.

4.6.2. SIMULATIONS FOR RULE-BASED MPC
In this section, we compare our proposed single-level two-model rule-based MPC con-
troller, presented in Section 4.4, with a controller that has the same single-level two-
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Figure 4.5: Power flows in the microgrid during the considered simulation for the case study of Section 4.6.1
related to the control algorithm presented in Section 4.3, when the PMPC controller is used (top) and when an
MILP controller is applied (bottom).

Figure 4.6: Electricity purchase (cpur), sale (csale), and production (cprod) prices in the considered simulation
for the case study of Section 4.6.1 related to the control algorithm presented in Section 4.3.
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PARAMETER VALUE
Maximum ultracapacitor energy level xuc 50 [kWh]
Minimum ultracapacitor energy level xuc 2 [kWh]

Maximum battery energy level xb 250 [kWh]
Minimum battery energy level xb 25 [kWh]

Battery charging efficiency ηc,b 0.90
Battery discharging efficiency ηd,b 0.90

Ultracapacitor charging efficiency ηc,uc 0.99
Ultracapacitor discharging efficiency ηd,uc 0.99

Maximum interconnection power flow limit P grid 1000 [kW]
Minimum interconnection power flow limit P grid -1000 [kW]

Number of generators Ngen 3
Maximum power providable by the battery P b 100 [kW]
Maximum power injectable to the battery P b -100 [kW]

Maximum power providable by the ultracapacitor P uc 25 [kW]
Maximum power injectable to the ultracapacitor P uc -25 [kW]

Maximum power level of the dispatchable generators P dis 150 [kW]
Minimum power level of the dispatchable generators P dis 6 [kW]

Table 4.3: Parameters of the microgrid used in the case study of Section 4.6.2 related to the control algorithm
presented in Section 4.4.

model structure but that does not make use of the if-then-else rules proposed in Section
4.4.1 and instead uses the standard MILP approach. We denote our proposed rule-based
controller as RBMPC, and we denote the other approach by MILP. In both cases we use
Gurobi [76] to solve the optimization problems, which are an MILP for the MILP case
and a linear programming problem for the RBMPC case.

We simulated different scenarios, with different renewable energy and loads profiles,
and compared the two approaches in terms of total computational time and total cost.
The profiles are taken from available data at [115]. We used data from the Netherlands,
choosing profiles of days between the 1st of May 2018 and the 30th of June 2018. The
value of the parameters in the microgrid that we consider are similar to the ones in [47]
and are reported in Table 4.3.

Moreover, we also consider different combinations of T f
s ,T s

s , Nf,s, Np and for each of
them we performed 20 simulations. Table 4.4 summarizes the simulation results and we
show, for each different combination, the mean value, maximum value, the minimum
value, and the standard deviation of both the total computation time and the overall
cost, i.e. the times shown in Table 4.4 are total CPU times. Moreover, we also show the
average MILP gap for the MILP approach. Note that the maximum value for the MILP
gap parameter was set in Gurobi to 10−4. Note also that in the different cases (rows) of
Table 4.4 we used different days in the dataset that we indicated before, in order to test
our method with different renewables and load profiles. In other words, in the different
cases of Table 4.4, we did not always choose the data from the exact same set of days.
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Table 4.4: Simulation results for different sampling times and prediction horizons for the case study of Section
4.6.2 related to the control algorithm presented in Section 4.4. The symbols µ, σ, 4, and 5 indicate the mean,
standard deviation, maximum, and minimum respectively, while ‘GAP’ indicates the average MILP gap. In
columns 5 and 7 the difference of performance in percentage between the MILP and RBMPC approach is
shown.
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Figure 4.7: Average computation times of the MILP and RB-MPC approaches as a function of the number of
variables for the case study in Section 4.6.2 related to the control algorithm presented in Section 4.4.

P TOT
p [kW] P TOT

grid,sold[kW] P TOT
grid,purchased[kW] Total cost [e]

MILP 88557 31687 52012 4059.40
RBMPC 88726 (+0.19%) 31335 (-1.11%) 51855(-0.30%) 4081.00 (+0.53%)

Table 4.5: Simulation results comparison between RBMPC and MILP for a scenario with Nf,s = 12, Np = 12,

T f
s = 5min, T s

s = 60min for the case study of Section 4.6.2 related to the control algorithm presented in Section
4.4. The total power produced by dispatchable generators is represented by P TOT

dis , while P TOT
g,sold is the total

power sold to the grid and P TOT
g,purchased is the total power bought from the main grid.

This also explains why the costs differ considerably in the different rows of Table 4.4.
We can see that for the different combinations, the average total cost is very similar for
both the approaches and there is at most a 1.2% difference. However, the computational
complexity is greatly reduced, since in all the cases the average computational savings
are between 65% and 80%. As one could expect, the computational savings are larger
when the number of binary variables increases, i.e. when Nf,s or Np, or both, increase.
Nevertheless, the performance of our proposed controller does not show a decrease with
the number of binary variables. We also show in Figure 4.7 the average computation time
of the MILP and RBMPC approaches as a function of the number of binary variables in
the model.

Figure 4.9 shows the power flows within the microgrid for a representative scenario,
with Nf,s = 12, Np = 12, T f

s = 5min, T s
s = 60min, i.e. the scenario in row 4 of Table 4.4.

Figure 4.8 shows, for the same scenario, the evolution of the level of charge of the en-
ergy storage systems in the two approaches, while Figure 4.11 shows the time-varying
price profiles. The electricity prices in this scenario are chosen in such a way that the
three cases in the rows of Table 4.1 are covered. It can be observed that the two differ-
ent approaches reach a very similar solution. When cpur increases above cprod, all the
dispatchable units start producing power to satisfy the loads. Moreover, during the peak
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Figure 4.8: Stored energy in the storage devices for the case study of Section 4.6.2 related to the control al-
gorithm presented in Section 4.4, when the RBMPC controller is used (top) and when an MILP controller is
applied (bottom), with Nf,s = 12, Np = 12, T f

s = 5min, T s
s = 60min.

production hours of renewable energy sources, when cprod < cpur, both methods still
produce energy and they sell the excess energy to the main grid. What is different in the
two approaches is that the MILP algorithm charges the battery more often compared to
the RBMPC controller and it also utilizes more the ESSs. Apart from this, the two solu-
tions are very similar. Indeed, Table 4.5 shows the comparison of different quantities for
the selected scenario, comparing the total produced power with the dispatchable gen-
erators P TOT

dis , the power acquired from the main grid P TOT
grid,purchased, and the power sold

to the main grid P TOT
grid,sold, and it can be noted that there is almost no difference between

the two approaches.
Note that in some cases, i.e. rows 4 and 5, the RBMPC approach achieves a lower cost

than the MILP one. This could in theory not be possible, since the RBMPC approach only
considers one case (due to the fact that binary variables are assigned) while the MILP one
considers many more cases for the values of the binary variables. This implies that the
cost of the MILP approach should be always lower than or equal to the one of the RBMPC
approach. However, it can happen that the MILP approach decides to charge the battery
more and, at the end of the simulation, the stored energy in the battery could be larger
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Figure 4.9: Power flows in the microgrid during the considered simulation for the case study in Section 4.6.2
related to the control algorithm presented in Section 4.4, when the RBMPC controller is used (top) and when
an MILP controller is applied (bottom) with Nf,s = 12, Np = 12, T f

s = 5min, T s
s = 60min.

than the energy stored in the battery with the RBMPC approach. This means that there
is extra energy that has not been used or sold. Since the cost used in Table 4.4 does not
consider a terminal cost, it can then happen that the RBMPC approach has a lower cost
than the MILP approach, but this implies that a higher amount of energy is stored in the
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Figure 4.10: Load profile (Pload) and renewable sources generation profile (Pres) in the considered simulation
for the case study of Section 4.6.2 related to the control algorithm presented in Section 4.4, with Nf,s = 12,

Np = 12, T f
s = 5min, T s

s = 60min.

Figure 4.11: Electricity purchase (cpur), sale (csale), and production (cprod) prices in the considered simulations
of Section 4.6.2 related to the control algorithm presented in Section 4.4.

battery in the MILP approach at the end of the simulation.

Note also that in some cases of Table 4.4 the minimum value for the CPU time of the
MILP case is smaller than the maximum value of the CPU time of the RBMPC. This does
not mean that the MILP was able to find a solution before the RBMPC approach in that
specific simulation. Indeed, this occurs because many simulations were performed for
each row and for certain profiles of Pres and Pload the solver could find a solution in less
time, both for the MILP and the RBMPC case. However, in each single simulation the
rule-based approach had a smaller computation time compared to the MILP one.
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4.6.3. SIMULATIONS FOR MPC WITH MACHINE LEARNING METHODS

SETUP

Simulations were carried out solving problem (4.32) subject to the parameterization of
the binary variables through machine learning algorithms presented in Section 4.5. We
focus in particular on a Random Forest method (RF7) and a Decision Tree (DT7) with
maximum depth of 7 levels. The level of depth chosen is a trade-off between complex-
ity and approximation power. As benchmarks, we consider both the full MILP original
problem and the rule-based (RB) approach presented in Section 4.4.

The classifiers were trained using 15725 samples obtained by solving the real MILP
optimization problem with Gurobi [76] and using real data for the renewable energy
sources and the loads from year 2018 taken from the ENTSO-E Transparency Platform
[115]. The amount of dispatchable units is set to Ngen = 3, the sampling time is Ts =
30 min, and the prediction horizon of the MPC algorithm is Np = 48, corresponding to
24h. This in turn results in

(
1+1+Ngen

) ·48 = 240 binary variables in the optimization
problem. Moreover, each simulation considers a simulation time of one day. We note
that all the real value components of the dataset were normalized using the empirical
mean and standard deviation of the training set.

In order to assess the performance of the proposed methods, we performed 150 sim-
ulations using renewable sources and loads data from year 2017. Therefore, the total

number of optimization problems solved for each method is 150 · Np

Ts
= 7200.

The training procedure of each classifier was performed on a machine equipped with
an Intel core I5 6200 and 16 GB of RAM. The implementation was carried out using the
Sci-kit [116] framework in Python 3.6. On the same reference machine the evaluation of
a single decision tree takes about 10−4 seconds.

RESULTS

We compare three different measures for all the methods:

1. The average open-loop and closed-loop costs.

2. Computation time.

3. The amount of infeasible configurations for each method.

Regarding performance in terms of costs, Table 4.6 shows the average open–loop and
closed–loop cost associated to the binary configurations produced by the predictors.
Both the ML and the RB methods achieve a similar value of the open-loop cost, with
RB being slightly worse than the proposed approach. For what concerns the closed-loop
cost, the three parametrization methods achieve very similar performance to the MILP
one, with a difference of at most 1%.

Table 4.7 compares the on-line computation time of all the methods. Moreover, for
the ML and RB methods, we also show the percentage of decrease with respect to the
MILP case and the standard deviation. For all the parameterized methods, we can notice
a tremendous decrease in computation time of at least 95%. This was expected due to
the fact that the parameterized methods solve only one linear programming problem
instead of a mixed-integer one. The RF7 is slightly slower due to the fact that the tree
sampling in this case requires more time than for the DT7 case. Furthermore, in Figure
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OL CL
MILP 4202.4 4737.0

RB 4341.1 (3.3%) 4779.6 (0.9%)
RF7 4270.5 (1.6%) 4786.6 (1.0%)
DT7 4296.5(2.2%) 4761.9 (0.5%)

Table 4.6: Average open-loop (OL) and closed-loop (CL) costs of each simulation performed for the case study
in Section 4.6.3 related to the control algorithm presented in Section 4.5. The percentage shows the increase
in the cost w.r.t. the MILP case.

CPU time % Decrease
MILP 7.75(2.80) -

RB 0.13(0.01) 98%
RF7 0.43(0.01) 95%
DT7 0.20(0.01) 97%

Table 4.7: Average computation time of each simulation performed for the case study in Section 4.6.3 related
to the control algorithm presented in Section 4.5, in seconds. The standard deviation σ is shown between
brackets. The percentage shows the decrease w.r.t. the MILP case.

RB RF7 DT7
% infeasible 0% 1.02% 8.04%

Table 4.8: Amount of infeasible binary variable configurations for each parametrized method for the case study
in Section 4.6.3 related to the control algorithm presented in Section 4.5.

4.12 we show the elapsed run time of each single simulation, with the y-axis in log-scale.
We can notice from the figure that, while the MILP approach has a certain variability in
total simulation time, for the other methods run-time is quite constant.

A similar observation can be drawn from Figure 4.13, where the elapsed time of each
single optimization problem are shown and the x-axis is in log scale. It can be noted
that the optimization problems of the three parametric strategies have similar run times,
with the RF7 being slightly slower than the other two. Moreover, for each single strategy,
the computation times are quite uniform, i.e. they are close to a main value and there
are few points in the figure that deviate from that value. This happens irrespectively of
the open-loop cost, i.e. the open-loop cost does not seem to have an influence in the
overall optimization time, as if the computation times were constant. On the contrary,
for the MILP case, the computation times are much more scattered. In particular, there
are many simulations for which the computation time is larger and deviates from a main
cluster. Moreover, for large values of the open-loop cost, the computation time is smaller
and for some cases it has even a lower value than the RF7 strategy. Therefore, for the
MILP case, there seems to be a link between computation time and open-loop cost. A
possible explanation to this phenomenon could be that, when the open-loop cost can
be decreased because feasible solutions with lower cost are available, the MILP solver
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Figure 4.12: Elapsed run times of each single simulation in the case study in Section 4.6.3 related to the control
algorithm presented in Section 4.5. The y-axis is in log-scale.

Figure 4.13: Elapsed run times of each single optimization problem in the case study in Section 4.6.3 related to
the control algorithm presented in Section 4.5. The x-axis is in log-scale. A white ∗ shows the average value for
each strategy.

spends more time finding those solutions. When instead there are not many feasible
solutions, the MILP method takes less time to find the optimal solution because most of
the solution tree remains unexplored due to a larger amount of infeasible branches.

As already noted, the predictors might sometimes lead to infeasible configurations
for what concerns binary variables. To explore how often this happens, in Table 4.8 we
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show the number of infeasible binary variable configurations for all the parametrized
methods, i.e. how many times on average the override explained in Section 4.5.3 must
be applied. Note that the RB method does not yield infeasible configurations, as it was
designed using domain knowledge to avoid this issue. While both architectures are quite
robust to this issue, it is also apparent that in this case RF7 outperforms DT7.

DISCUSSION

From the simulation results, it can be seen how the ML methods presented in this section
are able to achieve in general a similar cost and computation time w.r.t. the RB method.
Moreover, compared to the MILP method, the ML methods guarantee a much faster on-
line run time while having just a slightly worse performance in terms of costs. How-
ever, the need of solving a complex MILP problem is removed, which in turn implies
that there is no need to include expensive and dedicated hardware, as well as complex
MILP solvers, in the controller implementation. Furthermore, the limited increase in the
cost and the huge decrease in computation time, together with the fact that there is only
a very small amount of domain knowledge needed to implement the controller, justifies
the adoption of this approach, even when compared to the RB method. Lastly, when
comparing the two ML methods in particular, i.e. RF7 and DT7, the DT7 method shows
a higher infeasibility rate and a higher average open-loop cost, but it also shows a lower
closed-loop cost and lower computation times w.r.t. the RF7 method. Given that the dif-
ferences between the two methods are quite small, we can safely claim that the adoption
of either of the two methods, in this particular application, is equivalent.

4.7. CONCLUSIONS
We have presented in this chapter an MILP microgrid energy management system MPC
problem. Given the fact that MILP problems are NP-hard and are difficult to solve, three
alternative approaches that use different parametrizations have been presented. The
first method, i.e. the parametrized MPC, parametrizes the continuous inputs in the mod-
els using ad hoc parametric functions and parametrizes the binary decision variables
with heuristic if-then-else rules. The second method, i.e. the rule-based MPC, takes a
different approach and parametrizes only the binary variables, using a set of if-then-else
rules that are based on variables that affect the feasibility and performance of the con-
troller, i.e. prices and information on the microgrid balance. Then, the binary variables
are assigned a value before the optimization takes place and the continuous variables
are optimized. Therefore, the original MILP problem becomes a linear programming
one. Lastly, the third method, i.e. the machine-learning method, takes a further step
and improves upon the second method by keeping the same parametric structure, i.e. it
parametrizes only the binary variables and not the continuous ones. However, instead of
resorting to a set of rules, it parametrizes the binary variables by using a machine learn-
ing predictor, which is trained with data of previous simulations. Given some variables,
e.g. prices and initial state, the predictor can provide a prediction of the values of the
binary variables in the optimization problem.

The methods have been compared in a case study. Among the three methods, the
rule-based and the machine learning one appear to be the best ones due to the fact that
they achieve a large reduction in computation time while having almost no loss in per-



4.7. CONCLUSIONS

C
h

ap
te

r
4

69

formance. Moreover, the machine learning one has the advantage that it requires much
less domain knowledge than the rule-based method and it is also able to capture some
dynamics that the rule-based approach cannot detect. On the other hand, the rule-
based method is in general faster than the machine learning methods discussed here,
it has a zero infeasibility rate and a closed-loop cost similar to the one of the machine
learning methods. Therefore, the rule-based MPC and the machine learning method
achieve a similar performance and the only trade-off between the two lies in the amount
of domain-knowledge necessary to build these parametrizations.

As a first step for extending the current work, the if-then-else rules can be extended
such that they can make use of the future values of the electricity prices and not of the
current one only. We also suggest, as future work, a comparison between the standard
MILP method and the proposed ones in this chapter on real test scenarios. Lastly, the
work presented here can be extended to an islanded microgrid.





5
SCENARIO-BASED CONTROL

STRATEGIES FOR HEATING SYSTEMS

IN BUILDINGS

5.1. INTRODUCTION
In this chapter, we focus on a scenario-based MPC (SBMPC) algorithm that includes
a nonlinear system description through Modelica, which is an object-oriented and
equation-oriented language. On top of that, we adopt a scenario generation method
based on probability distributions that are obtained empirically. The nonlinear model
description improves the model accuracy with respect to the current literature of
SBMPC for heating systems in buildings, where a linearized model is used, as discussed
in Section 2.5. In addition, we consider a parametric Gaussian copula method to
generate scenarios that, unlike the existing methods in the literature, can satisfy the five
required properties for generating statistically significant scenarios presented in Section
5.4.1.

The outline of this chapter is as follows. In Section 5.2, we present the buildings un-
der consideration, the modeling tools used for describing them, and the practical imple-
mentation of the control in the building heating systems. We present the control algo-
rithms used to control the buildings in Section 5.3. In Section 5.4, the adopted scenario
generation method is presented. We present the simulation results on a case study in
Section 5.5 and lastly we present some conclusions and suggestions for future work in
Section 5.6.

5.2. PROBLEM DESCRIPTION

5.2.1. BUILDING MODELING
We focus our attention on buildings with local heat production units. The type of build-

ing considered can be controlled via two control inputs, i.e. u = [
qheat qcool

]>
, where

71
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qheat is the amount of heating power transferred to the building and qcool is the cool-
ing power provided to the building. We assume that the building can be modeled using
an RC-model with two states [82]: T zone as the average temperature of the rooms and
T wall as the average temperature of the walls. In addition, it is assumed that the build-
ing is affected by three disturbances: solar irradiance I , outdoor temperature T amb, and
building occupancy θocc. While past measurements of external disturbances, e.g. solar
irradiance and outdoor temperature, are available, we do not have any measurement of
the occupancy of the building. Note that, although this is an important disturbance to
consider, it is also difficult to measure in practice [117, 118]. Therefore, to estimate the
models and to perform simulations, we assume that the occupancy profile is fixed for
every day of the week, i.e. we assume that the building is fully occupied during working
hours and empty outside of these hours.

We have modeled the buildings, comprising also the heating, cooling, and ventila-
tion units, with Modelica [91, 92], which is an object-oriented and equation-oriented
language that is designed to model the behavior of physical systems. In particular, the
building is modeled based on an RC-model, which has been identified through the Grey-
Box Buildings toolbox [119]. The building has also been extensively validated using data
collected from the building as in [82, 119]. The adoption of Modelica in our work pro-
vides the benefit that we can improve the amount of detail and accuracy of the model
w.r.t. linear models. Note indeed that some of the HVAC components modeled in Model-
ica result in nonlinear model components. Many other works, e.g. [79–81, 83, 84], use in-
deed a linearization of a nonlinear model, while in this work we directly use a nonlinear
model and we obtain therefore a more meaningful representation of the real building.
Readers interested in the modeling procedure of buildings in a Modelica environment
are referred to [82, 119].

Note that other high-fidelity simulation tools exist for buildings, e.g. TRNSYS, En-
ergyPlus, ESP-r, IDA ICE; see [120, 121] for a complete review. However, compared to
Modelica, these software tools lack in modularity and flexibility for prototyping and sim-
ulating new technologies [122]. Moreover, the choice of Modelica is dictated by the need
of having a grey-box kind of model due to necessity of estimating certain parameters of
the model of the building, which are not known a priori. Indeed, as explained in [119],
whereas the aforementioned tools are white-box models that base the model only on
prior physical knowledge of the building, Modelica is a grey-box modeling method, ideal
for a situation in which prior knowledge of the building is not comprehensive enough
for satisfactory white-box modeling. Lastly, note that Modelica is an open-source tool,
making it particularly appealing for commercial applications. For more advantages of
using Modelica for HVAC systems we refer to [123].

Remark 5.1. Note that, as mentioned in [119], the actual difference between white-box
and grey-box models does not depend on the complexity of the model. For instance, even
a single-state model can be a white-box model if all its parameters can be determined
based solely on physical knowledge. However, a white-box model becomes grey when one
or more of its parameters are estimated based on a fitting of the model to measurement
data, irrespectively of the complexity of the white-box model.
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5.2.2. CONTROL LOOP AND PRACTICAL IMPLEMENTATION
Many operations have to be carried out on the real building by the building energy man-
agement system; the overall control scheme is presented in Figure 5.1. The operations
are [82]:

1. Monitoring: some measurements, e.g. water temperature, heat flux, are performed
by the building energy control and management system.

2. Forecasting: weather forecasts are obtained as will be explained in Section 5.4.

3. State estimation: some states, e.g. internal wall temperatures, cannot be measured
and therefore they have to be estimated.

4. Optimization of the control inputs: an optimization problem, explained in Section
5.3, is solved at every time step with a sampling time of 1h. Only the first inputs
of the optimal sequence are applied to the system. Every 5 minutes the optimal
control trajectories, computed in the last optimization problem, are interpolated
and they are sent to the building. Then, after a sampling time of 1h, the building
is sampled again and a new optimization problem is solved, as standard in MPC
controllers.

The real building is therefore controlled by all these steps, carried out in sequence.
The optimization problem discussed in step 4 above is solved through JModelica.org
[124]. The direct collocation method is used to discretize time so that the optimization
problem is reduced to a nonlinear programming problem [125]. CasADi [126] is used to
obtain the first-order and second-order derivatives of the expressions in the nonlinear
programming problem with respect to the decision variables, which are required by the
solvers used by JModelica.org. We use IPOPT [127] to solve the nonlinear programming
problem, together with the sparse linear solver MA57 [128].

5.2.3. LINEAR MODEL ESTIMATION
To compare the nonlinear MPC controller with the standard linear counterpart, a linear
model of the building is needed. To obtain such a model, data from the building is con-
sidered and a linear model is estimated using linear least squares. In detail, considering
the same inputs, state space, and disturbances as for the nonlinear model (see Section
5.2.1), we can assume that the building dynamics are of the form:

[
T zon

k+1
T wall

k+1

]
= A

[
T zon

k
T wall

k

]
+B1

[
qheat

k
qcool

k

]
+B2

T amb
k
Ik

θocc
k

 , (5.1)

where k is the current time step. Then, using the same data as those used for estimating
the Modelica nonlinear model, we solve a linear least square problem and estimate the
values of the matrices A, B1, and B2, using the mean absolute error as key performance
indicator.

5.3. CONTROL ALGORITHMS FOR BUILDING HEATING SYSTEMS
In this section we present the two considered control algorithms, i.e. MPC and SBMPC.
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Figure 5.1: Scheme of the MPC framework (adapted from [82]).

5.3.1. DETERMINISTIC MPC
In deterministic MPC, the external disturbances, e.g. temperature or solar irradiance,
are predicted with a point forecasting technique and in which the predictions are then
assumed to represent the expected value. In this context, at each time step, the MPC
optimization problem is solved, yielding an optimal control input sequence. Then the
first element of the sequence is applied, the horizon is moved one time step forward, the
system is sampled, and the optimization problem is solved again.

Given the task of controlling the room temperature in a building while minimizing
both the energy costs and the discomfort, the optimization problem solved at each time
step by a deterministic MPC controller is given by:

minimize
T1, q1 . . . ,
qN ,TN+1

N∑
k=1

(
α J d

k + J e
k

)
+α J d

N+1 (5.2a)

subject to

T1 = T 1, (5.2b)

Tk+1 = f (Tk , qk ,dk ), for k = 1, . . . , N , (5.2c)

0 ≤ qheat
k ≤Q

heat
max , for k = 1, . . . , N , (5.2d)

0 ≤ qcool
k ≤Q

cool
max, for k = 1, . . . , N (5.2e)

where:

• N is the prediction horizon.

• The system state is defined by Tk = [
T zon

k ,T wall
k

]
, with T zon

k and T wall
k as the room

and wall temperatures.
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• T 1 is the current temperature.

• The input control is defined by qk = [
qheat

k , qcool
k

]
, with qheat

k and qcool
k as the input

heating/cooling power.

• F heat
k and F cool

k are additional internal model variables, which are respectively the
emission profile for heating and the emission profile for cooling.

• The cost function represents the weighted average between the energy cost J e
k and

the discomfort cost J d
k :

J d
k = [

max(T zon
k −T max

k ,0)+min(T zon
k −T min

k ,0)
]2

, (5.3)

J e
k = cgas

k

qheat
k

η
gas
k

+ cele
k

(
qcool

k

ηcool
+βpro

heat

qheat
k

Q
heat
max

+βemi
heatF

heat
k +βemi

coolF
cool
k

)
, (5.4)

andα is the weighting parameter that defines the relative importance of each cost.

• The building dynamics are defined by (5.2c), where f (·) represents the Modelica
model of the building.

• The building is disturbed by some uncontrollable inputs dk = [
T amb

k , Ik ,θocc
k

]
, with

T amb
k the ambient temperature, Ik the solar irradiance, and θocc

k the building oc-
cupancy.

• The upper and lower comfort temperature bounds are respectively defined by
T max

k and T min
k , and they vary in time depending on the hour of the day and day

of the week.

• Q
heat
max , Q

cool
max, ηcool, ηgas, cgas, cele, βpro

heat, β
emi
cool, and βemi

cool are constant parameters
and are, respectively, the maximum heating power, the maximum cooling power,
the cooling efficiency, the heating efficiency, the gas cost, the electricity cost, the
nominal auxiliary power for heat production, the nominal auxiliary power for heat
emission, and the nominal auxiliary power for cooling emission.

It is important to note that the role of the discomfort cost Jd is to act as a soft con-
straint so that it penalizes the deviations of the temperature outside the comfort bounds,
but remains 0 if the temperature is inside the bounds. The controller can therefore
choose to implement a control action that leads to a violation of the comfort bounds
if this can lead to a lower total cost.

5.3.2. SCENARIO-BASED MPC
It is possible to improve the performance of the deterministic MPC of the previous sub-
section by considering several scenarios of the disturbances acting into the system, i.e.
by using a scenario-based MPC (SBMPC) approach, explained in Section 2.3.4. For the
control inputs, two possibilities exist: different control inputs for each scenario (as with
the system state) and shared control inputs across all scenarios. While the former has
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the advantage of being less conservative, the latter is more computational friendly. For
the case of building control, we consider shared control inputs across all scenarios as
this reduces the computational complexity.

Defining M different scenarios for the disturbances. i.e. d = {{dk,i }M
i=1}N

k=1, the
SBMPC optimization problem solved at each time step can be defined as:

minimize
T1, q1 . . . ,
qN ,TN+1

M∑
i=1

( N∑
k=1

(
α J d

k,i + J e
k,i

)
+α J d

N+1,i

)
(5.5a)

subject to

T1,i = T 1 for i = 1, . . . , M , (5.5b)

Tk+1,i = f (Tk,i , qk ,dk,i ), for i = 1, . . . , M , for k = 1, . . . , N , (5.5c)

0 ≤ qheat
k ≤Q

heat
max , for k = 1, . . . , N , (5.5d)

0 ≤ qcool
k ≤Q

cool
max, for k = 1, . . . , N (5.5e)

where:

• Tk =
[

T zon
k,1 ,T wall

k,1 , . . . ,T zon
k,M ,T wall

k,M

]
represents the state at time step k for each of the

M scenarios.

• dk,i =
[

T amb
k,i , Ik,i ,θocc

k,i

]
, represents the i th disturbance scenario at time step k.

• The cost function is the average across all scenarios of the weighted average be-
tween the energy cost J e

k and the discomfort cost J d
k of each specific scenario.

• The input control qk = [
qheat

k , qcool
k

]
remains equal across all scenarios.

• The building dynamics are represented independently for each scenario by (5.5c).

• The constant parameters are the same as for deterministic MPC.

Remark 5.2. Note that other stochastic formulations exist that can provide guarantees on
the feasibility of the obtained solution, e.g. [83]. In this chapter, we adopt the scenario-
based formulation (also referred to as multi-scenario formulation) presented in Eq. (5.5),
as in e.g.[129–132]. The implementation of other stochastic methods will be investigated
as future work.

5.3.3. LINEAR MPC
We compare in this chapter the SBMPC approach against two linear MPC approaches:
deterministic linear MPC and linear SBMPC. In both cases, the optimization problems
solved at each time step are the same as the ones defined by (5.2) and (5.5) but with a mi-
nor modification. Instead of using the nonlinear dynamics (5.2c) and (5.5c), the dynam-
ics are given by the linear model defined in (5.1). In particular, for linear deterministic
MPC, constraint (5.2c) is replaced by:
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Tk+1 = A Tk +B1 qk +B2 dk , for k = 1, . . . , N . (5.6)

Similarly, for linear SBMPC, constraint (5.5c) is replaced by:

Tk+1,i = A Tk,i +B1 qk +B2 dk,i , for i = 1, . . . , M , for k = 1, . . . , N . (5.7)

5.4. SCENARIO GENERATION
In this section, we introduce an overview of scenario generation methods in the context
of building heating systems and then we describe the scenario generation method for
modeling the uncertainty in the system disturbances.

5.4.1. OVERVIEW OF SCENARIO GENERATION METHODS
In the context of building heating and cooling systems, scenarios of random variables
that represent a time series, e.g. the ambient temperature for the next 24 hours with an
hourly resolution, need to satisfy several important properties:

1. They should not be restricted to the standard assumption of Gaussian distur-
bances or forecasting errors as this assumption is quite restrictive when it comes
to generating scenarios of heteroscedastic1 processes, e.g. solar irradiance [83].

2. They need to consider the multivariate distribution of the random variables: if the
scenarios represent a random variable at different time steps in the future, these
scenarios should model the time correlation of the random variable [133].

3. Besides modeling the time correlation, they should explicitly take into account
the different time dependencies and avoid modeling a stationary distribution; i.e.
the distribution of the random variable might be different at different hours of the
day/times of the year or might change with the prediction horizon.

4. The methods to generate scenarios should be flexible enough to explicitly model
the dependencies of the random variables on exogenous variables.

5. The computational burden of the scenario generation method should be small
enough for online implementation.

In the context of building heating, while some scenario generation methods have
been considered [79–81, 83, 84, 89, 134–139], they have some issues. In particular, some
of the existing methods [80, 134, 135] rely on the standard Gaussian assumptions, i.e.
assuming that the distribution of the disturbances is Gaussian. In addition, although
several works have addressed the Gaussian assumption [79, 81, 83, 84, 89, 136, 138, 139],
they still lack some of the required properties.

More specifically, in [79], a method based on empirical copulas2 is proposed. While
the method satisfies some properties, e.g. time correlation of Property 2, it fails to satisfy

1A time series variable is heteroscedastic if the variance changes throughout time.
2A copula is a multivariate cumulative distribution function for which the marginal probability distribution of

each variable is uniform. Empirical copulas can be built based on observations.
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Properties 3 and 4, as 1) it does not model time dependencies but it assumes that the
marginal distributions are stationary, i.e. it assumes that the n-hours ahead distribution
of a variable is the same at any hour of the day, any day of the year, and 2) the scenar-
ios are generated based on historical data without considering other possible exogenous
inputs. The analytic copula method proposed in [84] overcomes some of these issues as
it explicitly models the time dependency during a day. However, the distributions are
still stationary, i.e. they vary within a day but they do not change along a year, and they
are just based on historical data. In [81] and [83], a more general approach is proposed
where different copula families are tested, and the best one is selected to generate sce-
narios. While the method is very general and flexible, it requires to compare different
copula functions and can easily become computationally infeasible for online MPC. In
addition, the method has two other problems: 1) the best copula is selected by compar-
ison with the empirical copula of [79]; hence it has the same problems as [79]; 2) the
time dependencies considered by the copulas are not specified. In [136], scenarios from
a weather meteorological model are employed. Even though the goal of weather models
is to provide an ensemble of scenarios, in order to capture the uncertainty in the predic-
tion, the method displays systematic errors, e.g. biases, and requires the application of
advanced post-processing techniques based on copulas, e.g. ensemble copula coupling
[140]. In [89], a method based on sampling historical forecasting errors is considered. Al-
though the method attempts to capture time correlations using an auto-regressive error
model, that model is only used for error correction. In particular, to generate scenarios,
the method samples from past historical errors and fails to satisfy Properties 2-4. The re-
cursive feasibility and stability of SBMPC is studied in [138]. To do so, it is assumed that
disturbances can be represented by a scenario tree, and that the tree can be built us-
ing empirical samples from a discrete set of disturbances. This approach is clearly very
limited as it does not satisfy Properties 2-4, and in addition it could have scalability and
computational issues when the number of random variables increases. In [139], scenar-
ios are used for modeling electricity prices and independent optimization problems are
solved for each scenario; however, the method cannot be used to model uncertainty in
other variables, e.g. weather variables, and fails to satisfy Properties 2-4. In [137], two
Poisson distributions are employed to model the occupancy in the building as a birth-
death process. While such a parametric distribution might work well for occupancy, it
has the same issue as the Gaussian assumption: the method cannot be generalized to
other random variables.

5.4.2. MATHEMATICAL FRAMEWORK
Let us define a random variable X representing some time series process, e.g. external
temperature, and the related multidimensional random variable X representing the dis-
tribution of X in a time grid of N time steps, i.e. X = [X1, . . . , XN ]>. To generate scenarios,
we will build the multivariate distribution of X, i.e. F (X), such that by sampling from F (X)
we can obtain M scenarios of X, i.e. x1, . . . ,xM .

When building F (X), in order to satisfy the desired properties of scenario generation
methods discussed in Section 5.4.1, several requirements need to be satisfied:

• F (X) should not be substituted by the N marginal distributions F (X1), . . . ,F (XN ).
In particular, F (Xi ) only represents the distribution of X at time step i but does
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not consider the correlation between X1, . . . , XN .

• F (X) should not be built as a stationary distribution. Instead, the distribution
should consider the properties of the underlying random variable X. For exam-
ple, in the case of temperature or solar irradiance, it is clear that F (X) should vary
with the day of the year d as well as the hour of the day h, i.e. F (X) := g (X,d ,h).

• The distribution F (X) should include any external dependency of X. For instance,
if X represents the ambient temperature, F (X) needs to explicitly include the de-
pendency w.r.t. factors like the solar irradiance I , i.e. F (X) := g (X, I ).

5.4.3. SCENARIO GENERATION METHOD
The proposed method consists of four steps:

1. generation of a deterministic forecast x̄ of the random variable X.

2. Generation of the marginal probability distribution F (X1), . . . ,F (XN ) along the
horizon N .

3. Generation of the distribution F (X) using a parametric copula and the marginal
distributions F (X1), . . . ,F (XN ).

4. Sampling of scenarios using F (X).

In this section, we explain the four steps in detail.

DETERMINISTIC FORECAST

To build a deterministic/point forecast of the variable of interest we employ state-of-the-
art methods for each variable of interest:

• For the solar irradiance, we consider two forecasting models: the deep neural net-
work proposed in [141] for the short-term predictions (anything below 6 hours),
and the European Centre for medium-range weather forecasts [142] for long-term
predictions (anything beyond 6 hours). This distinction is made because, in the
context of solar irradiance forecasting, machine learning techniques perform bet-
ter for the short-term horizons, while numerical weather forecasts are more accu-
rate for long-term horizons [141].

• For the ambient temperature, considering the recent success of deep learning
methods for forecasting energy-related variables [143–149], we develop a deep
neural network that uses as inputs the past values of the ambient temperature,
the European Centre for medium-range weather forecasts of the solar irradiance,
and the hour of the day and day of the year when the prediction is made.

It is important to note that the others steps to generate scenarios are independent
of the method employed to generate the deterministic forecast. As such, while we ad-
vocate for the use of state-of-the-art methods to obtain the most accurate scenarios, the
proposed methodology would work as well with any deterministic forecast.
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MARGINAL DISTRIBUTIONS

To generate the marginal distributions, considering its simplicity yet high accuracy, we
employ the method of empirical quantiles [150]. In detail, to generate the marginal dis-
tribution F (X ) of a variable X , the simplest version of this method consists of four steps:

1. Consider deterministic forecasts of the variable in the past, e.g. x̄1, . . . , x̄n .

2. Compute the associated historical forecasting errors of the deterministic forecast,
e.g. ε̄1, . . . , ε̄n .

3. Compute the empirical quantiles of the errors and its associated empirical distri-
bution F (ε).

4. Model the marginal distributions as the point forecast plus the marginal distribu-
tion of the errors:

F (X ) = x̄ +F (ε). (5.8)

For the proposed approach, the method is modified in order to model non-stationary
marginal distributions. In particular, defining Xk,h,d as the random variable represent-
ing the value of X at time h of day d that is predicted k time steps ahead, the proposed
approach estimates each distribution F (Xk,h,d ) independently. To do so, the distribu-
tions of the errors εk,h,d are independently considered for each time step k, time h, and
day d , and the distribution F (Xk,h,d ) is estimated accordingly:

F (Xk,h,d ) = x̄k,h,d +F (εk,h,d ). (5.9)

In addition, the following two considerations are made:

• To obtain non-stationary marginal distributions that explicitly model the variabil-
ity of the distribution along a year, F (εk,h,d ) is estimated using the historical errors
of the last 60 days.

• To explicitly model the variability of the distribution with the time step and time of
the day, F (εk,h,d ) is estimated using past errors of the deterministic forecasts made
for the same time step k and time of the day h. Particularly, F (εk,h,d ) is estimated
using the historical errors ε̄k,h,d−1, ε̄k,h,d−2, . . . , ε̄k,h,d−n .

SCENARIO GENERATION

To generate scenarios, we consider the marginal distributions estimated in the previous
step, a Gaussian copula function [151], and Sklar’s Theorem [152, 153]. In detail, let us
define an N -dimensional random variable X = [X1, . . . , XN ]>, its associated marginal
distributions by F1(X1), . . . ,FN (XN ), and the multivariate cumulative distribution by
F (X1, . . . , XN ). If the marginals are continuous, Sklar’s theorem states that there is a
copula function C : [0,1]N → [0,1] such that:

F (X1, . . . , XN ) =C
(
F1(X1), . . . ,FN (XN )

)
. (5.10)

In other words, assuming that the copula function is known, the multivariate cumulative
distribution can be easily obtained if the marginal distributions are known.
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Using this theorem, to generate scenarios, we employ one of the copulas functions
that requires fewer computational time: the Gaussian copula. This selection is done
for three reasons: i) the method to generate scenarios should be fast for real time im-
plementation; ii) empirically, we observed the Gaussian copula to be a good fit for the
disturbances considered, i.e. ambient temperature and irradiance; iii) the Gaussian cop-
ula is a well established method that has been used to generate scenarios for different
energy-based application [151, 154].

For the sake of simplicity, we refer to [151] for details on the estimation of the Gaus-
sian copula. Here, we simply outline the main idea of the method, which relies on two
random variables transformations:

1. Given a marginal distribution Fi (Xi ) of a random variable Xi , we can define a new
random variable Yi = Fi (Xi ). Due to the properties of Fi (Xi ), it can be easily shown
that Yi ∼U [0,1], i.e. the new random variable follows an uniform distribution.

2. Given a random variable Yi ∼ U [0,1], we can obtain a random variable
Zi =Φ(Yi ) ∼N (0,1) that is normally distributed, where Φ is the probit function.

Then, to generate M scenarios of X at time step k, i.e. {x̄ j
k = [x̄ j

k,1, . . . , x̄ j
k,N ]>}M

j=1, the

method consist of 6 steps:

1. Consider historical realizations xk−1, . . . ,xk−n of X.

2. Use the marginal distributions F1(X1), . . . ,FN (XN ) to map each historical sam-
ple xi = [xi ,1, . . . , xi ,N ]> to a transformed sample zi = [zi ,1, . . . , zi ,N ]>, where
Zi , j ∼N (0,1).

3. Compute the covariance matrix Σ of the historical transformed samples
zk−1, . . . ,zk−n .

4. Draw M samples z̄1, . . . , z̄M from the normal distribution N (0,Σ).

5. Use the inverse of the two transformations applied in the previous steps to map
the samples z̄1, . . . , z̄M to a set of samples x̄1, . . . , x̄M .

The samples x̄1, . . . , x̄M represent the M required scenarios {x̄ j
k = [x̄ j

k,1, . . . , x̄ j
k,N ]>}M

j=1. In

particular, they follow the original marginal distributions F1(X1), . . . ,FN (XN ) and they
model the inter-correlation in X = [X1, . . . , XN ]>.

As it was done for the marginal distributions, the Gaussian copula method is modi-
fied in order to model non-stationary distributions. In particular, defining Xk,h,d as the
random variable representing the value of X at time h of day d and predicted with a
time step k, the proposed approach estimates the copula function with the two follow-
ing modifications:

• To have non-stationary distributions that explicitly model the variability of the dis-
tribution along a year, the copula function is estimated using the historical data of
the last 60 days.
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Figure 5.2: 10 temperature scenarios obtained with the method presented in Section 5.4.
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Figure 5.3: 10 solar irradiance scenarios obtained with the method presented in Section 5.4.

• To explicitly model the variability of the distribution with the time step and time
of the day, the copulas are estimated using marginal distributions F (εk,h,d ) that
explicitly model the distribution of X as a function of the time step ahead k, time
of the day h, and day of the year d .

We show 10 temperature scenarios and 10 solar irradiance scenarios in Figures 5.2
and 5.3, respectively.

PROPERTIES

As a final remark, we outline how the proposed method satisfies each of the required
properties mentioned in Section 5.4.1:

1. As the distribution of the disturbances are modelled with non-parametric quantile
functions, the generated scenarios are not restricted to the standard assumption
of Gaussian forecasting errors.
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2. Since the scenarios are generated using a copula function, the multivariate distri-
bution is explicitly considered and the scenarios include the time correlations.

3. As the marginal distributions are estimated for each hour of the day, time of the
year, and time-step, the resulting multivariate distribution is non-stationary and
captures all time dependencies.

4. As the point forecast considers external factors, the method is not limited to his-
torical data of the variable of interest.

5. Since the Gaussian copula and the empirical quantile methods have low compu-
tational costs, the method is especially suitable for online optimization.

Remark 5.3. In this chapter, we present the properties that scenario generation methods
should have and we adopt the method presented in Section 5.4.3, qualitatively comparing
it against other scenario generation methods used in the literature for SBMPC. However, a
comparative and quantitative study comprehending several scenario generation methods
aimed at investigating which one provides the best control performance is out of scope for
this work and is left as a suggestion for future work in Section 5.6.

5.5. CASE STUDY
We present in this section the simulation results in which we compare 5 different con-
trollers:

• PIMPC: perfect-information MPC, obtained using the values of the measurements
of the disturbances as if they were known in advance. It is of course not possible to
have the real values of the actual measurements beforehand in practice, but this
controller can be used as a benchmark for the best achievable performance.

• DetMPC-Mod: deterministic MPC controller presented in Section 5.3.1 together
with the nonlinear Modelica model.

• SBMPC-Mod: SBMPC controller presented in Section 5.3.2 together with the non-
linear Modelica model.

• DetMPC-Lin: deterministic MPC controller together with the linearized model
presented in Section 5.2.3.

• SBMPC-Lin: SBMPC controller together with the linearized model presented in
Section 5.2.3.

First, the simulation setup is discussed, then the results and the discussions are pre-
sented.

5.5.1. SETUP
The closed-loop control is applied as explained in Section 5.2.2, i.e. the MPC problem
is solved and the first input is applied to the system. Then, for all the controllers, the
evolution of the real building between sampling times is simulated through Modelica.
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Figure 5.4: Comfort bound profiles.

Parameter Value Definition

Q
heat
max [W] 500000 Maximum heating power

Q
cool
max [W] 300000 Maximum cooling power

ηcool 2.5 Cooling efficiency

ηgas 0.9 Heating efficiency

cgas [e/kWh] 0.041 Gas cost

cele [e/kWh] 0.15 Electricity cost

Table 5.1: Parameters of the building considered in Section 5.5.

We perform simulations for one month in the winter season with 1h sampling time,
i.e. we solve 24·30 = 720 optimization problems for each controller. The prediction hori-
zon is Np = 24, i.e. corresponding to one day. We consider a building in Brussels, Bel-
gium, with 7 floors and a total surface of 10000 m2. A nonlinear model of the building
is estimated using Modelica based on the considerations of Section 5.2.1 and using data
from the real building. In addition, a linear counterpart is also estimated using regular
linear least squares as explained in Section 5.2.3. The heating system consists of 2 gas
boilers of 500 kW each and one chiller of 500 kW. We consider thermal comfort bounds
that change throughout time: the thermal comfort bounds are set to 21.5°C and 24°C
during occupation hours and 18°C and 26°C during the non-occupation hours. In Fig-
ure 5.4 we show the temperature comfort bound profile. Furthermore, the building oc-
cupancy profile follows the temperature comfort bounds, i.e. the occupancy is set to 1
when the comfort bounds are tight and 0 when they are loose. The solver and software
tools used to solve the optimization problem are as explained in Section 5.2.2. Lastly, the
parameters of the building presented in Section 5.3 are shown in Table 5.1.

For what concerns the SBMPC controllers, we choose 4 different number of scenar-
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ios: 10, 20, 30, and 40. Moreover, we perform the same simulations varying the pa-
rameter α in Section 5.3, choosing the values in the set {50,100,200,500}; recall that
a higher α means a higher focus on the comfort of the occupants rather than on the
economical cost. We indicate respectively by SBMPC-Mod-α and by SBMPC-Lin-α, α ∈
{50,100,200,500}, the SBMPC controller with the Modelica model and the SBMPC con-
troller with the linear model, considering α scenarios.

Note that in this section we consider simulations instead of experiments in the real
building. This implies a small difference w.r.t. Figure 5.1: instead of applying the inputs
to the real building, we simulate its behavior through Modelica for one time step. In
other words, the loop is “closed” by applying the optimal inputs to a model of the build-
ing rather than to the building itself, using the actual values of the disturbances.

5.5.2. RESULTS AND DISCUSSION
We focus our attention on four different aspects:

1. an analysis for the performance of the controller with different values of α.

2. a comparison between the nonlinear Modelica model and the linear model.

3. a comparison between SBMPC strategies and DetMPC strategies.

4. a comparison between the SBMPC strategies with different numbers of scenarios.

Lastly, we pick a single representative optimization result and discuss it in more detail.
We show the results of the simulations in Figures 5.5–5.7 and Tables 5.2–5.3. In Table

5.2, we show the total closed-loop costs for each strategy and each different α. In Ta-
ble 5.3 we show instead the total amount of discomfort using the unit measure K ·h, as
standard in the literature [79, 80, 82, 89], i.e. we show the integral of the comfort bounds
violation. Figure 5.5 reports the results presented in Table 5.3 in a graphic way. Lastly,
Figures 5.6–5.7 show respectively the temperature evolution and the heating power for
the representative simulation.

PERFORMANCE WITH DIFFERENT VALUES OF α

From Tables 5.2-5.3 we can notice that the larger the α, the larger, in general, the total
costs and the lower the discomfort. This is as expected, since the role of α is to penalize
the discomfort and a larger value means that we aim for a lower discomfort. We have
noticed through simulations that a value of α lower than 50 yields a very high and un-
acceptable discomfort cost, while for values larger than 500, the energy costs increase
highly without yielding a high reduction in the discomfort costs. Therefore, we focus our
analysis on α in the range [50,500].

We can observe that forα= 50 the discomfort cost is high and that the comfort could
be improved by increasing α. For α≥ 100, the discomfort reaches acceptable levels and
this happens by consuming a larger quantity of energy in heating and thus increasing
the total costs. However, the small decrease in the discomfort between the case α= 500
and α ∈ {100,200} does not seem to justify the large increase in the total cost observed
for α= 500. Therefore, we can claim that for this case study the optimal values for α are
in the range [100,200].



86 5. SCENARIO-BASED CONTROL STRATEGIES FOR HEATING SYSTEMS IN BUILDINGS

α= 50 α= 100 α= 200 α= 500
PIMPC 8104 9009 10573 18913

DetMPC-Lin 13334 20408 34089 78138
DetMPC-Mod 11910 14405 18633 32739

SBMPC-Mod-10 8994 10590 14032 20603
SBMPC-Mod-20 9909 10767 13778 21247
SBMPC-Mod-30 9417 11088 13204 21466
SBMPC-Mod-40 10517 11950 14014 20888
SBMPC-Lin-10 8519 15856 19203 48135
SBMPC-Lin-20 8810 13556 22498 51368
SBMPC-Lin-30 11477 11485 23472 49714
SBMPC-Lin-40 8485 12957 30431 33807

Table 5.2: Total closed-loop costs for all the controllers considered in the case study.

α= 50 α= 100 α= 200 α= 500
PIMPC 49.2 36.7 29.6 36.0

DetMPC-Lin 167.7 156.1 147.7 145.9
DetMPC-Mod 105.3 87.0 73.6 66.9

SBMPC-Mod-10 69.0 58.0 51.6 41.9
SBMPC-Mod-20 79.7 53.2 49.4 43.5
SBMPC-Mod-30 71.7 60.8 50.0 42.4
SBMPC-Mod-40 90.8 67.2 50.6 41.7
SBMPC-Lin-10 115.6 129.9 90.9 105.9
SBMPC-Lin-20 100.8 114.7 103.3 112.9
SBMPC-Lin-30 147.7 98.8 115.3 111.6
SBMPC-Lin-40 124.2 105.2 113.7 83.4

Table 5.3: Total amount of discomfort measured in Kh.

COMPARISON BETWEEN THE NONLINEAR MODELICA MODEL AND THE LINEAR MODEL

We can notice from Table 5.2 that all the controllers that use Modelica perform better
than their linear counterparts for all the values of α≥ 100. For α= 50, instead, the linear
model yields a lower total cost than the one of Modelica in 3 out of 5 cases. Nevertheless,
the linear model might seem to work better, i.e. to have a lower total cost, for a lower
value of α because it always allows a large discomfort cost and cannot manage well to
keep the temperature within or close to the comfort bounds. The total cost can therefore
be lower than for the Modelica-based controllers, but this occurs because the energy cost
is low and the discomfort cost, although high, does not have a large impact on the total
cost for a smallα. This also explains why for a largeα, i.e. forα≥ 100, the total cost of the
linear model controllers can become much higher than the one of the controllers that
use Modelica. Indeed, the discomfort cost is always high, but the larger penalization,
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Figure 5.5: Discomfort for the different controllers as a function of α. The x-axis is in log-scale.

i.e. the larger α, makes the total cost much higher. This fact can also be observed from
Table 5.3, where we can notice that in all the cases these values are much higher for the
controllers with the linear models than for the respective controllers with the Modelica
models, resulting therefore in a much higher discomfort for the linear models. The same
conclusions can be drawn by analyzing Figure 5.5, which displays the results of Table 5.3.
We can observe that the controllers that use the Modelica model behave always better
than the respective controllers with the linear model and that the discomfort yielded by
the linear model is very high. Therefore, we can conclude that the controllers using the
nonlinear Modelica model outperform the controllers using the linearized model.

COMPARISON BETWEEN SBMPC STRATEGIES AND DETMPC STRATEGIES

By checking again Table 5.2 we can compare the SBMPC strategies to the DetMPC ones.
One main fact to note from the table is that, for all the values ofα, the SBMPC controllers
perform always better than their deterministic counterpart, both for the linear and the
nonlinear Modelica model. Moreover, the SBMPC controllers yield a large relative reduc-
tion in the cost w.r.t. the corresponding DetMPC controller, both for the linear and the
Modelica models. Furthermore, by checking Table 5.3 and Figure 5.5, we can notice that
the SBMPC strategies perform better than the DetMPC ones also in terms of comfort.
Therefore, the SBMPC controllers outperform their DetMPC counterparts.

COMPARISON BETWEEN THE SBMPC STRATEGIES WITH DIFFERENT NUMBER OF SCENAR-
IOS

By analyzing the results of Table 5.2, there does not seem to be a value for the number
of scenarios that outperforms the other values, i.e. the performance does not seem to
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increase by increasing the number of scenarios. In 2 out of 4 columns of Table 5.2, the
SBMPC-Mod-20 achieves the best performance among the SBMPC-Mod controllers and
in the other two cases, a number of scenarios equal to respectively 10 and 40 appear to
be better than the other values. Therefore, increasing the number of scenarios does not
seem to directly lead to a decrease in the total cost. Similar conclusions can be drawn for
the SBMPC-Lin case. This could be related to the fact that, while increasing the number
of scenarios makes the system more robust to disturbances, it also makes the problem
more complex to solve. Therefore, it might happen that, the larger the number of sce-
narios, more local minima exists, and the more likely it is that the solver converges to a
suboptimal local minimum.

REPRESENTATIVE SIMULATION

In Figures 5.6–5.7 we show respectively the temperature evolution and the heating power
of one week of simulation with 20 scenarios and α= 100, for SBMPC-Mod, SBMPC-Lin,
and PIMPC. For Figure 5.6, we also show the lower comfort bounds.

By analyzing the two figures, we can note that, as expected, the PIMPC manages to
keep the temperature within the comfort bounds with a minimum amount of heating
power by using the actual values of the future disturbances. For what concerns SBMPC-
Mod and SBMPC-Lin, we can notice in Figure 5.6 what we have already underlined in
Section 5.5.2, i.e. the fact that a controller that uses a linear model is not able to keep
the temperature within the comfort bounds. We see indeed that, for most of the time,
SBMPC-Lin yields the temperature profile that has the lowest value. This can also be
observed from Figure 5.7, where we can notice that SBMPC-Lin heats less than SBMPC-
Mod and it also starts heating later. On the other hand, SBMPC-Mod is able to maintain
a larger temperature in the room and to be closer to the temperature comfort bounds.
It also uses more heating power, as can be seen from Figure 5.7, which leads to a higher
energy cost compared to SBMPC-Lin, but also leads to an overall lower total cost and
higher comfort from the user, as can be observed from Tables 5.2–5.3.

SUMMARY

We can summarize the results of the simulations in four observations:

• too low values of α, i.e. α < 100, yield a high discomfort and too high values of α,
i.e.α≥ 500 yield a very large total cost without improving too much the comfort. A
trade-off between the two costs seems to be well achieved by a value of α between
these two extrema, i.e. α ∈ [100,200].

• The controllers that use Modelica outperform the linear model in almost all the
cases. For the only three cases in which the performance of a controller using the
linear model is better, the linear model also yields a very large value of discomfort.

• SBMPC always outperforms DetMPC strategies, for both the linear and the Mod-
elica models.

• Increasing the number of scenarios does not seem to lead to a large decrease in
the cost. This can be related to the fact that increasing the number of scenarios
also increases the optimization complexity.
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Figure 5.6: Temperature evolution during one week of a representative simulation with α= 100 and 20 scenar-
ios for the SBMPC controllers.
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Figure 5.7: Heating power during 1 week of a representative simulation with α = 100 and 20 scenarios for the
SBMPC controllers.

5.6. CONCLUSIONS
We have presented a stochastic SBMPC controller using a Modelica nonlinear model
that can be applied to building heating in buildings and that overcomes the limitations
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of both deterministic and linear MPC approaches. The building under control is affected
by several external disturbances, e.g. outside temperature, solar irradiance, and we have
proposed a new approach for generating disturbance scenarios that, unlike the existing
methods from the literature, satisfies all the important properties of scenario generation
methods for time series data. This proposed scenario generation method can be used in
the SBMPC controllers.

To analyze and study the control approach, we have considered a real building and
performed several simulations to compare the controller that uses the linearized model
against the controller that uses the nonlinear model, different cost weights in the MPC
cost function, deterministic MPC against SBMPC, and lastly different number of sce-
narios. Based on the results, we showed that SBMPC together with the Modelica model
outperforms both the SBMPC controller with the linearized model and the determinis-
tic controllers with the Modelica model, i.e. that the proposed approach outperforms the
two standard methods used in the literature.

As future work, the proposed controller can be tested in experiments on the real
building. On top of that, other objectives can be included in the control action, e.g. CO2

reduction or increasing the energy flexibility. Moreover, a quantitative study on different
scenario generation methods can be considered, in order to assess how the performance
of the controller varies with the different scenario generation methods, as well as other
stochastic MPC algorithms. Lastly, the occupancy in a real building could be character-
ized so as to generate scenarios also for this disturbance and include it in the SBMPC
controller.



6
CONCLUSIONS AND FUTURE

RESEARCH

6.1. CONCLUSIONS
In this thesis, we have considered different control algorithms and modeling frame-
works for energy systems. We have presented three different topics, with two of them
devoted to power networks and one to thermal networks. The research has addressed
some challenging topics in energy systems. For what concerns electrical networks, we
have considered the problem of partitioning and stabilizing a large-scale power system.
The goal of the partitioning algorithm is to minimize the coupling among subsystems
in order to facilitate the task of a non-centralized controller. Moreover, we have also
presented three different parametric controllers to reduce the computational complex-
ity of energy management system problems in microgrids. This is particularly relevant
for microgrids due to their description through MLD models that contain binary vari-
ables. Indeed, these variables make the optimization problem of optimization-based
control algorithms a mixed-integer one, which is NP-hard and has a worst-case expo-
nential complexity. Lastly, we have focused on thermal networks for office buildings, in
which the goal is to control the temperature in a room while guaranteeing comfort and
low energy consumption. To achieve this goal, we have designed a scenario-based MPC
controller that, together with a Modelica nonlinear model, outperforms the controllers
available in the literature.

The main contributions of this thesis are based on the core Chapters 3–5 and are
listed here as follows:

• Development of a partitioning algorithm for large-scale switching systems and
a stabilizing controller through decentralized control

We have presented a partitioning algorithm for large-scale switching systems, e.g.
power networks. The algorithm can be applied online when the switching sys-
tem changes mode and it minimizes the coupling between subsystems and the

91
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imbalance in the number of components per subsystem by following a multi-step
procedure. The partitioning algorithm can be applied so that any kind of non-
centralized controller can be applied to the system; nevertheless, we have applied
a decentralized state-feedback controller that is able to stabilize the overall system
even in the case of switching. We have shown an application of these algorithms
to a frequency regulation problem in a power network, showing that stability is
achieved with our method even in the case of faults, while without using the pro-
posed method, instability arises.

• Design of parametrized controllers to reduce the computational complexity of
energy management system problems in microgrids

Due to the mixed-integer model of microgrids, we have focused on different ways
to parametrize the controllers so as to alleviate the computational complexity
of the underlying MPC problem related to the energy management system.
The inputs of the system and in particular the binary variables in the model
are parametrized so as to reduce the number of optimization variables in the
control problem. Three different methods have been proposed: a parameterized
MPC control law using parametric functions, a rule-based MPC controller using
if-then-else rules that assign the value to the binary variables in the model, and a
machine learning approach that learns from past simulations to once again assign
values to the binary variables. The methods have been analyzed in a case study
and compared, showing a large decrease in computation time, ranging from 70%
to 98%, with almost no loss on performance.

• Development of a scenario-based MPC controller using a nonlinear model for
heating systems in office buildings

We have proposed a scenario-based MPC controller for minimizing the energy
consumption in the building while maximizing the comfort of the occupants. The
model of the building is nonlinear model and it is obtained through Modelica,
which allows us to obtain a more detailed model description. Moreover, we have
also adopted a scenario-generation method that overcomes some of the limita-
tions of the other methods usually employed in the literature. In particular, it pro-
duces statistically significant scenarios by taking into account the different time
dependencies, forecasting time steps, and allowing the dependency of the scenar-
ios on exogenous data. The results of a case study based on simulations show that
our controller, using the Modelica model and a scenario-based MPC controller, is
able to achieve a better performance compared both to deterministic controllers
and stochastic controllers that use a linear model.

6.2. RECOMMENDATIONS FOR FUTURE RESEARCH
In this section, we provide some recommendations for future research that can extend
and improve the works presented in Chapters 3–5.

i) Dynamic partitioning
The method presented in Chapter 3 considers online partitioning, but each time a
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new mode appears in the system, the partition is computed from scratch. Instead,
the proposed method can be extended by considering a dynamic partitioning ap-
proach, i.e. a method in which nodes are moved dynamically between subsystems
and the partition is adapted to the new mode. In other words, a new partition can
be obtained by performing small modifications to the current partition by moving
nodes from one subsystem to another. A possible way to achieve dynamic parti-
tioning and to keep stability when a new mode appears would be to modify only
subsystems that become unstable after the switching of the mode and to keep in-
tact the subsystems that remain stable.

ii) Experimental studies
The results presented in this thesis are all related to computer simulations. In par-
ticular, Chapter 3 deals with frequency regulation of power networks, Chapter 4
deals with microgrids, and Chapter 5 with a large building. Therefore, experimen-
tal studies could be carried out in order to assess the benefits of the proposed ap-
proaches on a real grid or building. In both cases, the actual values of the external
disturbances and prices should be considered. The proposed methods should be
compared with standard ones of the literature, as done in Chapters 4–5, by select-
ing experiment days in which the external disturbances are similar.

iii) Integrated control for microgrids and buildings
Control algorithms for microgrids have been presented in Chapter 4 and for build-
ings in Chapter 5. In order to improve the overall efficiency of energy systems,
the buildings and the microgrid could be merged into one larger system in which
each element interacts with the other ones and a common goal is pursued. For
what concerns the controllers for such a system, possible solutions are a hierar-
chical controller, with a centralized controller for the overall system and a dis-
tributed/decentralized controller for the subsystem, or a fully distributed con-
troller in which each the agents cooperate to pursue a global goal.

iv) Distributed control approach for a multi-microgrid setting
Related to the previous point, another possible research direction could be to con-
sider a system with multiple interconnected microgrids. Then, the parametrized
control method for energy management systems that has been presented in this
thesis can be extended to specify when it is necessary to island a microgrid, or in
which direction should microgrids exchange power. The system could be there-
fore controlled in a multi-level way, with an upper layer taking care of assigning
the value to the binary values in the system and a lower layer based on local con-
trollers that control the power flows in each single microgrid.

v) Evolve rules to assign the value to binary variables using grammatical evolution
In Chapter 4, we have presented three different parametrizations to assign the
value to binary variables in the microgrid model. Another possible method to do
so is to use grammatical evolution [155–157], which is part of the genetic program-
ming framework. The idea is to build a set of rules, for e.g. exchanging electricity
with the utility grid, based on a predefined grammar, and to evolve them according
to the genetic programming framework, allowing thus operations like crossover,
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mutation. The if-then-else rules would be then obtained as an optimization pro-
cedure based on grammatical evolution and they would likely improve the per-
formance of the domain-knowledge-based method of Chapter 4 given that they
would include rules that are undetectable to a human operator.

vi) Controller parametrization for other hybrid systems
While the focus of this thesis is on energy systems, the parametrization methods
presented in Chapter 4 could be applied to other systems. For instance, in traffic
systems, only the parametrized MPC method presented in Section 4.3 has been
previously applied on such systems, but not the rule-based method presented in
Section 4.4 nor the machine learning method of Section 4.5. Extending the rule-
based method presented in Section 4.4 to another kind of system would require a
whole new redesign of the if-then-else rules, based on the system under consider-
ation. The same holds for the machine learning method of Section 4.5, because,
while past simulations could be still used to train machine learning methods, it
might not be trivial to define which could be the inputs for such methods that re-
sult in a good performance.

vii) Islanded microgrids
The microgrid considered in Chapter 4 is in grid-connected mode. Removing this
connection, i.e. considering an islanded microgrid, is an interesting challenge to
study. Indeed, it entails many modifications to the algorithms presented in Chap-
ter 4, especially for what concerns the parametric and rule-based method of Sec-
tions 4.3–4.4. In particular, the functions of the parametrized method of Section
4.3 and the rules of Section 4.4 should be revised and partially redesigned. For
what concerns the machine learning method of Section 4.5, instead, the approach
would not require any change except for the removal of the variables related to the
main grid from the input and output vectors and the update of the training and
validation data. However, the effectiveness of the approach in the new case study
would still have to be assessed.

viii) Event-triggered control for microgrids
This thesis considers two different kinds of controllers, i.e. MPC and decentral-
ized state feedback. Another possible control framework that can be applied to
these systems is event-triggered control. While in this thesis the sampling of the
systems under control is assumed to be predetermined and constant, in the event-
triggered control framework the control action is updated only after certain events
occurs. This would help to alleviate the amount of communication needed in the
system, as information would be exchanged only when necessary in order to up-
date the control action. Moreover, even-triggered control would be particularly
beneficial in a case in which a multi-microgrid or multi-building setting is consid-
ered due to the large amount of communication required in these applications.
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[87] J. Drgoňa, D. Picard, M. Kvasnica, and L. Helsen. Approximate model predictive
building control via machine learning. Applied Energy, 218:199–216, 2018.

[88] F. Jorissen, W. Boydens, and L. Helsen. TACO, an automated toolchain for model
predictive control of building systems: implementation and verification. Journal
of Building Performance Simulation, 12(2):180–192, 2019.

[89] X. Zhang, G. Schildbach, D. Sturzenegger, and M. Morari. Scenario-based MPC
for energy-efficient building climate control under weather and occupancy uncer-
tainty. In 2013 European Control Conference (ECC), pages 1029–1034. IEEE, 2013.

[90] J. T. Wen and S. Mishra, editors. Intelligent Building Control Systems. Springer
International Publishing, 2018.

[91] The Modelica Association. https://www.modelica.org.

[92] P. Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica
3.3: A Cyber-Physical Approach. IEEE Press. Wiley, 2 edition, 2015.

[93] S. Kuboth, F. Heberle, A. König-Haagen, and D. Brüggemann. Economic model
predictive control of combined thermal and electric residential building energy
systems. Applied Energy, 240:372–385, 2019.

[94] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. The Bell System Technical Journal, 49(2):291–307, 1970.

[95] J. R. Gilbert and E. Zmijewski. A parallel graph partitioning algorithm for a
message-passing multiprocessor. International Journal of Parallel Programming,
16(6):427–449, 1987.

[96] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1998.

[97] G. Betti, M. Farina, and R. Scattolini. Realization issues, tuning, and testing of a
distributed predictive control algorithm. Journal of Process Control, 24(4):424–434,
2014.

[98] G. Betti, M. Farina, and R. Scattolini. Distributed predictive control for tracking
constant references. In 2012 American Control Conference (ACC), pages 6364–6369,
2012.

[99] M. Farina, G. Betti, and R. Scattolini. Distributed predictive control of continuous-
time systems. Systems & Control Letters, 74(Supplement C):32–40, 2014.

https://www.modelica.org


REFERENCES 103

[100] J. P. LaSalle. The Stability and Control of Discrete Processes. Applied Mathematical
Sciences. Springer, 1986.

[101] D. A. Dowler. Bounding the norm of matrix powers. Master’s thesis, Brigham Young
University-Provo, 2013.

[102] G. Zhai, B. Hu, K. Yasuda, and A. N. Michel. Qualitative analysis of discrete-time
switched systems. In Proceedings of the American Control Conference, volume 3,
pages 1880–1885, 2002.

[103] G. Zhai, B. Hu, K. Yasuda, and A. N. Michel. Stability and L2 gain analysis of
discrete-time switched systems. Transactions of the Institute of Systems, Control
and Information Engineers, 15(3):117–125, 2002.

[104] J. P. Hespanha and A. S. Morse. Stability of switched systems with average dwell-
time. In Proceedings of the 38th IEEE Conference on Decision and Control, vol-
ume 3, pages 2655–2660, 1999.

[105] V. C. Aitken and H. M. Schwartz. On the exponential stability of discrete-time sys-
tems with applications in observer design. IEEE Transactions on Automatic Con-
trol, 39(9):1959–1962, 1994.

[106] X.-B. Chen and S. S. Stankovic. Overlapping decentralized approach to automation
generation control of multi-area power systems. International Journal of Control,
80(3):386–402, 2007.

[107] H. L. Zeynelgil, A. Demiroren, and N. S. Sengor. The application of ANN technique
to automatic generation control for multi-area power system. International Jour-
nal of Electrical Power & Energy Systems, 24(5):345–354, 2002.

[108] F. Alavi, N. van de Wouw, and B. De Schutter. Min-max control of fuel-cell-car-
based smart energy systems. In 2016 European Control Conference (ECC), pages
1223–1228, 2016.

[109] N. G. Paterakis, I. N. Pappi, O. Erdinç, R. Godina, E. M. G. Rodrigues, and J. P. S.
Catalão. Consideration of the impacts of a smart neighborhood load on trans-
former aging. IEEE Transactions on Smart Grid, 7(6):2793–2802, 2016.

[110] B. Hredzak, V. G. Agelidis, and M. Jang. A model predictive control system for a hy-
brid battery-ultracapacitor power source. IEEE Transactions on Power Electronics,
29(3):1469–1479, 2014.

[111] C. H. Papadimitriou. On the complexity of integer programming. Journal of the
ACM, 28(4):765–768, 1981.

[112] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and Regression
Trees. CRC Press, 1984.



104 REFERENCES

[113] R. L. Marchese Robinson, A. Palczewska, J .Palczewski, and N. Kidley. Compari-
son of the predictive performance and interpretability of random forest and linear
models on benchmark data sets. Journal of Chemical Information and Modeling,
57(8):1773–1792, 2017.

[114] T. Hastie, R. Tibshirani, and J. Friedman. Random forests. In The elements of sta-
tistical learning, pages 587–604. Springer, 2009.

[115] ENTSO-E, the European Network of Transmission System Operators. https://
transparency.entsoe.eu/.

[116] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae,
P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt,
and G. Varoquaux. API design for machine learning software: experiences from
the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining
and Machine Learning, pages 108–122, 2013.

[117] T. Labeodan, W. Zeiler, G. Boxem, and Y. Zhao. Occupancy measurement in com-
mercial office buildings for demand-driven control applications—a survey and
detection system evaluation. Energy and Buildings, 93:303–314, 2015.

[118] E. Soltanaghaei and K. Whitehouse. Practical occupancy detection for pro-
grammable and smart thermostats. Applied Energy, 220:842–855, 2018.

[119] R. De Coninck, F. Magnusson, J. Åkesson, and L. Helsen. Toolbox for development
and validation of grey-box building models for forecasting and control. Journal of
Building Performance Simulation, 9(3):288–303, 2016.

[120] D. B. Crawley, J. W. Hand, M. Kummert, and B. T. Griffith. Contrasting the capabil-
ities of building energy performance simulation programs. Building and Environ-
ment, 43(4):661–673, 2008. Part Special: Building Performance Simulation.

[121] P. H. Shaikh, N. Bin Mohd Nor, P. Nallagownden, I. Elamvazuthi, and T. Ibrahim.
A review on optimized control systems for building energy and comfort manage-
ment of smart sustainable buildings. Renewable and Sustainable Energy Reviews,
34:409–429, 2014.

[122] A. Andriamamonjy, D. Saelens, and R. Klein. An automated ifc-based workflow for
building energy performance simulation with modelica. Automation in Construc-
tion, 91:166–181, 2018.

[123] M. Wetter. Modelica-based modelling and simulation to support research and de-
velopment in building energy and control systems. Journal of Building Perfor-
mance Simulation, 2(2):143–161, 2009.

[124] J. Åkesson, K.-E. Årzén, M. Gäfvert, T. Bergdahl, and H. Tummescheit. Model-
ing and optimization with Optimica and JModelica.org—Languages and tools for
solving large-scale dynamic optimization problems. Computers & Chemical Engi-
neering, 34(11):1737–1749, 2010.

https://transparency.entsoe.eu/
https://transparency.entsoe.eu/


REFERENCES 105

[125] F. Magnusson and J. Åkesson. Collocation methods for optimization in a Model-
ica environment. In Proceedings of the 9th International MODELICA Conference,
number 76, pages 649–658. Linköping University Electronic Press; Linköpings
Universitet, 2012.

[126] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl. CasADi – A soft-
ware framework for nonlinear optimization and optimal control. Mathematical
Programming Computation, pages 1–36, 2018.

[127] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Mathematical Pro-
gramming, 106(1):25–57, 2006.

[128] HSL (2013). A collection of Fortran codes for large scale scientific computation.
http://www.hsl.rl.ac.uk.

[129] X. Tian, R. R. Negenborn, P.-J. van Overloop, J. M. Maestre, A. Sadowska, and N. van
de Giesen. Efficient multi-scenario model predictive control for water resources
management with ensemble streamflow forecasts. Advances in Water Resources,
109:58–68, 2017.

[130] X. Tian, Y. Guo, R. R. Negenborn, L. Wei, N. Myo Lin, and J. M. Maestre. Multi-
scenario model predictive control based on genetic algorithms for level regulation
of open water systems under ensemble forecasts. Water Resources Management,
33(9):3025–3040, 2019.

[131] P. Velarde, J. M. Maestre, C. Ocampo-Martinez, and C. Bordons. Application of ro-
bust model predictive control to a renewable hydrogen-based microgrid. In 2016
European Control Conference (ECC), pages 1209–1214, 2016.

[132] P. Velarde, J. M. Maestre, H. Ishii, and R. R. Negenborn. Scenario-based defense
mechanism for distributed model predictive control. In 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), pages 6171–6176, 2017.

[133] P. Pinson, H. Madsen, H. A. Nielsen, G. Papaefthymiou, and B. Klöckl. From prob-
abilistic forecasts to statistical scenarios of short-term wind power production.
Wind Energy, 12(1):51–62, 2008.

[134] Y. Ma and F. Borrelli. Fast stochastic predictive control for building temperature
regulation. In 2012 American Control Conference (ACC), pages 3075–3080. IEEE,
2012.

[135] Y. Ma, S. Vichik, and F. Borrelli. Fast stochastic MPC with optimal risk allocation
applied to building control systems. In 2012 IEEE 51st IEEE Conference on Decision
and Control (CDC), pages 7559–7564. IEEE, 2012.

[136] T. H. Pedersen and S. Petersen. Investigating the performance of scenario-based
model predictive control of space heating in residential buildings. Journal of
Building Performance Simulation, 11(4):485–498, 2018.



106 REFERENCES

[137] L. Deori, L. Giulioni, and M. Prandini. Optimal building climate control: a solution
based on nested dynamic programming and randomized optimization. In 53rd
IEEE Conference on Decision and Control, pages 4905–4910. IEEE, 2014.

[138] M. Maiworm, T. Bäthge, and R. Findeisen. Scenario-based model predictive con-
trol: Recursive feasibility and stability. IFAC-PapersOnLine, 48(8):50–56, 2015.

[139] R. E. Hedegaard, T. H. Pedersen, and S. Petersen. Multi-market demand response
using economic model predictive control of space heating in residential buildings.
Energy and Buildings, 150:253–261, 2017.

[140] R. Schefzik, T. L. Thorarinsdottir, and T. Gneiting. Uncertainty quantification in
complex simulation models using ensemble copula coupling. Statistical science,
28(4):616–640, 2013.

[141] J. Lago, K. De Brabandere, F. De Ridder, and B. De Schutter. Short-term forecast-
ing of solar irradiance without local telemetry: A generalized model using satellite
data. Solar Energy, 173:566–577, 2018.

[142] European Centre for Medium-Range Weather Forecasts (ECMWF) website.
https://www.ecmwf.int/.

[143] J. Lago, F. De Ridder, and B. De Schutter. Forecasting spot electricity prices: deep
learning approaches and empirical comparison of traditional algorithms. Applied
Energy, 221:386–405, 2018.

[144] J. Lago, F. De Ridder, P. Vrancx, and B. De Schutter. Forecasting day-ahead electric-
ity prices in Europe: The importance of considering market integration. Applied
Energy, 211:890–903, 2018.

[145] H. Z. Wang, G. B. Wang, G. Q. Li, J. C. Peng, and Y. T. Liu. Deep belief network based
deterministic and probabilistic wind speed forecasting approach. Applied Energy,
182:80–93, 2016.

[146] I. M. Coelho, V. N. Coelho, E. J. D. S. Luz, L. S. Ochi, F. G. Guimarães, and E. Rios. A
GPU deep learning metaheuristic based model for time series forecasting. Applied
Energy, 201:412–418, 2017.

[147] C. Fan, F. Xiao, and Y. Zhao. A short-term building cooling load prediction method
using deep learning algorithms. Applied Energy, 195:222–233, 2017.

[148] H.-Z. Wang, G.-Q. Li, G.-B. Wang, J.-C. Peng, H. Jiang, and Y.-T. Liu. Deep learn-
ing based ensemble approach for probabilistic wind power forecasting. Applied
Energy, 188:56–70, 2017.

[149] C. Feng, M. Cui, B.-M. Hodge, and J. Zhang. A data-driven multi-model method-
ology with deep feature selection for short-term wind forecasting. Applied Energy,
190:1245–1257, 2017.

https://www.ecmwf.int/


REFERENCES 107

[150] J. Nowotarski and R. Weron. Recent advances in electricity price forecasting: A
review of probabilistic forecasting. Renewable and Sustainable Energy Reviews,
81:1548 – 1568, 2018.

[151] P. Pinson, H. Madsen, H. A. Nielsen, G. Papaefthymiou, and B. Klöckl. From prob-
abilistic forecasts to statistical scenarios of short-term wind power production.
Wind Energy, 12:51–62, January 2009.

[152] A. Sklar. Fonctions de répartition à n dimensions et leurs marges. Institut Statis-
tique de l’Université de Paris, 8:229–231, 1959.

[153] A. Sklar. Random variables, joint distribution functions, and copulas. Kybernetika,
09(6):(449)–460, 1973.

[154] F. Golestaneh, H. B. Gooi, and P. Pinson. Generation and evaluation of space–time
trajectories of photovoltaic power. Applied Energy, 176:80–91, 2016.

[155] A. Brabazon and M. O’Neill. Evolving technical trading rules for spot foreign-
exchange markets using grammatical evolution. Computational Management Sci-
ence, 1:311–327, 2004.

[156] J. H. Drake, N. Kililis, and E. Özcan. Generation of VNS components with gram-
matical evolution for vehicle routing. In K. Krawiec, A. Moraglio, T. Hu, A. Ş.
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