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If you don’t accumulate steps, you can’t reach a thousand miles; if you don’t accumulate
small currents, you can’t become a river!

– Xunzi
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SUMMARY

Power-chained form systems are a generalization of strict-feedback and pure-feedback
systems since integrators with positive odd-powers can appear in the dynamics (chain
of positive-odd power integrators) and they are extremely challenging to deal with, as
their linearized dynamics might possess uncontrollable modes whose eigenvalues are
in the right-hand-side plane, making standard feedback linearization or standard back-
stepping methodologies fail. The adding-one-power-integrator technique was proposed
to handle power-chained form systems. Progress made for power-chained form systems
includes employing universal approximators to handle completely unknown nonlinear-
ities. However, state-of-the-art results on power-chained form systems are mainly fo-
cused on the single-agent case since a direct extension of the existing design to a dis-
tributed setting is not very meaningful on account of the facts that: i) the control gain
of each virtual control is incorporated into the next virtual control law iteratively, pos-
sibly leading to high-gain issues; ii) state-of-the-art results rely on the assumption that
the agents’ control directions are known a priori and are available for control design; iii)
universal approximators often used in the adding-one-power-integrator procedure in-
evitably increase the complexity in the sense that extra adaptive parameters have to be
updated (i.e. extra nonlinear differential equations need to be solved numerically), thus
making their distributed implementation difficult.

In the first part of this thesis, we propose a reduced-complexity adaptive method-
ology for multi-agent power-chained form systems. Complexity is reduced in a twofold
sense: the control gain of each virtual control law does not have to be incorporated it-
eratively in the next virtual control law, thus leading to a simpler expression of the con-
trol laws; the power of the virtual and actual control laws increases only proportionally
(rather than exponentially) with the order of the systems, dramatically reducing high-
gain issues.

In the second part of this thesis, we consider multi-agent in power-chained form
systems with multiple control directions, some being known, some being unknown. We
develop a new conditional inequality composed by multiple hybrid Nussbaum functions
for dealing with such mixed a priori knowledge.

In the third part of this thesis, we address the problem of removing the large tran-
sients in learning caused by the use of Nussbaum functions. As a consequence, we pro-
pose a logic-based switching control method tailored for multi-agent in power-chained
form systems. Logic-based control refers to the fact that a switching logic (in place of a
Nussbaum mechanism) is in charge of estimating online the control directions, assumed
to be unknown a priori for all agents.

In the fourth part of this thesis, we address the problem of avoiding any universal
approximators (e.g. neural networks, fuzzy logic systems, etc.) in the control design.
Accordingly, we design a low-complexity prescribed-performance controller for a single-
agent power-chained form system, guaranteeing minimum convergence rate, maximum

xi



xii SUMMARY

overshoot, and maximum steady-state error. In this scenario, the control coefficients are
not only taken to be unknown, but also time-varying. In order to solve this problem,
we resort to the Nussbaum approach, and we show via a counterexample and a positive
example that only some particular type B Nussbaum functions are still type B Nussbaum
functions even when elevated to a positive-odd integer power. These latter functions
can be used for handling time-varying unknown control coefficients. Correspondingly, a
new switching conditional inequality is proposed. This inequality encompasses existing
ones as special cases: instead of always increasing the Nussbaum gain, its design is based
on increasing the Nussbaum gain only when the tracking error is close to violating the
performance bounds.



SAMENVATTING

Power-chained form systemen zijn een generalisatie van strict feedback en pure feed-
back systemen, aangezien integrators met positive oneven krachten in de dynamiek kun-
nen verschijnen (keten van positieve odd power-integratoren) en ze zijn buitengewoon
uitdagend om mee om te gaan, omdat hun gelineariseerde dynamiek kan bezitten. On-
controleerbare modi waarvan de eigenwaarden zich in het rechterzijvlak bevinden, waar-
door standaard feedbacklinearisering of standaard backstepping-methodologieën mis-
lukken. De-add-one-power-integrator techniek werd voorgesteld om een bekrachtigde
vorm aan te kunnen. Vooruitgang die is geboekt voor vorm met een stroomketen omvat
het gebruik van universele benaderingen om volledig onbekende niet-lineariteiten aan
te pakken. State-of-the-art resultaten op het gebied van power chained-vorm zijn echter
voornamelijk gericht op single agent-gevallen, aangezien een directe uitbreiding van het
bestaande ontwerp naar een gedistribueerde setting niet erg zinvol is vanwege het feit
dat: i) de add-one-power- de integratortechniek vertoont een aantal complexe aspecten
aangezien de controleversterking van elke virtuele controle iteratief wordt opgenomen
in de volgende virtuele controlewet, wat mogelijk leidt tot een probleem met een hoge
gain; ii) state-of-the-art resultaten berusten op de aanname dat de controlerichtingen
van de agenten a priori bekend zijn en beschikbaar zijn voor het ontwerp van de con-
trole; iii) universele benaderingen die vaak worden gebruikt bij het toevoegen van één
kracht-integratorprocedure verhogen onvermijdelijk de complexiteit in die zin dat ex-
tra adaptieve parameters moeten worden bijgewerkt (d.w.z. extra niet-lineaire differen-
tiaalvergelijkingen moeten numeriek worden opgelost), waardoor hun gedistribueerde
implementatie moeilijk wordt.

In het eerste deel van dit proefschrift stellen we een adaptieve methodologie voor
met verminderde complexiteit voor een multi agentversie van een vorm met een stroo-
mketen. De complexiteit wordt in tweevoudige zin verminderd: de controlewinst van
elke virtuele controlewet hoeft niet iteratief in de volgende virtuele controlewet te wor-
den opgenomen, wat leidt tot een eenvoudigere uitdrukking van de controlewetten; de
kracht van de virtuele en feitelijke controlewetten neemt slechts proportioneel (in plaats
van exponentieel) toe met de volgorde van de systemen, waardoor de problemen met
hoge versterking drastisch worden verminderd.

In het tweede deel van dit proefschrift kijken we naar agenten in de vorm van een
stroomketen met meerdere controlerichtingen, waarvan sommige bekend zijn, andere
onbekend. We ontwikkelen een nieuwe voorwaardelijke ongelijkheid die bestaat uit
meerdere hybride Nussbaum functies voor het omgaan met dergelijke gemengde a priori
kennis. In het derde deel van dit proefschrift behandelen we het probleem van het ver-
wijderen van de grote transiënten die leren veroorzaakt door het gebruik van Nussbaum-
functies. Daarom stellen we een op logica gebaseerde schakelbesturingsmethode voor,
op maat gemaakt voor agenten in de vorm van een stroomketen. Op logica gebaseerde
besturing verwijst naar het feit dat een schakellogica (in plaats van een Nussbaum mech-
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xiv SAMENVATTING

anisme) verantwoordelijk is voor het online schatten van de besturingsrichtingen, waar-
van wordt aangenomen dat deze voor alle agents onbekend zijn.

In het vierde deel van dit proefschrift behandelen we het probleem van het ver-
mijden van universele benaderingen (bijv. Neurale netwerken, fuzzy logic-systemen,
enz.) In het besturingsontwerp. Dienovereenkomstig ontwerpen we een voorgeschreven
prestatiecontroller met een lage complexiteit voor een enkele vorm met een stroomketen,
waardoor minimale convergentie wordt gegarandeerd snelheid, maximale overschrijd-
ing en stabiele fout. In dit scenario worden de controlecoëfficiënten niet alleen als on-
bekend beschouwd, maar ook in de tijd variërend. Om dit probleem op te lossen, nemen
we onze toevlucht tot de Nussbaum-benadering en laten we via een tegenvoorbeeld en
een positief voorbeeld zien dat slechts enkele bepaalde Nussbaum-functies hun eigen-
schap behouden, zelfs wanneer ze worden verhoogd tot een positieve oneven-integer-
macht. Deze laatste functies kunnen worden gebruikt voor het verwerken van in de tijd
variërende onbekende stuurcoëfficiënten. Er wordt een nieuwe voorwaardelijke ongeli-
jkheid voorgesteld. Deze ongelijkheid omvat bestaande als speciale gevallen: in plaats
van altijd de Nussbaum-versterking te verhogen, is het ontwerp ervan gebaseerd op het
alleen verhogen van de Nussbaum-versterking wanneer de tracking error de prestatiegren-
zen bijna overschrijdt.



NOTATIONS

R set of real numbers

Rn set of n component real vectors

R+ set of positive real numbers

Rn×n set of n by n real matrices

xT transpose of vector x

Nodd set of positive odd integers

‖ ·‖ Euclidean norm

■ end of proof

, equal by definition

σmin(·) minimum singular value of a matrix

sign(·) sign of a number

x(t−) left limit of x(t ), i.e., x(t−) = limτ→t− x(τ)

Class K
An function α : [0,∞) → [0,∞) is of class K , written as α ∈K

when α is continuous, strictly increasing, and α(0) = 0

Class K L
An function β : [0,∞)× [0,∞) → [0,∞) is of class K L , written as β ∈K L

when β(·, t ) is of class K for each fixed t ≥ 0 and β(s, t ) decreases to 0
as t →∞ for each fixed s ≥ 0

Class K∞
An function ζ: [0,∞) → [0,∞) is of class K∞ if it is continuous,
strictly increasing, unbounded, and ζ(0) = 0

1





1
INTRODUCTION

This chapter presents the main motivation of the research of this thesis. The research
questions and main contributions of this thesis are given. After that, the chapter is con-
cluded with an outline of the thesis.

1.1. Motivation of the Research
1.1.1. Distributed Control of Multi-Agent Systems
A typical setting of distributed control is to steer a team of agents to a not globally known
leader signal yr using only locally available information, which is collected from neigh-
boring agents [84, 90, 131] according to the graph theory given below.

The communication topology used in this thesis is described by a directed graph
G , (V ,E ), with V , {0,1, . . . , N } being the set of nodes (agents) and with E ⊆ V ×V
being the set of directed edges between two distinct agents (self-edges are not allowed).
A directed edge ( j , i ) ∈ E represents that agent i can obtain information from agent j .
The neighbor set of agent i is denoted by Ni = { j |( j , i ) ∈ E }: this is the set of agents
from which agent i can obtain information. We reserve index 0 to the so-called leader
agent: because agent 0 plays a special role, let us consider the subgraph defined by G ,(
V ,E

)
with V , {1,2 . . . , N } and E defined accordingly. For this subgraph, let us define

Figure 1.1: A schematic diagram of distributed consensus tracking

3
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the connectivity matrix A = [ai j ] ∈ RN×N : if ( j , i ) ∈ E with i 6= j , then ai j = 1, otherwise
ai j = 0 (note that ai i = 0). The Laplacian matrix L associated with G is defined as

L =
[

0 01×N

−µ L +B

]

with µ = [µ1, . . . ,µN ]T, where µi = 1 if the leader 0 ∈ Ni , and µi = 0 otherwise. Also,
B = diag[µ1, . . . ,µN ]T and L = D −A is the Laplacian matrix related to G with D =
diag[d1, . . . ,dN ], where di =∑

j∈Ni
ai j . A direct path from agent i to agent j is a sequence

of successive edges in the form
{
(vi , vl ), (vl , vm), . . . , (vk , v j )

}
. A graph has a spanning

tree, if the leader agent is such that there is a directed path from the leader to each fol-
lower agent in the graph.

The following standard assumptions are typically made in the literature.

Assumption 1.1 [127] The leader agent 0 is represented by a leader output signal yr,
which is continuously differentiable, bounded, and available only to a subset of the fol-
lower agents. Furthermore, ẏr is bounded and not available to any follower agent. The
bounds for yr and ẏr are unknown.

Assumption 1.2 [111] The directed graph G = (V ,E ) representing the multi-agent com-
munication contains at least one directed spanning tree with the leader agent as the root.

Remark 1.1 Assumption 1.1 implies that the leader information is only available to a
small fraction of followers. Assumption 1.2 implies that L +B is a nonsingular M -
matrix1 and guarantees the feasibility of consensus [132].

Distributed consensus is one of the most studied problems in distributed control [3, 16,
19–21, 24, 26, 35, 42, 50, 67, 69–71, 74, 76, 79, 85, 85, 87, 88, 110, 111, 113, 114, 119–
121, 127, 128, 130, 140, 141] and it aims at achieving an agreement for the states or the
outputs of subsystems connected via a network by designing a control protocol for each
agent based on locally available information. Distributed control of nonlinear multi-
agent systems is more challenging but also potentially more applicable than its linear
counterpart. In recent years, leaderless (i.e. the convergence of agents states toward an a
priori unknown common value) or leader-following (i.e. the convergence of agents states
toward the desired trajectory of a leader, as shown in Fig. 1.1) consensus results have
been obtained for two large families of nonlinear multi-agent systems: strict-feedback
[16, 21, 24, 26, 35, 50, 69, 87, 88, 110, 111, 114, 119–121, 130, 140, 141] (cf. the expres-
sion in (1.1)) and pure-feedback multi-agent systems [70, 113, 127, 128], which can be
equivalently transformed into strict-feedback systems. For these families, the commonly
adopted approach is an extension of the well-known backstepping technique [44] in a
distributed sense. When the nonlinear functions are unknown, approximators such as
neural networks (cf. the Section 2.2.1) and fuzzy logic systems have been incorporated
in such a design. Switching dynamics can also be handled via the common Lyapunov
function method [127, 128, 140]. Although strict-feedback and pure-feedback systems

1An M -matrix is a square matrix with non-positive off-diagonal entries and non-negative principal minors.
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are popular dynamics in the nonlinear control field, there exist extensions to these dy-
namics: most notably, power-chained form systems (cf. the expression in (1.2)) are such
a class of systems.

Strict feedback systems :



χ̇1 =φ1(χ1)+ψ1(χ1)χ2,

χ̇2 =φ2(χ2)+ψ2(χ2)χ3,

...

χ̇m =φm(χm)+ψm(χm)χm+1, m = 3, . . . ,n −1

χ̇n =φn(χn)+ψn(χn)u,

(1.1)

Power chained form :



χ̇1 =φ1(χ1)+ψ1(χ1)χp1
2 ,

χ̇2 =φ2(χ2)+ψ2(χ2)χp2
3 ,

...

χ̇m =φm(χm)+ψm(χm)χpm
m+1, m = 3, . . . ,n −1

χ̇n =φn(χn)+ψn(χn)upn ,

(1.2)

where χm = [χ1,χ2, . . . ,χm]T ∈ Rm , p1, p2, pm , and pn are positive odd integers; φm(·)
is unknown continuous function (referred to as system nonlinearity), ψm(·) is unknown
continuous function (referred to as control gain function whose sign is the so-called con-
trol direction) and is assumed to be such that

ψ
m
≤ |ψm(·)| ≤ψm (1.3)

with ψ
m

and ψm being positive constants. Inequality (1.3) is a general controllabil-

ity condition for many classes of nonlinear dynamics, including strict-feedback, pure-
feedback, and power-chained form systems [89, 135, 136]. In case only the sign of the
control gain function ψn(·) is unknown, the system (1.2) is said to possess a single un-
known control direction. In case the signs of more than one control gain functionsψm(·)
are unknown, the system (1.2) is said to possess multiple unknown control directions.
The main difficulty caused by unknown control directions is illustrated by Examples 6
and 7 in Section 2.2. It is worth noting that, in line with [55, 57, 83], pm are odd positive
integers since stabilization is not possible in general in the presence of even powers. This
is because no matter whether the control signals are positive or negative, they would be-
come positive as per effect of the even power [65].

1.1.2. Power-Chained Form Systems
Over the last decades, power-chained form systems (also called high-order nonlinear
systems and systems in p-normal form) has been attracting great attention. The rea-
son is twofold: from a mathematical point of view, power-chained form dynamics are
a generalization of strict-feedback [14, 22, 106, 111] and pure-feedback dynamics [25,
113, 127] since they include more general integrators (with positive-odd-integer powers);
from an engineering point of view, dynamics in the power-chained form can describe
relevant classes of practical systems such as dynamical boiler-turbine units [15], hy-
draulic dynamics [66], aircraft wing dynamics [28] and some classes of under-actuated,
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Figure 1.2: Poppet valve system

weakly coupled mechanical systems with cubic force deformation relations (nonlinear
spring forces) [55, 57, 83]. In the following, we provide two concrete examples to show
the relevance of power-chained form systems from practical engineering perspective.

Example 1. In hydraulic systems, a poppet valve is one of the most commonly used
components. A poppet valve is typically used to control the timing and quantity of gas
or vapor flow into an engine, and its behavior can be modeled by annular leakage equa-
tion. As shown in Fig. 1.2, the input force F drives the poppet to move along the y−axis,
regulating the volumetric flow rate Q of oil from the high-pressure to the low-pressure
chamber. The actual applications of poppet valve system typically arise in fulfilling aerial
refueling mission and driving hydraulic actuator [66].

According to Navier-Stokes equations, the volumetric flow rate Q for annular laminar
flow can be described as (cf. [66, pp. 54]):

Q = πr

6µL
∆Pc3, (1.4)

where r , µ, and L are constants independent of the axial motion of poppet, and ∆P is
the pressure drop between two chambers and remains almost unchanged in the control
process. c is the effective clearance of the annular passage. Then, relation (1.4) can be
rewritten as Q = λc3 for convenience with λ being a lumped coefficient. In view of the
geometric structure, c =αy with α being a constant related to the cone angle of poppet.
The dynamics of oil volume V in upper chamber is given by

dV (t )

d t
=Q −R(t ), (1.5)

where R is the lumped reduction rate of oil attributed to consumption and other leak-
ages. Likewise, the equation of motion of the poppet is

m
d 2 y(t )

d t 2 =−k
d y(t )

d t
+T (t )+F (t ), (1.6)
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where m is the mass of the poppet, k is the viscous friction coefficient, T denotes the
lumped elastic force, and F represents the input force. At this point, let us conduct the
following notation substitution:

χ1 =V , χ2 = y, χ3 = d y

d t
, u = F. (1.7)

Then, the dynamics of systems (1.7) comes down to

χ̇1 =φ1 +ψ1χ
3
2, χ̇2 =φ3, χ̇3 =φ3 +ψ3u, (1.8)

where ψ1 =λα3, φ1 =−R(t ), ψ3 = 1
m , and φ3 = 1

m (T (t )−kχ3).
Example 2. Let us consider an underactuated weakly coupled mechanical bench-

mark [83], also shown in Fig. 1.3. The system includes a mass m1 on a horizontal smooth
surface and an inverted pendulum m2 supported by a massless rod. The mass is con-
nected to the wall surface by a linear spring and to the inverted pendulum by a nonlin-
ear spring with a cubic force deformation relation. Thus, its mathematical model can be
described by [83] 

θ̈ = g sin(θ)

l
+ k2

m2l

(
x − l sin(θ)

)3 cos(θ),

ẍ =− k1

m1
x − k2

m1

(
x − l sin(θ)

)3 + u

m1
,

(1.9)

where θ ∈ (−π
2 , π2 ), x is the displacement of m1, and u is the control force acting on m1.

Moreover, k1 and k2 are spring coefficients, and l is the pendulum length. The following
change of coordinates

χ1 = θ, χ2 = θ̇, χ3 = x, χ4 = ẋ, (1.10)

transforms (1.9) into 
χ̇1 =χ2,

χ̇2 =φ2(χ2)+ψ2(χ2)χ3
3,

χ̇3 =χ4,

χ̇4 =φ4(χ4)+ψ4(χ4)u,

(1.11)

whereφ2(χ2) = g
l sin(χ1)+ k2

m2l cos(χ1)
[
3χ3l 2 sin2(χ1)−3χ2

3l sin(χ1)−l 3 sin3(χ1)
]
,φ4(χ4) =

− k1
m1
χ3 − k2

m1

[
χ3

3 − l 3 sin3(χ1) − 3χ2
3l sin(χ1) + 3χ3l 2 sin2(χ1)

]
, ψ2(χ2) = k2

m2l cos(χ1), and

ψ4(χ4) = 1
m1

.

1.1.3. Unique Challenges of Controlling Power-Chained Form Systems
There are mainly three challenges that will be considered when designing controller for
power-chained form systems.

Challenge 1: Standard feedback linearization method fails to stabilize power-chained
form systems. This is because the linearized dynamics of power-chained form systems
around origin may contain uncontrollable modes whose eigenvalues are in the right
half-plane [83].
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Figure 1.3: Underactuated weakly coupled mechanical system

Example 3. Let us take a four-dimensional nonlinear system to clarify this point:
χ̇1 =χ2,

χ̇2 =χ3
3 +χ1,

χ̇3 =χ4,

χ̇4 = u,

(1.12)

The linearized matrices of (1.12) around the origin are

A =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 0 0

 , B =


0
0
0
1

 . (1.13)

It is straightforward to obtain that rank[B , AB , A2B , A3B ] = 2 < 4 and that there exists a
positive eigenvalue (e.g. λA = 1) for the linearized matrix A. This implies that standard
feedback linearization method fails to stabilize power-chained form systems.

Challenge 2: The standard backstepping method also fails for power-chained form
systems [83]. The backstepping method is also known as adding-one-linear-integrator-
technique [44]. It was successfully developed for strict-feedback and pure-feedback sys-
tems [16, 21, 24, 26, 35, 50, 69, 70, 87, 88, 110, 111, 113, 114, 119, 120, 127, 128, 130, 140],
but it fails due to the presence of high powers as shown in the following example 4.

Example 4. Let us consider a two-dimensional power-chained form system{
χ̇1 =χ3

1 cosχ2 +χ3
2

χ̇2 =χ2
1χ2 sinχ1 +u5.

(1.14)

The goal is to design control u such that (1.14) is stabilized. In what follows, we show
that standard backstepping design fails to achieve such goal.

Backstepping control framework. Define the coordinate transformation

s1 =χ1, s2 =χ2 −α1, (1.15)

where α1 is the smooth virtual control law to be designed. Substituting (1.15) into (1.14)
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leads to 
ṡ1 = χ̇1 = (s2 +α1)3 + s3

1 cos(s2 +α1),

ṡ2 = χ̇2 − α̇1 = u5 +χ2
1χ2 sinχ1 − α̇1

= u5 + s2
1(s2 +α1)sin(s1)− α̇1.

(1.16)

If we choose Lyapunov candidate V1(s1) = 1
2 s2

1 , then, we have

V̇1(s1) = s1(s2 +α1)3 + s4
1 cos(s2 +α1),

= s1(s3
2 +3s2α

2
1 +3s2

2α1 +α3
1)+ s4

1 cos(s2 +α1). (1.17)

Apparently, from (1.17) it can be seen that the virtual control law α1 appears inside
many different functions and it is quite difficult to design a virtual control α1(χ1) to ex-
actly cancel the term s4

1 cos(s2 +α1) via a standard backstepping procedure. In other
words, backstepping also fails to work in this situation. This challenge is also detailed in
[83].

Challenge 3: Asymptotic tracking for power-chained form systems is structurally im-
possible, even locally, because the linearized dynamics contain uncontrollable modes whose
eigenvalues are in the right-half plane [83]. This point is shown in the following example.

Example 5. We take the two-dimensional planar system (see [83, Example 2.1])
χ̇1 =χ5

1 −χ4
1 +χ3

2

χ̇2 = u3,

y =χ1.

(1.18)

Let the output tracking error be s =χ1−yr(t ) =χ1−1. Then, (1.18) can be represented
by {

ṡ = (1+ s)4s +χ3
2

χ̇2 = u3.
(1.19)

The linearized dynamics of (1.19) around the origin is characterized by

(A,B) =
([

1 0
0 0

]
,

[
0
0

])
(1.20)

which is uncontrollable. The uncontrollable mode has a positive eigenvalue, and there-
fore system (1.19) cannot be stabilized, even locally, by any smooth state feedback con-
trol law according to [41]. Therefore, asymptotic output tracking for power-chained form
systems is in general not achievable by smooth feedback. At this point, one may won-
der whether asymptotic output tracking can be realized by non-smooth but continuous
feedback. Unfortunately, the [82, Example 2.2] has shown that such conjecture is not
true either.

1.2. Open Problems in the State-of-the-Art
In place of standard backstepping and feedback linearization methods, the adding-one-
power-integrator technique was successfully proposed in [56] to handle power-chained
form systems (cf. Section 2.2.2 in this thesis). Since then, several control methods have
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been proposed to achieve stabilization to zero and output tracking for power-chained
form systems in [55–57, 83, 95–98], where system nonlinearities are typically required
to satisfy some growth conditions. To remove the restrictive growth conditions, univer-
sal approximators including neural networks (NNs) and fuzzy logic systems (FLSs) are
exploited in [89, 107, 112, 135, 136] to handle unknown system nonlinearities. Neverthe-
less, the following four problems have not been solved in the-state-of-the-art.

The first problem is that the extension of the standard adding-one-power-integrator
technique to a distributed setting is not very meaningful due to some complex aspects
of the procedure. At least the following two complex aspects are worth mentioning: (a)
the high-power terms are separated from the control gain functions via separation lem-
mas that make the power of the virtual control gains grow exponentially with the or-
der of the system; (b) the control gain of each virtual control is incorporated into the
next virtual control law iteratively, thus increasing the control complexity at each step.
Such issues result in high-complexity and high-gain designs that might be prohibitive
for multi-agent systems with low computational power and limited actuation. There-
fore, the first open question naturally arises:

Question 1: how to design a reduced-complexity distributed methodology overcoming
above-mentioned high control gains for nonlinear multi-agent systems in the power-
chained form?

The second problem is that state-of-the-art results [89, 92–94, 112, 135, 136] rely on
the assumption that the agents’ control directions (i.e. the signs of control gain func-
tions) are known a priori and are available for control design. However, it was shown in
[106] that such a priori knowledge is not available in many practical scenarios such as
visual servoing control systems [4], robotic systems [13] and so on. When such a priori
knowledge is not available, a popular approach to tackle this challenge is continuous pa-
rameter adaptation via Nussbaum functions [18, 23, 37, 75, 106, 125] (cf. Section 2.2.3 of
this thesis), which has been used also for distributed control of strict-feedback or pure-
feedback dynamics [14, 17, 22, 25, 106]. The Nussbaum function method to handle single
unknown control direction [23, 37, 75, 122, 125] and multiple unknown control direc-
tions [14, 22, 106] has not been explored for coordination of multi-agent systems with
power-chained form dynamics. This is because addressing multiple unknown control
directions requires novel conditional inequalities involving the summation of multiple
Nussbaum function terms [37, 125], while avoiding cancellation of the multiple Nuss-
baum function terms. The aforementioned investigations open the following question:

Question 2: how to design Nussbaum functions-based techniques for handling non-
linear multi-agent systems in the power-chained form in the presence of multiple un-
known control directions?

Furthermore, it is well-recognized [61] that Nussbaum functions-based methods re-
quire additional complexity in the control design and continuous parameter adaptation.
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This may lead to large learning transients, so that several researchers have been engaged
in the problem of overcoming continuous parameter adaptation by means of logic-based
control [32, 54]. Notable settings where logic-based control was employed include over-
coming conventional continuous tuning of control parameters [2, 27, 123, 124] and over-
coming the conventional Nussbaum approach for strict-feedback dynamics [36, 115].

It is crucial to notice that the state-of-the-art logic-based mechanisms in [36, 115]
for strict-feedback systems rely on monitor functions that monitor whether asymptotic
tracking can be achieved (resulting in bounded energy of the tracking error) [36] or whe-
ther finite-time stabilization (i.e. the tracking error converges to zero in finite time) can
be achieved [115]. Unfortunately, the same mechanism and monitor functions cannot
be adopted for agents in the power-chained form due to the aforementioned structural
difficulty in achieving asymptotic tracking, see also [83, Examples 2.1 and 2.2]. Therefore,
a different logic-based mechanism and new monitor functions must be sought going
beyond state-of-the-art for distributed control of power-chained form dynamics. This
motivates the question:

Question 3: how to design a new logic-based mechanism for nonlinear multi-agent
systems in the power-chained form with multiple unknown control directions even
when asymptotic tracking cannot be structurally obtained?

The fourth problem is that universal approximators (e.g. neural networks and fuzzy
logic systems) often used in the adding-one-power-integrator procedure in [89, 92–94,
112, 135, 136] are valid only within some compact sets where the capabilities of the uni-
versal approximators are guaranteed. Furthermore, the introduction of approximating
structures unavoidably increases the complexity of the methods in [89, 92–94, 112, 135,
136], in the sense that extra adaptive parameters have to be updated (i.e. extra nonlin-
ear differential equations need to be solved numerically) and extra calculations must be
conducted to compute the control signal, thus making their distributed implementation
difficult.

The technique called low-complexity prescribed performance control (PPC) (also
called approximation-free PPC), first proposed in [5], aims to control systems without
using any universal approximators, while at the same time imposing transient and steady-
state specifications on the tracking error [52, 78, 101]. Nevertheless, the systems consid-
ered in [52, 78, 101] are confined to the strict-feedback form instead of the more general
power-chained form systems. Inspired by above discussions, an interesting question
arises:

Question 4: how to design an approximation-free prescribed performance control
methodology for power-chained form systems, while taking into account unknown
control directions?

This last question is investigated in this thesis for single-agent dynamics, but exten-
sion to multi-agent dynamics seems possible using the tools in [7].



1

12 1. INTRODUCTION

1.3. Main Contributions of the Thesis
The main contributions of this thesis consist in solving the aforementioned open ques-
tions. To be specific:

Ï A separation-based methodology for consensus tracking of nonlinear multi-agent
systems in power-chained form systems.

We develop a reduced-complexity adaptive methodology to consensus tracking for
a team of uncertain multi-agent systems in the power-chained form. At the core of
the proposed distributed methodology is a newly proposed definition for separa-
ble functions: this definition allows the formulation of a separation-based lemma
to handle the high-power terms with reduced complexity in the control design.
Complexity is reduced in a twofold sense: the control gain of each virtual con-
trol law does not have to be incorporated in the next virtual control law iteratively,
thus leading to a simpler expression of the control laws; the power of the virtual
and actual control laws increases only proportionally (rather than exponentially)
with the order of the systems, dramatically reducing high-gain issues.

Ï Consensus for multi-agent systems in the power-chained form with mixed un-
known control directions via hybrid Nussbaum-based control.

We solve the consensus tracking problem for multi-agent systems in the power-
chained form with partially unknown control directions by proposing a hybrid
Nussbaum technique that can handle uncertain agents in power-chained form dy-
namics with non-smooth behaviors (switching and quantization), and with mul-
tiple unknown control directions for each agent.

Ï Logic-based distributed switching control for agents in the power-chained form
with multiple unknown control directions.

We develop a new logic-based distributed switching control method for nonlinear
agents in the power-chained form, where logic-based (switching) control arises
from the online estimation of the control directions assumed to be unknown for
all agents. Compared to the state-of-the-art logic-based mechanisms, the chal-
lenge of power-chained dynamics is that in general asymptotic tracking cannot
be obtained, even for a single agent. To address this challenge, a new logic-based
mechanism is proposed, which is orchestrated by a dynamic boundary function.
The boundary function is decreasing in-between switching instants and mono-
tonically increasing at the switching instants, depending on the jumps of an ap-
propriately designed “Lyapunov-like” function. To remove chattering (i.e. two or
more switching instants occurring consecutively with zero dwell time), a dynamic
threshold is proposed, based on selecting the maximum values of the “Lyapunov-
like” function before and after switching.

Ï Approximation-free prescribed performance tracking control of power-chained
form systems with unknown control directions.

We design a Nussbaum function-based low-complexity prescribed-performance
controller for power-chained form systems. The peculiar features of the proposed
design lie in not involving any universal approximators (e.g. neural networks,
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fuzzy logic systems, etc), and in preserving some prescribed specifications (e.g.
minimum convergence rate, maximum overshoot, and maximum steady state er-
ror). To be specific, a counterexample and a positive example are given to show
two crucial points: a positive odd-integer-power of a type B Nussbaum function
might not be a type B Nussbaum function; only some particular type B Nussbaum
functions keep their property even when elevated to a positive odd-integer-power.
These latter functions can be used for handling time-varying unknown control co-
efficients. A new switching conditional inequality is proposed. This inequality en-
compasses existing ones as special cases: instead of always increasing the Nuss-
baum gain, its design is based on increasing the Nussbaum gain only when the
tracking error is close to violating the performance bounds.

1.4. Organization of the Thesis
This thesis consists of seven chapters whose organization and relationship are shown in
Fig. 1.4. The content of each chapter is briefly summarized as follows.

Chapter 2: Some basic concepts and technical tools (including Nussbaum functions,
the adding-one-power integrator method, neural network approximation, logic-based
control, PPC and low-complexity PPC) used in this thesis are presented.

Chapter 3: A separation-based methodology is developed for a large class of uncer-
tain nonlinear multi-agent systems in the power-chained form, which can exhibit het-
erogeneous nonlinearities and switched dynamics with possibly asynchronous switches
among the agents. The core of the methodology is a newly proposed definition for sep-
arable functions and a new separation-based lemma to deal with the high-power terms.
The results in this chapter are based on the work [62].

Chapter 4: A hybrid Nussbaum gains-based approach is proposed to handle mixed
unknown control directions for each agent. The idea behind this choice is that in the
mixed situation where some control directions are known and some are unknown, it is
not appropriate to adopt the standard Nussbaum function for every agent since their
effects might cancel each other, being unable to guarantee a boundedness of the sum-
mation of multiple Nussbaum integral terms. The results in this chapter are based on
the work [61].

Chapter 5: A new logic-based mechanism is proposed, which is orchestrated by a
dynamic boundary function. The boundary function is decreasing in-between switch-
ing instants and monotonically increasing at the switching instants, depending on the
jumps of an appropriately designed “Lyapunov-like” function. Furthermore, a dynamic
threshold is designed based on selecting the maximum values of the “Lyapunov-like”
function before and after switching. The results in this chapter are based on the work
[63].

Chapter 6: A Nussbaum function-based approximation-free PPC design is devel-
oped for power-chained form systems. To accomplish this, a new switching conditional
inequality is proposed to avoid high gains in the sense that switching gain increases only
when the tracking error is close to violating the performance bounds. We show with a
counterexample and a positive example that only some Nussbaum functions are suited
to handle time-varying unknown control coefficients for power-chained form dynamics.
The results in this chapter are based on the work [64].
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Figure 1.4: The overall structure of this thesis
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Finally, conclusions and recommendations for future work are discussed in Chapter
7.





2
BASIC CONCEPTS AND TECHNICAL

TOOLS

This chapter first gives a brief introduction on Lyapunov stability theory of ordinary dif-
ferential equations. Then, some technical tools including the adding-power-integrator
method, Nussbaum functions, radial basis function neural network approximators, logic-
based control, prescribed performance control (PPC), and low-complexity PPC are pre-
sented.

2.1. Lyapunov Stability
Lyapunov stability concerns the behavior of trajectories around the equilibrium of a
nonlinear differential equation. Consider systems described by ordinary differential equa-
tions of the form

ẋ(t ) = f (t , x(t )), x(t0) = x0, (2.1)

where x ∈ Rn , f : T ×B(r ) → R is continuous in t and locally Lipschitz in x uniformly
over t , T = [t0,∞], and B(r ) = {

x ∈Rn | ‖x‖ < r
}
. We assume that f is of such nature that

for every x0 ∈ B(r ) and every t0 ∈ R+
≥0. Then, system (2.1) possesses one and only one

solution x(t ; t0, x0).

Definition 2.1 [41] A solution of (2.1) over the interval [t0, t1] ⊂ R is a continuous func-
tion

x(·) : [t0, t1] →Rn (2.2)

with x(·) piecewise continuous and satisfying (2.1) for all t ∈ [t0, t1].

Definition 2.2 [41] A solution x(t ; t0, x0) of (2.1) is bounded if there exists a constant
β> 0 such that |x(t ; t0, x0)| <β for all t ≥ t0.

Definition 2.3 [41] The solutions of (2.1) are uniformly bounded if for any α > 0 and
t0 ∈R+, there exists aβ=β(α) independent of t0 such that if |x0| <α, then |x(t ; t0, x0)| <β
for all t ≥ t0.

17
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Definition 2.4 [41] The solutions of (2.1) are uniformly ultimately bounded with ulti-
mate bound β if there exist positive constants β and c, independent of t0 ≥ 0, and for
every α ∈ (0,c), there exist a T = T (α,β) ≥ 0, independent of t0, such that

|x(t0)| ≤α ⇒ |x(t ; t0, x0)| ≤β, ∀ t ≥ t0 +T (2.3)

The following Lyapunov-like theorem is meant to show uniform boundedness and ulti-
mate boundedness.

Theorem 2.1 [54] Let D ⊂Rn be a domain that contains the origin and V : [0,∞)×D →R

be a continuously differentiable function such that

α1(||x||) ≤V (t , x) ≤α2(||x||) (2.4)

∂V

∂t
+ ∂V

∂x
f (t , x) ≤−W3(x), ∀x : ||x|| ≥µ> 0, (2.5)

whereα1 andα2 are class K functions and W3 is a continuous positive definite function.
Take r > 0 and suppose that

µ<α−1
2

(
α1(r )

)
. (2.6)

Then, there exists a class K L function β and for every initial state x(t0), satisfying
||x(t0)|| ≤α−1

2

(
α1(r )

)
, there exists a T ≥ 0 (dependent on x(t0) and µ) such that the solu-

tion of (2.1) satisfies

||x(t )|| ≤β(||x(t0)||, t − t0), ∀ t0 ≤ t ≤ t0 +T (2.7)

||x(t )|| ≤α−1
1

(
α2(µ)

)
, ∀ t ≥ t0 +T. (2.8)

Moreover, if D = Rn and α1 belongs to class K∞, then (2.7) and (2.8) hold for any initial
state x(t0), with no restriction on how large µ is.

Inequalities (2.7) and (2.8) show that x(t ) is uniformly bounded for all t ≥ t0 and uni-
formly ultimately bounded with the ultimate bound α−1

1

(
α2(µ)

)
. The ultimate bound

is a class K function of µ; hence, the smaller the value of µ, the smaller the ultimate
bound.

The following invariant set notion is used in our thesis to ensure the validity of RBF
NN approximators in the sense of confining relevant states within an invariant set all the
time provided their initial conditions are located therein. The use of such a property can
be observed in the stability analysis of Chapter 3.

Definition 2.5 [41] (Invariant Set) For a dynamic system (2.1) with state variable x, if
all trajectories x(t ; t0, x0) initially starting in a set Ω remain in the set at any time in the
future, i.e.

x(t0) ∈Ω⇒ x(t ) ∈Ω, ∀t > t0. (2.9)

Then, the setΩ is called an invariant set of the dynamic system.
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Figure 2.1: Schematic diagram of invariant set

Theorem 2.2 (Lyapunov-based Invariant Set) For a dynamic system ẋ = f (x, t ), let V (·) :
D →R+ be a continuously differentiable function satisfying α1(x) ≤V (x) ≤α2(x), where
α1 andα2 are class K∞ functions. Define the compact setΩ= {x|V (x) ≤ p}, where p ∈R+
and Ω ⊂ D . Let E = {x ∈ Ω|V (x) = p}. If V (x) satisfies V̇ (x) ≤ 0, ∀x ∈ E , then, Ω is an
invariant set of x(t ), namely, it holds that

x(t0) ∈Ω⇒ x(t ) ∈Ω, ∀t > t0. (2.10)

A schematic diagram of Theorem 2.2 is depicted in Fig. 2.1.

2.2. Technical Tools
2.2.1. Radial Basis Function Neural Network Approximation
The radial basis function neural networks (RBF NNs) whose structure is given in Fig. 2.2
could be deemed as two-layer neural networks where the hidden layer carries out a fixed
nonlinear transformation without tuneable parameters; i.e., the input space is mapped
into a new space. The output layer then combines the outputs in the latter space linearly.
Therefore, RBF NNs belong to a class of linearly parameterized networks, and can be
described in the following form [30, 103, 104]:

Fnn(Z ) =∑N
i=1 wiϕi (Z ) =W Tϕ(Z ), (2.11)

where Z ∈ΩZ ⊂Rq is the input vector, W = [w1, . . . , wn]T ∈RN is the weight vector, N > 1
is the number of NN nodes, andϕ(Z ) = [ϕ1(||Z−ξ1||), . . . ,ϕN (||Z−ξN ||)]T is the regressor
vector, with ϕi a radial basis function, and ξi = [ξi 1, . . . ,ξi n]T (i = 1, . . . , N ) the center of
the receptive field. In this thesis, ϕi (||Z −ξi ||) is chosen to be a Gaussian function in the
form of

ϕi (||Z −ξi ||) = exp

[−(Z −ξi )T (Z −ξi )

η2

]
,

where η is the width of the receptive field of Gaussian function. It has been proved in
[30, 103] that an RBF NN (2.11), with a sufficiently large number of nodes N and appro-
priately placed node centers and variances, can approximate any continuous function
F (·) :ΩZ →R over a compact setΩZ to arbitrary accuracy according to
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Figure 2.2: Structure of RBF neural network

F (Z ) =W ∗Tϕ(Z )+ε(Z ), ∀Z ∈ΩZ , (2.12)

where W ∗ is the ideal optimal weight vector, ε(Z ) is the approximation error. It is nor-
mally assumed the ideal weight vector W ∗ exists such that |ε(Z )| ≤ ε∗ with ε∗ > 0 a con-
stant for all Z ∈ΩZ . The ideal optimal vector W ∗ is an “artificial” quantity required for
analytical purposes, and is defined as the value of W that minimizes |ε| for all Z ∈ΩZ ⊂
Rq , i.e.

W ∗ , arg min
W ∈RN

{
sup

Z∈ΩZ

∣∣F (Z )−W Tϕ(Z )
∣∣} . (2.13)

Lemma 2.1 [135] Consider the Gaussian RBF network (2.11) and h = 1
2 mini 6= j ||ξi −ξ j ||.

Then, we may take an upper bound ofϕ(Z ) as

||ϕ(Z )||2 ≤∑∞
k=0 3q(k +2)q−1 exp(−2hk2/η2), Γ, (2.14)

where η is the width of the receptive field of Gaussian function and Γ> 0 is an unknown
constant.

Remark 2.1 It can be easily proven that the sum
∑∞

k=0 3q(k + 2)q−1 exp(−2hk2/η2) has
limited value, because the infinite series

{
3q(k +2)q−1 exp(−2hk2/η2)

}
, (k = 0, . . . ,∞), is

convergent by the Ratio Test Theorem [103].

2.2.2. Adding-One-Power-Integrator Method
The adding-one-power-integrator method was initially proposed by Lin in [56] and is an
extension of the standard backstepping control method. It cannot only handle the sys-
tem classes for which backstepping works, but it is also able to stabilize a more general
and challenging class of systems in the power-chained form for which backsteping fails
to work. The core idea of the adding-one-power-integrator technique is the “domina-
tion”.

The following lemmas are typically used in literature to achieve the “domination”.
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Lemma 2.2 [55] For any x1 ∈ R and x2 ∈ R, and given positive integers b1, b2 and any
real-valued function ξ(·, ·) with ξ(x1, x2) > 0, it holds that

|x1|b1 |x2|b2 ≤ b1ξ(x1, x2)|x1|b1+b2

b1 +b2
+ b2ξ

− b1
b2 (x1, x2)|x2|b1+b2

b1 +b2
. (2.15)

Lemma 2.3 [135] Let x1 and x2 be real-valued functions. There exist a positive odd inte-
ger h̄ and a constant λ̄≥ 1 such that∣∣∣x h̄

1 −x h̄
2

∣∣∣≤ h̄
∣∣x1 −x2

∣∣∣∣∣x h̄−1
1 +x h̄−1

2

∣∣∣ (2.16a)

|x1 +x2|λ̄ ≤ 2λ̄−1(|x1|λ̄+|x2|λ̄
)
. (2.16b)

Example 6. We take the following power-chained form systems (2.17) as an example to
show the rationale of adding-one-power-integrator method.{

χ̇1 =χ3
1 cosχ2 +χ3

2

χ̇2 =χ2
1χ2 sinχ1 +u5,

(2.17)

which is the same system as Example 5. The goal is to design the control signal u such
that (2.17) is stabilized.

Define the coordination transformation

s1 =χ1, s2 =χ2 −α1, (2.18)

where α1 is the smooth virtual control law to be designed. Substituting (2.18) into (2.17)
leads to 

ṡ1 = χ̇1 = (s2 +α1)3 + s3
1 cos(s2 +α1),

ṡ2 = χ̇2 − α̇1 = u5 +χ2
1χ2 sinχ1 − α̇1

= u5 + s2
1(s2 +α1)sin(s1)− α̇1.

(2.19)

If we choose the Lyapunov candidate V1(s1) = 1
2 s2

1 , then we have

V̇1(s1) = s1(s2 +α1)3 + s4
1 cos(s2 +α1),

= s1(s3
2 +3s2α

2
1 +3s2

2α1 +α3
1)+ s4

1 cos(s2 +α1). (2.20)

In (2.20), we consider using s1α
3
1 to “dominate” s4

1 cos(s2 +α1) as follows:

V̇1(s1) = s1(s2 +α1)3 − s1α
3
1 + s1α

3
1 + s4

1 cos(s2 +α1). (2.21)

Then, after selecting the virtual control law α1 =−3
1
3 s1, we arrive at

V̇1(s1) = s1(s2 +α1)3 − s1α
3
1 + s1α

3
1 + s4

1 cos(s2 +α1), (2.22)

≤ s1s3
2 −3

4
3 s2

1 s2
2 +3

5
3 s3

1 s2 −2s4
1 (2.23)
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Take the Lyapunov function candidate V2(s1, s2) =V1(s1)+ 1
2 s2

2 and its derivative with
respect to time satisfies

V̇2(s1, s2) ≤s1s3
2 −3

4
3 s2

1 s2
2 +3

5
3 s3

1 s2 −2s4
1 + s2

[
u5 + s2

1 sin(s1)

× (s2 −3
1
3 s1)+3

1
3 (s2 −3

1
3 s1)3 +3

1
3 s3

1 cos(s2 −3
1
3 s1)

]
=3

1
3 s4

2 −2s4
1 + s2u5 + (1−3

5
3 )s1s3

2 + (9−3
4
3 + sin(s1))s2

1 s2
2

+
[

3
5
3 −3

1
3 sin(s1)+3

4
3 +3

1
3 cos(s2 −3

1
3 s1)

]
s3

1 s2. (2.24)

Using Lemma 2.2 to handle the last three terms of (2.24) gives

(1−35/3)s1s3
2 ≤ 6

∣∣s1s3
2

∣∣≤ 1

3
s4

1 +8s4
2 , (2.25)

(9−34/3 + sin(s1))s2
1 s2

2 ≤ 6
∣∣s2

1 s2
2

∣∣≤ 1

3
s4

1 +27s4
2 , (2.26)[

35/3 −31/3 sin s1 +34/3 +31/3 cos(s2 −31/3s1)
]

s3
1 s2 ≤ 1

3
s4

1 +9s4
2 . (2.27)

In view of (2.25)-(2.27), we select u =−10(s2)3/5; then it follows that

V̇2(s1, s2) ≤−s4
1 − s4

2 . (2.28)

This completes the design. ■
Although the adding-one-power-integrator method has been successfully applied in

[89, 112, 135, 136] to stabilize power-chained form systems, the extension of the adding-
one-power-integrator technique in [89, 112, 135, 136] to a distributed setting is not very
meaningful due to the complexity of the controller structure, which is clarified by the
following example.

Example 7. Let us revisit the power-chained form systems(1.2):

χ̇1 =φ1(χ1)+ψ1(χ1)χp1
2 ,

χ̇2 =φ2(χ2)+ψ2(χ2)χp2
3 ,

...

χ̇m =φm(χm)+ψm(χm)χpm
m+1, m = 3, . . . ,n −1

χ̇n =φn(χn)+ψn(χn)upn ,

y =χ1.

(2.29)

In this example, we assume that the control directions of (2.29) are known a priori (i.e.
the signs of ψm(·) are known a priori).

The control goal is to design a controller u such that the system output y tracks the
reference signal yr (bounded and differentiable), while ensuring the boundedness of all
closed-loop signals.

Step 1: Define the coordination transformations

s1 =χ1 − yr, sm =χm −αm−1, (2.30)
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where αm−1, m = 2, . . . ,n, is the designed virtual control law specified later.
Then, we get the time derivative of s1 as

ṡ1 =ψ1(χ1)χp1
2 +φ1(χ1)− ẏr. (2.31)

Take the Lyapunov function candidate as

V1 =
sp−p1+2

1

p −p1 +2
. (2.32)

Then, the time derivative of V1 is

V̇1 = sp−p1+1
1

(
ψ1(χ1)χp1

2 +F1(Z1)
)
, (2.33)

where F1(Z1) = φ1(χ1)− ẏr with Z1 = [χ1, ẏr]T . Along the same lines as [135], we use a
neural network to approximate F1(Z1) as

F1(Z1) =W ∗T
1 ϕ1(Z1)+ε1(Z1), |ε1(Z1)| ≤ ε̄1, Z1 ∈Ω1, (2.34)

where W ∗
1 is the optimal weight vector, ϕ1(·) is the activation function, and ε̄1 > 0 is

an unknown constant. Similarly to [135, eq. (7)], it is possible to obtain the following
inequalities:

sp−p1+2
1 F1(Z1) = sp−p1+2

1

(
W ∗T

1 ϕ1(Z1)+ε1(Z1)
)

≤ 1

p
1

s
−p

1
1 + 1

p1
s

p1
1 sp+1

1

(||W ∗
1 ||||ϕ1||

)p1 + 1

p1
b

p1
1 sp+1

1 + 1

p
1

b
−p

1
1 ε

r 1
1

≤ sp+1
1

(
b

p1
1 + sr 1

1 Ξ1Θ
p1
1

)
+κ1, (2.35)

where p = max1≤m≤n{pm}, p1 = p+1
p−p1+1 , p

1
= p+1

p1
, Ξ1 = ||W ∗

1 ||p1 , Θ1 > 0 is a known con-

stant satisfying Θ1 ≥ ||ϕ|| > 0 according to [135, Lemma 2], and κ1 =ħ−p
1

1 +b
−p

1
1 ε̄

p
1

1 with
ħ1 > 0 and b1 > 0 being design constants.

Substituting (2.35) into (2.33) leads to

V̇1 ≤ψ1(χ1)sp−p1+1
1 (s2 +α1)p1 + sp+1

1

(
b

p1
1 + s

p1
1 Ξ1Θ

p1
1

)
+κ1. (2.36)

Adding and subtracting αp1
1 on the right-hand side of (2.36) leads to

V̇1 ≤ψ1(χ1)sp−p1+1
1

[
(s2 +α1)p1 −αp1

1 +αp1
1

]
+ sp+1

1

(
b

p1
1 + s

p1
1 Ξ1Θ

p1
1

)
+κ1

≤ψ1(χ1)sp−p1+1
1 α

p1
1 + sp−p1+1

1 ψ1(χ1)
[

(s2 +α1)p1 −αp1
1

]
+ sp+1

1

(
b

p1
1 + s

p1
1 Ξ1Θ

p1
1

)
+κ1. (2.37)
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Then, we can design α1 as

α1 =−s1

{
sign

(
ψ1(·))
ψ1

(
c1 + s

p1
1 Ξ̂1Θ

p1
1 +b

p1
1

)} 1
p1

︸ ︷︷ ︸
ς1

=−s1ς1, (2.38)

where Ξ̂1 is the estimate of Ξ1, and c1 > 0 is a design constant.
Substituting (2.38) into (2.37) results in

V̇1 ≤−c1sp+1
1 +ψ1(χ1)sp−p1+1

1

(
χ

p1
2 −αp1

1

)+ sp+1
1 s

p1
1 Ξ̃1Θ

p1
1 +κ1. (2.39)

Step 2: It follows from (2.29) and (2.30) that the derivative of s2 is

ṡ2 = F2(Z2)+ψ2(χ2)χp2
3 , (2.40)

where F2(Z2) =φ2(χ2)− α̇1.
Take the Lyapunov function candidate as

V2 =V1 +
sp−p2+2

2

p −p2 +2
. (2.41)

Then, the derivative of V2 satisfies

V̇2 ≤− c1sp+1
1 + ψ1(χ1)sp−p1+1

1

(
χ

p1
2 −αp1

1

) + sp+1
1 s

p1
1 Ξ̃1Θ

p1
1 +κ1

+ sp−p2+1
2 F2(Z2)+ψ2(χ2)sp−p2+1

2 χ
p2
3 . (2.42)

In the existing designs [135], the red term in (2.42) was handled by∣∣∣ψ1(χ1)sp−p1+1
1

(
χ

p1
2 −αp1

1

)∣∣∣
≤ψ1p1

∣∣∣sp−p1+1
1

∣∣∣ |s2|
(
χ

p1−1
2 + (s1ς1)p1−1

)
≤ sp+1

1 + sp+1
2 ς1, (2.43)

where the above inequalities use Lemma 2.3, and ς1 =
(
2p1−2p1ψ1

)p
1
−1+

(
2p1−2p1ς

p1−1
1 ψ1

)p+1
.

Substituting (2.43) into (2.42) and using a neural network to approximate F2(Z2) leads
to

V̇2 ≤− c1sp+1
1 + sp+1

1 + sp+1
2 ς1 + sp+1

1 s
p1
1 Ξ̃1Θ

p1
1 +κ1 + sp+1

2

(
b

p2
2 + s

p2
2 Ξ̃2Θ

p2
2

)
+κ2

+ψ2(χ2)sp−p2+1
2

(
χ

p2
3 −αp2

2

)+ψ2(χ2)sp−p2+1
2 α

p2
2 , (2.44)

where p2 = p+1
p−p2+1 , p

2
= p+1

p2
, Ξ2 = ||W ∗

2 ||p2 , Θ2 > 0 is a known constant satisfying Θ2 ≥
||ϕ2|| > 0, and κ2 =ħ−p

2
2 +b

−p
2

2 ε̄
p

2
2 with ħ2 > 0 and b2 > 0 design constants.
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Design the virtual controller α2 as

α2 =−s2

{
sign

(
ψ2(·))
ψ2

(
c2 +ς1 + s

p2
2 Ξ̂2Θ

p2
2 +b

p2
2

)} 1
p2

︸ ︷︷ ︸
ς2

=−s2ς2, (2.45)

where Ξ̂2 is the estimate of Ξ2, and c2 > 0 is a design constant.
Proceeding similarly and by induction, it is possible to obtain the expressions of vir-

tual/actual controllers as

αm =−sm

{
sign

(
ψm(·))
ψm

(
cm +ςm−1 + s

pm
m Ξ̂mΘ

pm
m +b

pm
m

)} 1
pm

︸ ︷︷ ︸
ςm

=−smςm , (2.46)

u =−sn

{
sign

(
ψn(·))
ψn

(
cn +ςn−1 + s

pn
n Ξ̂nΘ

pn
n +b

pn
n

)} 1
pn

︸ ︷︷ ︸
ςn

=−snςn , (2.47)

where ςm−1 =
(
2pm−1−2pm−1ψm

)p
m−1+

(
2pm−1−2pm−1ς

pm−1
m−1 ψm

)p+1
, ςn−1 =

(
2pn−1−2pn−1×

ψn

)p
n−1 +

(
2pn−1−2pn−1ς

pn−1
n−1 ψn

)p+1
, Ξ̂m is the estimate of Ξm , and cm > 0 is a design

constant for m = 3, . . . ,n.
The subsequent stability analysis is similar to that of [135] and we thus omit it here.

At this point, it can be seen from (2.46) and (2.47) that for the adding-one-power-
integrator methods [55, 89, 112, 135, 136] to work, ςm−1 is incorporated into the virtual

controller αm (2.46) to eliminate the extra term ςm−1sp+1
m : this inevitably increases the

complexity of the controller structure. It is also worth mentioning that the power of the
control gain ςm−1 in (2.46) grows dramatically (exponentially) as the order of the subsys-
tems grows, leading to possibly high control gains.

Remark 2.2 It can be seen that the signs of control gain functions ψm(·) (i.e. the con-
trol directions) are involved in the control designs (2.38), (2.45), (2.46), and (2.47). In
other words, the above design is dependent on the priori knowledge of system control
directions. In case the control directions of (1.2) are unknown (i.e. the signs of ψm(·) are
unknown), Nussbaum functions (cf. the Section 2.2.3) are the commonly used tool to
handle the absence of unknown control directions).

2.2.3. Nussbaum Functions and Corresponding Technical Lemmas
In case the control direction (i.e. the sign of a control gain function) of a control sys-
tem is unknown a priori, designing a controller becomes challenging due to the fact that
a control force with incorrect control direction might steer the system away from the
desired behavior [18, 75]. A possible solution is to alternatively change the sign of the
control gain function. Specifically, the negative effect accumulated during the periods
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Figure 2.3: Trajectories of some typical Nussbaum functions

of incorrect control directions is counteracted by the positive effect accumulated during
the periods of correct control directions.

The Nussbaum gain technique has been extensively exploited to tackle unknown
control directions in [14, 22, 23, 75, 106, 122, 125] since it was originally proposed in [75].
A fundamental tool to prove closed-loop stability is the so-called conditional inequality,
which consists in guaranteeing the boundedness of a Lyapunov-like function when its
derivative along the system trajectories is upper bounded by an appropriate expression
depending on the Nussbaum function.

In the sequel, we first introduce the definition of Nussbaum functions and some cor-
responding technical lemmas. Then, we show via an example how the issue of a single
unknown control direction can be tackled by the Nussbaum functions-based technique.

Definition 2.6 [75] A continuously differentiable function N (·) : [0,∞) → (−∞,+∞) is
called a Nussbaum function if it satisfies

lim
y→∞sup

1

y

∫ y

0
N (s)d s =+∞, and lim

y→∞ inf
1

y

∫ y

0
N (s)d s =−∞. (2.48)

The functions s2 sin(s), exp(0.05s)sin(s), and s2 cos(2s) whose trajectories are shown in
Fig. 2.3 are Nussabum functions since they satisfy the properties (2.48).

Lemma 2.4 [31] Consider two continuously differentiable functions V (·) : [0, ts) → R+,
y(t ) : [0, ts ) →R+. If N (·) is a Nussbaum function with the following inequality holding:

V (t ) ≤ c0 +exp(−c1t )
∫ t

0

[
g (τ)N (y)+1

]
ẏ exp(c1τ)dτ, ∀ t ∈ [0, ts ) (2.49)
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where c0 and c1 are positive constants; g is a function satisfying g (t ) ∈ [l1, l2] with 0 <
l1 < l2 or 0 > l2 > l1 with l1 and l2 constants. Then, V (·) and y(·) remain bounded on any
finite time interval [0, ts).

Lemma 2.5 [18] Consider two continuously differentiable functions V (·) : [0,∞) → R+,
y(·) : [0,∞) →R+. If

V̇ (t ) ≤ (
λN (y(t ))+a

)
ẏ(t ) (2.50)

for two constants a, λ ∈ R and a Nussbaum function N , then V (·) and y(·) are bounded
over [0,∞).

Remark 2.3 The fundamental difference between Lemma 2.4 and Lemma 2.5 consists
in the fact that Lemma 2.4 can only ensure boundedness of V (·) and y(·) within finite
time, i.e. ts <∞. When ts =∞, the boundedness of V (·) and y(·) is not guaranteed (cf.
the discussion in [80, Remark 1]), whereas Lemma 2.5 ensures the boundedness of V (·)
and y(·) on the entire time domain [0,∞).

We are now in the position to clarify how Lemmas 2.4 and 2.5 are used to solve the
control design difficulty caused by a single unknown control direction.

Example 8. Let us consider the following first-order system in the power-chained
form whose control direction (i.e. the sign of ψ(·)) is unknown a priori:{

χ̇=φ(χ)+ψ(χ)up ,

y =χ,
(2.51)

where χ and y ∈R are the state and the output of the system, respectively; p is a positive
odd integer, φ(·) is an unknown continuous nonlinear function, ψ(·) is the control gain
function with an unknown sign satisfyingψ≤ ∣∣ψ(·)∣∣≤ ψ̄withψ and ψ̄ positive constants,
and u is the control signal.

The control goal is to design u such that the output y tracks the reference signal yr in
spite of the unknown control direction.

To begin with the design, let us define the following change of coordinate:

s =χ− yr, (2.52)

where yr is the reference signal with continuous and bounded derivative.
Consider (2.51) and (2.52), the time derivative of s is

ṡ =ψ(χ)up +F (Z ), (2.53)

where Z = [
χ, ẏr

]
and F (Z ) =φ(χ)− ẏr.

Similarly to [135], we use an RBF NN to approximate the unknown continuous func-
tion F (·) as

F (Z ) =W ∗Tϕ(Z )+ε(Z ), Z ∈ΩZ (2.54)

where
∣∣ε(Z )

∣∣≤ ε̄ with ε̄ a positive constant.
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In light of Lemma 2.2, the following inequality holds:

s3F ≤ 3

p +3
`

p+3
3 sp+3∥∥W ∗∥∥ p+3

3
∥∥ϕ∥∥ p+3

3

+ p

p +3
ς
− p+3

p ε̄
p+3

p + p

p +3
`
− p+3

p (2.55)

+ 3

p +3
ς

p+3
3 sp+3

≤sp+3
(
`

p+3
3 β

∥∥ϕ∥∥ p+3
3 +ς p+3

3

)
+λ,

where β=∥∥W ∗∥∥ p+3
3 and λ= `−

p+3
p +ς−

p+3
p ε̄

p+3
p .

Consider the Lyapunov function candidate

V = s4

4
+ 1

2ϑ
β̃2, (2.56)

where β̃=β− β̂ and ϑ> 0 is a design constant.
The time derivative of V along (2.53), (2.55), and (2.56) satisfies

V̇ ≤ s3 (
ψ(χ)up+spκ

)+ sp+3ς
p+3

3 − sp+3κ

− β̃ ˙̂β

ϑ
+ sp+3`

p+3
3 β

∥∥ϕ∥∥ p+3
3 +λ.

(2.57)

Design the virtual controllers u and adaptive law β̂ as

u =N
1
p

R (ξ)κ
1
p s, (2.58)

κ= ` p+3
3 β̂

∥∥ϕ∥∥ p+3
3 +c +ς p+3

3 , (2.59)

ξ̇= sp+3κ, (2.60)

˙̂β=ϑ` p+3
3 sp+3∥∥ϕ∥∥ p+3

3 −γβ̂, (2.61)

where NR is a Nussbaum function, and where `, c, γ, and ς are positive design parame-
ters.

Substituting (2.58), (2.59), (2.60), and (2.61) into (2.57) gives

V̇ ≤ ξ̇(ψ(χ)NR (ξ)+1
)− csp+3 + γ

2ϑ

(
β2 − β̃2)+λ. (2.62)

Applying Lemma 2.2 to the term ω
p−1
p+3 s4 with ω> 0 a constant, it holds that

ω
p−1
p+3 s4 ≤ω+ sp+3. (2.63)
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Substituting (2.63) into (2.62) yields

V̇ ≤ ξ̇(ψ(χ)NR (ξ)+1
)−µV +%, (2.64)

where µ= min

{
4cω

p−1
p+3 ,γ

}
and %= cω+λ+ γ

2ϑβ
2.

Multiplying both sides by eµt , integrating it over [0, t ] and multiplying both sides by
e−µt , one has

V (t ) ≤ ∫ t
0

(
ψ(χ)NR (ξ)+1

)
ξ̇eµ(ν−t )dν+ c0, (2.65)

where c0 = V (0) +Π with Π = %
µ a positive constant. Recalling Lemma 2.4 yields the

boundedness of V (·). Following a similar reasoning to [61] one can prove the bounded-
ness of closed-loop signals on the time interval [0, ts) with ts <+∞. ■

In contrast with the designs (2.46) and (2.47), the control law (2.58) does not rely on
the sign of control gain function ψ(·) (i.e. the control direction). In place of the priori
knowledge of the control direction, a Nussbaum function is utilized in (2.58) to facilitate
the control design. Besides, it can be seen from (2.52)-(2.65) that Lemma 2.4 plays a
crucial role in achieving closed-loop stability. The use of Lemma 2.5 is similar to Lemma
2.4, which can be observed in Chapter 6.

Note that the above Example 8 shows that Lemma 2.4 can be directly exploited to
handle a single unknown control direction (i.e. the sign of control gain function ψ(·))
is unknown). When considering higher-order (more than first-order) nonlinear systems
with multiple unknown control directions (i.e. the signs of multiple control gain func-
tions are unknown), multiple Nussbaum functions terms appear as shown in the follow-
ing example 9.

Example 9. Let us consider the following third-order systems in the power-chained
form with multiple unknown control directions (i.e. the signs of ψm(·), m = 1,2,3) are
unknown a priori.


χ̇1 =φ1(χ1)+ψ1(χ1)χp1

2 ,

χ̇2 =φ2(χ̄2)+ψ2(χ̄2)χp2
3 ,

χ̇3 =φ3(χ̄3)+ψ3(χ̄3)up3 ,

y =χ1,

(2.66)

where χ̄2 = [χ1,χ2]T ∈R2, χ̄3 = [χ1,χ2,χ3]T ∈R3 and y ∈R are state variables and output
of the system, respectively. For m = 1,2,3, pm is positive odd integer, φm(·) is an un-
known continuous nonlinear function, ψm(·) is a control gain function with unknown
control direction satisfying ψ

m
≤ |ψm(·)| ≤ ψm with ψ

m
and ψm being positive con-

stants, and u is the control signal to be designed.
The aim is to devise u such that the output y follows the reference signal yr in spite

of multiple unknown control directions, while guaranteeing that all closed-loop signals
are bounded.
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Figure 2.4: A schematic diagram of tuning control parameters and control directions via a logic-based rule

To begin with the design, let us define p = max
1≤m≤3

{
pm

}
and the following changes of

coordinates 
s1 =χ1 − yr ,

s2 =χ2 −α2,

s3 =χ3 −α3,

(2.67)

where α2 and α3 represent the virtual control laws, which will be specified later.
The subsequent design procedure contains 3 steps; the design of each step is similar

to the design in Example 8. By induction, it is possible to reach the following inequality:

V (t )≤
3∑

m=1

∫ t
0

(
ψm(χ̄m)NR (ξm)+1

)
ξ̇meµ(ν−t )dν+ c0, (2.68)

where c0 is a positive constant.

In comparison with the inequality in (2.65), which contains only one Nussbaum
function term, the inequality (2.68) contains multiple Nussbaum functions terms. Such
a fact requires to propose new Nussbaum functions guaranteeing the boundedness of
V (·) and ξm(·) under the framework of (2.68). This is because [37, 125] have shown that
the summed versions of Lemma 2.4 (cf. (2.68)) does not necessarily hold for existing
Nussbaum functions since their effects could counteract each other, making the bound-
edness of V (·) and ξm(·) non-existent.

2.2.4. State-of-the-Art in Logic-based Control
Logic-based control typically means to update parameters (including controller param-
eters, control directions, and unknown system parameters) in a discrete manner (rather
than continuously) via a logic-based rule that is designed in such a way that closed-loop
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Figure 2.5: Logic-based switching mechanisms of [36, 115]

stability is guaranteed. A schematic diagram of tuning controller parameters and control
directions is given in Fig. 2.4, where 2n denotes the number of all possible combinations
of n control directions.

State-of-the-art logic-based control methods have been successfully exploited to avoid
conventional continuous tuning of controller parameters and conventional Nussabum
functions-based approaches for strict-feedback systems in [36, 115]. However, it is worth
pointing out that the logic-based mechanisms in [36, 115] depend on monitor func-
tions that monitor whether asymptotic tracking can be achieved (leading to bounded
energy of the tracking error) [36] or whether finite-time stabilization (i.e. the stabiliza-
tion error converges to zero in finite time) can be obtained [115]. In other words, for
the methods [36, 115] to work, tracking errors are required to converge to zero asymp-
totically, which is shown in Fig. 2.5 where V (t ) = 1

2 e2(t ) is the Lyapunov function and
`(t ) = [

V (x(tσ)) +κσ
]

exp
(−ϑi (t − tσ)

)
is the monitor function with κσ and ϑσ posi-

tive design constants. Unfortunately, the same mechanism and monitor functions in
[36, 115] cannot be adopted for agents in power-chained form systems on account of the
fact that asymptotic tracking in general cannot be achieved for power-chained form sys-
tems due to the aforementioned structural difficulty, as illustrated in Chapter 1. There-
fore, a new logic-based mechanism as well as new monitor functions must be sought for
power-chained form systems [83, Sect. 2].

2.2.5. Prescribed-Performance Control
The paradigm of prescribed-performance control (PPC) was originally proposed in [5]
and utilized in [6, 52, 78, 101] to design controllers capable of guaranteeing prescribed
performance bounds on the transient and steady-state output error a priori for a range
of nonlinear system classes. Its key idea is to transform the considered system into one
that takes into account some prescribed transient and steady-state specifications (e.g.
convergence rate, overshoot, or steady-state error).

To explain the rationale of PPC, let us consider a generic tracking error e ∈ R. Pre-
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Figure 2.6: Graphical representation of (2.69)

scribed performance is achieved if the following two inequalities are satisfied for all t ≥ 0:{
−δiρi (t ) < ei (t ) < ρi (t ), if ei (0) ≥ 0

−ρi (t ) < ei (t ) < δiρi (t ), if ei (0) ≤ 0,
(2.69)

where 0 ≤ δi < 1 is a non-negative design constant and ρi (·) :R≥0 →R>0 is the prescribed
performance function satisfying ρ

i
≤ ρi (t ) ≤ ρ̄i , ∀t ≥ 0 for some constants ρ

i
> 0 and

ρ̄i > 0. Note that (2.69) indicates that (i) when ei (0) > 0, ρi (0) is chosen to make ei (0) <
ρi (0) hold; (ii) when ei (0) < 0, ρi (0) is chosen to make −ei (0) < ρi (0) hold; (iii) when
ei (t ) = 0, for any ρi (0) > 0, δi should be chosen such that δi 6= 0. In other words, the
constant δi and function ρi (·) are utilized to show the desired performance metrics of
ei (·). Without loss of generality, prescribed performance function is defined as

ρi (t ) = (ρi ,0 −ρi ,∞)exp(−µi t )+ρi ,∞, (2.70)

where ρi ,∞ > 0 corresponds to the maximum allowable tracking error at steady state
and µi > 0 to the minimum admissible convergence rate; the maximum overshoot is
prescribed less than δiρi (0) = δiρi ,0.

For a more vivid explanation, Fig. 2.6 depicts the evolution of the tracking error ei (·)
prescribed by the performance function ρi (·) and constant δi (·).

2.2.6. Approximation-Free Prescribed-Performance Control
Approximation-free (also called low-complexity) PPC is a control methodology whose
strongest feature is its structural simplicity: uncertainty can be handled without un-
known parameter estimators nor approximation structures (neural networks, fuzzy logic,
etc.) being involved in the control design. Remarkably, uncertain dynamics can be sta-
bilized with a low-complexity structure, as the control action is a simple nonlinear static
action without any approximation structure nor dynamic parametric adaptation.

Consider a continuous function Ti : (Li ,Ui ) → R that is strictly increasing and sat-
isfies limz→U−

i
Ti (z) = +∞ and limz→L+

i
Ti (z) = −∞ with constants Ui ≥ 0 and Li ≤ 0



2.2. TECHNICAL TOOLS

2

33

defined as

(Li ,Ui ) =
{

(−δi ,1), if ei (0) ≥ 0,

(−1,δi ), if ei (0) < 0.
(2.71)

It is straightforward to verify that the inverse function T −1
i : R→ (Li ,Ui ) is well-defined

and strictly increasing as well. A representative example of Ti is given by

Ti (?) = log

(−Li +?
Ui −?

)
. (2.72)

It has been shown in [6, 101] that achieving the boundedness of Ti

(
ei (t )
ρi (t )

)
results in Li <

ei (t )
ρi (t ) < Ui , ∀t ≥ 0, implying that the prescribed performance in the sense that (2.69) is
guaranteed. In what follows, we provide an example to show the rationale of approxima-
tion free PPC.

Example 10. Consider the strict-feedback nonlinear system in the form of{
χ̇=φ(χ)+ψ(χ)u,

y =χ,
(2.73)

where χ ∈ R and y ∈ R are the state and the output of the system, respectively; φ(·) is an
unknown continuous nonlinear function satisfying φ(·) ≤ ∣∣φ(·)∣∣ ≤ φ̄(·) with φ(·) and φ̄(·)
positive functions, ψ(·) is a control gain function satisfying ψ≤ ∣∣ψ(·)∣∣ ≤ ψ̄ with ψ and ψ̄
positive constants, and u is the control signal specified later.

The control goal is to design u ∈R such that (i) all closed-loop signals remain bounded,
and (ii) the tracking error e(t ) = y(t )− yr(t ) is such that |e(t )| < ρ(t ) for all t ≥ 0, where
ρ(·) is the prescribed performance function defined in (2.70), and yr(·) is a continuously
differentiable and bounded signal with bounded derivative.

Define the transformed error surface s(t ) = log
(

1+ζ(t )
1−ζ(t )

)
, where

ζ(t ) = e(t )

ρ(t )
(2.74)

is normalized error and ρ(t ) = (ρ0−ρ∞)exp(−µt )+ρ∞ is the so-called prescribed perfor-
mance function as defined in (2.70) , where ρ0 satisfying ρ0 > |x(0)−yr (0)| ≥ 0 is a design
constant.

We are now at the position to design the control law u as

u(t ) =−sign
(
ψ(·))κs(t ), u?(ζ, t ), (2.75)

with κ> 0 a design parameter.
It is not hard to arrive at

χ(t ) = e(t )+ yr(t ) = ρ(t )ζ(t )+ yr(t ),χ?(ζ, t ). (2.76)

Differentiating the normalized error ζ(t ) in (2.74) w.r.t. time gives

ζ̇(t ) = 1

ρ(t )

[
φ(χ?, t )+ψ(χ?, t )u?(ζ, t )− ẏr − ρ̇(t )ζ

]
,β(ζ, t ). (2.77)
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Define the open set Ωζ = (−1,1), it is straightforward to verify that ζ(0) ∈ Ωζ. Besides,
note that β(·, ·) : Ωζ ×R+ → R is piecewise continuous in t and locally Lipschitz in Ωζ;
φ(·) and ψ(·) are piecewise continuous in t and locally Lipschitz in χ, and yr(·) and ρ(·)
are bounded and differentiable. Then, it follows from [6, Theorem 1] that there exists a
unique maximal solution ζ(·) of (2.76) on the time interval [0,τmax) where τmax <+∞ is
chosen such that ζ(t ) ∈ Ωζ for all t ∈ [0,τmax). In what follows, we first suppose τmax <
+∞, and eventually we prove by a contradiction that τmax can be extended to +∞.

Take the Lyapunov function

V = 1

2
s2, (2.78)

where V is positive definite and continuously differentiable overΩζ. The following steps
are conducted on the time interval [0,τmax).

It follows from (2.73)-(2.77) that the time derivative of V satisfies

V̇ ≤ γ|s|
[

F (t )−κψ(χ)|s|
]
≤ γ

[
F̄ |s|−κψ|s|2

]
, t ∈ [0,τmax) (2.79)

where γ = 2
ρ(t )(1−ζ2)

and F̄ is the upper bound of the continuous function F defined by

F (t ) = |φ(χ)|+ |ẏr|+ |ρ̇(t )ζ| according to extreme value theorem.

From (2.79), we have that V̇ is negative when |s| > F̄
κψ . This indicates that

|s(t )| ≤ max

{
|s(0)|, F̄

κψ

}
, s̄, t ∈ [0,τmax), (2.80)

which immediately implies that ζ is bounded on [0,τmax) due to the monotonicity of
function s(ζ). Furthermore, u remains bounded (i.e. |u| ≤ κs̄) for all t ∈ [0,τmax). Up to
this, what remains to show is that τmax can be extended to +∞. In view of the expres-

sion of s(t ) and (2.80), we have that ζ(t ) ∈Ω∗
ζ

, ∀t ∈ [0,τmax), where the set Ω∗
ζ
=

[
ζ, ζ̄

]
is

nonempty and compact with

−1 < exp(−s̄)−1

exp(−s̄)+1
= ζ≤ ζ(t ) ≤ ζ̄= exp(s̄)−1

exp(s̄)+1
< 1, t ∈ [0,τmax) (2.81)

which suggests that the prescribed performance |e(t )| < ρ(t ) has been guaranteed on
[0,τmax).

At this point, it is straightforward to verify thatΩ∗
ζ
⊂Ωζ. According to [6, Proposition

1], we have τmax =+∞. This completes the proof. ■
It can be seen from Example 10 that no universal approximators such as neural net-

works and fuzzy logic systems have been involved in the design and stability analysis,
while guaranteeing the prescribed performance imposed on e(·).

2.2.7. Common Lyapunov Function Method
Prior to introducing common Lyapunov function method, we first present the definition
of switched systems. Switched systems according to [54] are a special class of hybrid
systems composed by collection of subsystems (cf. (2.82)), and a rule to regulate the
switching behavior among them, called switching law or signal (referring to σ(t ) in Fig.
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Figure 2.7: The framework of switched systems

2.7). In accordance with the essence of the switching signals, switched systems could
be divided into two categories (i.e. time-driven switched systems and state-dependent
switched systems). In this thesis, Chapters 3 and 4 focus on switched systems with time-
driven switching signals whose framework is given in Fig. 2.7.

ẋ = fσ(x, t ), ∀σ ∈P , (2.82)

where P is some index set (typically P is a subset of a finite-dimensional linear vec-
tor space). It has been shown in [54] that Lyapunov’s stability theorem has a direct ex-
tension that provides a basic tool for studying uniform stability of the switched system
(2.82). This extension is obtained by requiring the existence of a single Lyapunov func-
tion whose derivative along solutions of all systems in the family (2.82) satisfies suitable
inequalities. We are particularly interested in obtaining a Lyapunov condition for uni-
form ultimate boundedness (UUB). To do this, we must special care in formulating an
inequality that ensures a uniform rate of decay.

Given a positive definite continuously differentiable function V :Rn →R, we say that
it is a common Lyapunov function [54] for the family of switched systems ẋ = fσ(x, t ) if it
holds that

∂V

∂x
fσ(s) ≤−αV (x)+β, ∀x, (2.83)

where α> 0 and β≥ 0 are constants.
The following theorem will be used in Chapters 3 and 4 of this thesis.

Theorem 2.3 If all systems in the family (2.82) share a radially unbounded common
Lyapunov function such that (2.83) holds, then, the switched system (2.82) is UUB. In
addition, if β= 0 in (2.83), asymptotic stability is obtained.

Theorem 2.3 is an extension of [54, Theorem 2.1] and can be derived in the same way
as the standard Lyapunov stability theorem. The main idea of the theorem is that the rate
of decrease of V along the solutions, given by (2.82), is not affected by switching, hence
stability result is uniform with respect to switching signal σ.
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A SEPARATION-BASED

METHODOLOGY TO CONSENSUS

TRACKING OF SWITCHED

MULTI-AGENT SYSTEMS IN THE

POWER-CHAINED FORM

This chapter investigates a reduced-complexity adaptive methodology to consensus track-
ing for a team of uncertain power-chained form systems with switched (possibly asyn-
chronous) dynamics. The organization of this chapter is as follows. The introduction is
given in Section 3.1. The problem formulation and preliminaries are provided in Section
3.2. Sections 3.3 and 3.4 present the proposed distributed consensus design and stability
analysis, respectively. The simulation examples are in Section 3.5 and Section 3.6 draws
the conclusion.

3.1. Introduction
As we have discussed in Chapters 1 and 2, power-chained form systems are intrinsi-
cally challenging as feedback linearization and backstepping methods successfully de-
veloped for strict- and pure-feedback systems fail to work. Even the adding-one-power-
integrator methodology, well explored for the single-agent power-chained form system,
presents some complexity issues and is unsuited for distributed control (cf. the discus-
sion in Section 2.2.2). In place of the standard backstepping, the adding-one-power-
integrator technique was successfully proposed in [56] to handle power-chained form
dynamics. Progress made for the single power-chained form case include relaxing the
growth condition on the nonlinear functions [55, 83, 95] and employing neural network
or fuzzy logic approximators to handle completely unknown nonlinearities [89, 112, 135,

37
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136]. However, it has to be emphasized that a direct extension of the standard adding-
one-power-integrator technique in a distributed sense is not meaningful due to some
complex aspects of the procedure. At least the following two complex aspects are worth
mentioning: (a) the high-power terms are separated from the control gain functions via
separation lemmas that make the power of the virtual control gains grow exponentially
with the order of the system; (b) the control gain of each virtual control is incorporated
into the next virtual control law iteratively, thus increasing the control complexity at
each step. Such issues result in high-complexity and high-gain designs which might be
prohibitive for multi-agent systems with low computational power and limited actua-
tion. Therefore, the crucial open question motivating this research is: how can reduced-
complexity distributed methodologies be designed for uncertain multi-agent systems in
power-chained form systems?

The main contribution of this chapter is to answer this question for a large class of
uncertain multi-agent systems in power-chained form systems, which can exhibit het-
erogeneous nonlinearities. At the core of the proposed methodology is a newly proposed
definition for separable functions and a new separation-based lemma to deal with the
high-power terms. The lemma decreases the aforementioned complex aspects of the
state of the art in a twofold direction:

Ï It avoids incorporating the control gain of each virtual control in the next virtual
control law, thus significantly reducing the complexity of the control action.

Ï It allows the power of the virtual and actual control laws to increase only propor-
tionally (rather than exponentially) with the order of the systems, thus dramati-
cally reducing any high-gain issue (cf. the discussions in Remark 3.3 and 3.4).

3.2. Problem Formulation and Preliminaries
Consider a team of N (N ≥ 2) undertain multi-agent systems whose dynamics are given
by 

χ̇i ,k =φσi (t )
i ,k (χi ,k )+ψσi (t )

i ,k (χi ,k )χ
pi ,k

i ,k+1,

χ̇i ,ni =φσi (t )
i ,ni

(χi ,ni
)+ψσi (t )

i ,ni
(χi ,ni

)u
pi ,ni
i ,

yi =χi ,1,

(3.1)

with 1 ≤ i ≤ N , 1 ≤ k ≤ ni − 1, χi ,k = [χi ,1, . . . ,χi ,k ]T ∈ Rk . The subscript i stands for
follower, in order to distinguish them from the leader agent, as clarified later. In (3.1),
σi (·) : [0,+∞) → Mi= {1,2, . . . ,mi } is the switching signal for the i th follower, with Mi

denoting the switching mode set and mi denoting the number of modes for the i th fol-

lower; pi ,k ∈ Qodd are the high powers (positive-odd integers), and u j
i ∈ R is the control

input for the j th mode of the i th follower. For each mode σi (t ), the functions φσi (t )
i ,k (·)

and ψ
σi (t )
i ,k (·) are unknown continuous functions. The following remarks highlight the

difference between (3.1) and other multi-agent system models considered in literature.

Remark 3.1 The multi-agent models in [16, 21, 24, 26, 35, 50, 69, 87, 88, 110, 111, 114,
119, 130, 140] are strict-feedback low-order, i.e. special cases of (3.1) when all the pow-
ers pi ,k are equal to one. Apart from this, (3.1) also possesses several levels of hetero-
geneity because: each follower agent exhibits its own switching σi (·), leading to possibly
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asynchronous switching among the N followers; the unknown switched nonlinearities
φ
σi (t )
i ,k (·) and ψσi (t )

i ,k (·) are possibly different for each follower. While similar levels of het-
erogeneity are considered in the pure-feedback multi-agent models in [70, 113, 127, 128],
those multi-agent systems models are also homologous to the strict-feedback low-order
case, i.e. they can be equivalently transformed into the strict-feedback low-order form
using the mean-value theorem.

Assumption 3.1 [135] For each follower agent i , we assume the sign of ψ j
i ,k is positive

and there exist known real positive constants ψ j
i ,k and ψ

j
i ,k , (1 ≤ k ≤ ni , j ∈ Mi ) such

that ψ j
i ,k ≤ψ j

i ,k (·) ≤ψ j
i ,k .

3.2.1. Technical Lemmas
The following definition, lemma, and proposition are introduced to the purpose of reduced-
complexity control, as it will be remarked later (cf. Remarks 3.3 and 3.4).

Definition 3.1 For any x1 ∈R, x2 ∈R, the continuous function z(·): R→R is said to be a
separable function provided that the following is satisfied:

z(x1 +x2) = `(x1, x2)z(x1)+υ(x1, x2)z(x2), (3.2)

where `(x1, x2) ∈ [
`1,`1

]
with `1 = 1−d and `1 = 1+d , with d an arbitrary constant taking

value in (0,1), |υ(x1, x2)| ≤ υ(d) with υ(d) denoting a positive continuous function that is
independent of x1 and x2. Moreover, for a given d , the value of υ(d) is independent of x1

and x2.

It is trivial to verify that z(z) = z is a separable function since (3.2) trivially holds with
`(·, ·) = υ(·, ·) = 1. However, for more general functions, the joint presence of x1 and x2 in
`(·, ·) and υ(·, ·) makes it difficult to directly use Definition 3.1 to determine which func-
tion possess such property. In view of this, we further provide a proposition that can be
used for the positive odd power function z(z) = zr (with r being a positive odd integer).

Proposition 3.1 For any x1 ∈R, x2 ∈R, the continuous function z(·) is a separable func-
tion if the following hold:
(i) z(x1x2) =z(x1)z(x2)
(ii) For p ∈ R and any constant d taking value in (0,1), a positive continuous function
υ(d) exists satisfying |z(p)−1| ≤ υ(d)|z(p)|+d , where p = p +1.

Proof. When x1 6= 0, without losing generality, we let x2 = px1, p ∈ R. Thus, using (ii)
yields

|z(x1)(z(p)−1)| ≤ υ(d)|z(p)| · |z(x1)|+ |z(x1)|d , (3.3)

where p = p +1. Applying (i) on both sides of (3.3) gives

|z(x1 +x2)−z(x1)| ≤ M +|z(x1)|d , (3.4)

where M = υ(d)|z(x2)|. At this point, two situations are considered:
Situation 1: when z(x1) < 0, it follows from (3.4) that

dz(x1)−M ≤z(x1 +x2) ≤ dz(x1)+M , (3.5)
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where d = d +1 and d = 1−d .
Situation 2: when z(x1) ≥ 0, one has

dz(x1)−M ≤z(x1 +x2) ≤ dz(x1)+M . (3.6)

When x1 = 0, (3.2) becomes

z(x2) = `(x1, x2)z(0)+υ(x1, x2)z(x2), (3.7)

which we have to prove. Using (i) we get z(0) =z(0)z(x2) and (3.7) becomes z(x2) =[
`(0, x2)z(0) + υ(0, x2)

]
z(x2) which holds by taking `(0, x2) ≡ 0 and υ(0, x2) ≡ 1. This

completes the proof. ■
Again, the linear function z(z) = z is a separable function since (i), (ii) hold with

υ(d) = 1 and any 0 < d < 1. The following lemma states that any positive odd power
function is a separable function.

Lemma 3.1 A function z(z) = zr with r being a positive odd integer is a separable func-
tion. In particular, if we let z = x1 + x2, then it holds that (x1 + x2)r = `(x1, x2)xr

1 +
υ(x1, x2)xr

2 , where `(x1, x2) ∈ [
`1,`1

]
with `1 = 1−d and `1 = 1+d , where d =∑r

k=1
r !

k !(r−k)!
r−k

r l
r

r−k is an arbitrary constant taking value in (0,1) for some appropriately small con-

stant l , |υ(x1, x2)| ≤ υ(d) =∑r
k=1

r !
k !(r−k)!

k
r l−

r
k with υ(d) being a positive constant.

Proof. We will verify that condition (ii) in Lemma 3.1 holds (condition (i) is trivially sat-
isfied). Using the binomial theorem [1, Sect. 3.1, page. 10] leads to

pr = 1+ p · r !

(r −1)!
+·· ·+ pr−1 · r !

(r −1)!
+pr , (3.8)

which further results in

|pr −1| ≤
r∑

k=1

r !

k !(r −k)!
|p|k . (3.9)

At this point, note that for any positive constant d taking value in (0,1), we select an
appropriately small constant l > 0 satisfying d =∑r

k=1
r !

k !(r−k)!
r−k

r l
r

r−k . In the meantime,

if we choose υ(d) =∑r
k=1

r !
k !(r−k)!

k
r l−

r
k , then, it follows from Lemma 3.1 that d+υ(d)|pr | =∑r

k=1

[
r !

k !(r−k)!
k
r l−

r
k |p|r + r !

k !(r−k)!
r−k

r l
r

r−k

]
≥∑r

k=1
r !

k !(r−k)! ×|p|k , which combined with (3.9)

gives |pr − 1| ≤ d +υ(d)|pr |. Therefore, z(z) = zr is a separable function according to
Proposition 3.1. This completes the proof. ■

Finally, the proof of Proposition 3.1 reveals that if we let z = x1 + x2, then it holds
that (x1 + x2)r = `(x1, x2)xr

1 + υ(x1, x2)xr
2 , where `(x1, x2) ∈ [

`1,`1
]

with `1 = 1−d and

`1 = 1+d , and |υ(x1, x2)| ≤ υ(d).

Remark 3.2 We provide an intuitive explanation of the requirements for the nonlinear
function z(·) from a geometric perspective.

A nonlinear function z(·) is a separable function when it satisfies

z(x1 +x2) = `(x1, x2)z(x1)+υ(x1, x2)z(x2), (3.10)
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Figure 3.1: Distance between the point and interval

where `(x1, x2) ∈ [
`1,`1

]
with `1 = 1− d and `1 = 1+ d , with d an arbitrary constant

taking value in (0,1), |υ(x1, x2)| ≤ υ(d) with υ(d) denoting a positive continuous function
that is independent of x1 and x2. Namely, for a given d , υ(d) is a positive constant.

By direct calculation, (3.10) is equivalent to∣∣∣∣z(x1 +x2)

z(x2)
−`(·)z(x1)

z(x2)

∣∣∣∣≤ υ(d). (3.11)

Since `(·) ∈ [1−d ,1+d ], the intuitive geometric meaning of (3.11) is that the distance

between the point z(x1+x2)
z(x2) and the interval

[
(1−d)z(x1)

z(x2) , (1+d)z(x1)
z(x2)

]
is bounded by υ(d)

for any fixed constant d ∈ (0,1), ∀x1, x2 ∈R, as shown in the Fig. 3.1.
However, it is worth noticing that both the analytic expression (3.11) and the geo-

metric description in Fig. 3.1 are hard to directly apply in practice due to the following
two issues:

• There exist two arguments x1 and x2 simultaneously;

• The parameter `(·) is coupled with the arguments x1 and x2.

To address the first issue, a feasible solution is to impose an augmented condition on
z(·) in the form of

z(x1x2) =z(x1)z(x2). (3.12)

This gives the first condition z(x1x2) = z(x1)z(x2). Based on z(x1x2) = z(x1)z(x2),
z(0) = 0 and (3.10) is hence satisfied at x1 = 0. When x1 6= 0, denote x2 = px1, where
p ∈R, the equation (3.11) is equivalent to∣∣∣z(p +1)−`(·)

∣∣∣≤ υ(d)|z(p)| (3.13)

To address the second issue, an effective solution is transforming the distance be-
tween a point and an interval into the distance between two points. To be more specific
and intuitive, we measure the distance between z(p + 1) and the middle point of the
interval [1−d ,1+d ], namely the point 1. To decouple `(·) and z(p +1), we use the ra-
dius d of the interval to further build an equivalent representation of (3.12) (the intuitive
meaning is parallel to that described in Fig. 3.1). That is,∣∣∣z(p +1)−1

∣∣∣≤ d +υ(d)|z(p)| (3.14)

which is exactly the second condition in Proposition 3.1.
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3.2.2. Consensus Problem
Define the tracking error for the i -th follower as

si ,1 =
∑

l∈Ni
ai l (yi − yl )+µi (yi − yr ), (3.15)

where i = 1, . . . , N . After defining s1 = [s1,1, . . . , sN ,1]T ∈RN , one has s1 = (L +B)δwhere

δ= ȳ − ȳr with ȳ = [y1, . . . , yN ]T and ȳr = [yr , . . . , yr ]T . Due to the nonsingularity of L +
B, it holds that ‖δ‖2 ≤ ‖s1‖

σmin

(
L +B

) [132], with σmin the minimum singular value of L +
B.

3.3. Proposed Distributed Consensus Design
Let us define the following variables for the i -th follower:

si ,k =χi ,k −αi ,k−1, k = 2, . . . ,ni , (3.16)

and let us propose the following design:

αi ,1 =−si ,1 R
1

pi ,1

i ,1

(
ci ,1 +ζp i ,1

i ,1 Ξ̂i ,1Θ
p i ,1

i ,1 +b
p i ,1

i ,1

) 1
pi ,1︸ ︷︷ ︸

ςi ,1

, (3.17)

Ri ,1 =
[

hi ,1(di +µi )(1−d)
]−1

, (3.18)

αi ,k =−si ,k R
1

pi ,k

i ,k

(
ci ,k +ζp i ,k

i ,k Ξ̂i ,kΘ
p i ,k

i ,k +b
p i ,k

i ,k

) 1
pi ,k︸ ︷︷ ︸

ςi ,k

, (3.19)

Ri ,k =
[

hi ,k (1−d)
]−1

, (k = 2, . . . ,ni ), (3.20)

ui , u j
i =αi ,ni , j ∈Mi , (3.21)

where pi = max
1≤k≤ni

{
pi ,k

}
, p i ,k = pi+1

pi−pi ,k+1 , p
i ,k

= pi+1
pi ,k

, hi ,k = min
{
h j

i ,k , j ∈Mi
}
, ζi ,k > 0,

bi ,k > 0 and ci ,k > 0,(k = 1, . . . ,ni ) are design constants.
Further, the parameters Ξ̂i ,k , k = 1, ...,ni , are adapted via the laws

˙̂Ξi ,k =βi ,kζ
p i ,k

i ,k spi+1
i ,k Θ

p i ,k

i ,k −βi ,kσi ,k Ξ̂i ,k , (3.22)

where βi ,k > 0 denotes a tuning rate, σi ,k > 0 stems from the leakage or σ-modification,
well studied in robust adaptive control [39], and Θi ,k > 0 is a constant satisfying Θi ,k ≥
||ϕi ,k || according to [89, Lemma 3] withϕi ,k being the activation functions coming from
the use of RBF NN approximators [89, 135, 136]. The leakage or σ-modification is re-
quired to counteract the effect of disturbances or RBF NN approximation errors.

In the following, we describe the design steps leading to (3.17)-(3.22).
Step i ,1 (i = 1, . . . , N ) : The time derivative of si ,1 along (3.1) and (3.16) is

ṡi ,1 = (di +µi )ψ j
i ,1(χi ,1)χ

pi ,1

i ,2 +H j
i ,1, (3.23)
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where H j
i ,1 is a function defined as

H j
i ,1 = (di +µi )φ j

i ,1(χi ,1)−∑
l∈Ni

ai l

(
φ

j
l ,1(χl ,1)+ψ j

l ,1(χl ,1)χ
pl ,1

l ,2

)
−µi ẏr(t ). (3.24)

From Assumptions 1.1 and 3.1, and along similar ideas to [40, 127, 135], one can con-
clude that there exist a continuous function Fi ,1(·) and an RBF NN approximator F̂i ,1(·)
such that, for any j ∈Mi ,

s
pi−pi ,1+1
i ,1 H j

i ,1 ≤
∣∣∣spi−pi ,1+1

i ,1

∣∣∣Fi ,1(Zi ,1)+εi ,1

=
∣∣∣spi−pi ,1+1

i ,1

∣∣∣[F̂i ,1
(

Zi ,1
∣∣W ∗

i ,1

)+εi ,1(Zi ,1)
]
+εi ,1

=
∣∣∣spi−pi ,1+1

i ,1

∣∣∣[W ∗
i ,1ϕi ,1(Zi ,1)+εi ,1(Zi ,1)

]
+εi ,1, (3.25)

where Zi ,1 = [
xi ,1, xl ,1,l∈Ni

, xl ,2,l∈Ni

]T , Fi ,1 = max
{∣∣H j

i ,1

∣∣, j ∈ Mi

}
, εi ,1 > 0 is a constant

and εi ,1(Zi ,1) is the approximation error satisfying
∣∣εi ,1(Zi ,1)

∣∣≤ εi ,1 on a compact setΩi ,1,
with Zi ,1 ∈Ωi ,1 and εi ,1 > 0 being a constant. The weight W ∗

i ,1 is the optimal weight vector

such that W ∗
i ,1 = arg min

Ŵ ∗
i ,1

{
sup
ΩZi ,1

∣∣∣F̂i ,1
(

Zi ,1
∣∣Ŵ ∗

i ,1

)−Fi ,1(Zi ,1)
∣∣∣}, with Ŵ ∗

i ,1 being an estimate of

W ∗
i ,1. For subsequent analysis, let us define Ξi ,1 =

∥∥W ∗
i ,1

∥∥p i ,1 .
Consider the common Lyapunov function candidate

Vi ,1 =
s

pi−pi ,1+2
i ,1

pi −pi ,1 +2
+ 1

2βi ,1
Ξ̃2

i ,1, (3.26)

where Ξ̃i ,1 =Ξi ,1 − Ξ̂i ,1. Using Lemma 2.2 yields∣∣∣spi−pi ,1+1
i ,1

∣∣∣Fi ,1 ≤
∣∣∣spi−pi ,1+1

i ,1

∣∣∣(∥∥W ∗
i ,1

∥∥∥∥ϕi ,1
∥∥+εi ,1

)
≤ 1

p
i ,1

ζ
−p

i ,1

i ,1 + 1

p i ,1
ζ

p i ,1

i ,1 spi+1
i ,1

(∥∥W ∗
i ,1

∥∥∥∥ϕi ,1
∥∥)p i ,1

+ 1

p i ,1
b

p i ,1

i ,1 spi+1
i ,1 + 1

p
i ,1

b
−p

i ,1

i ,1 ε
p

i ,1

i ,1

≤ spi+1
i ,1

(
b

p i ,1

i ,1 +ζp i ,1

i ,1 Ξi ,1Θ
p i ,1

i ,1

)
+κi ,1, (3.27)

where the last inequality used the fact that 1
p

i ,1
≤ 1 and ||ϕi ,1|| ≤ Θi ,1, κi ,1 = ζ

−p
i ,1

i ,1 +

b
−p

i ,1

i ,1 ε
p

i ,1

i ,1 with ζi ,1 > 0 and bi ,1 > 0 being design constants.
In light of (3.23), (3.24), and (3.26), the derivative of Vi ,1 satisfies

V̇i ,1 ≤(di +µi )s
pi−pi ,1+1
i ,1 ψi ,1χ

pi ,1

i ,2 − Ξ̃i ,1
˙̂Ξi ,1

βi ,1

+ spi+1
i ,1

(
b

p i ,1

i ,1 +ζp i ,1

i ,1 Ξi ,1Θ
p i ,1

i ,1

)
+ħi ,1,

(3.28)
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where ħi ,1 = κi ,1 + εi ,1. We are now in the position to handle the term χ
pi ,1

i ,2 in (3.28)
through the proposed Lemma 3.1 as

s
pi−pi ,1+1
i ,1 χ

pi ,1

i ,2 = s
pi−pi ,1+1
i ,1

(
si ,2 +αi ,1

)pi ,1

≤ υi ,1

∣∣∣spi−pi ,1+1
i ,1 s

pi ,1

i ,2

∣∣∣+ s
pi−pi ,1+1
i ,1 `i ,1α

pi ,1

i ,1 . (3.29)

Then, (3.28) can be rewritten as

V̇i ,1 ≤(di +µi )h
j
i ,1υi ,1

∣∣∣spi−pi ,1+1
i ,1 s

pi ,1

i ,2

∣∣∣+ (di +µi )

×
(
h j

i ,1`i ,1s
pi−pi ,1+1
i ,1 α

pi ,1

i ,1

)
− 1

βi ,1
Ξ̃i ,1

˙̂Ξi ,1

+ spi+1
i ,1

(
b

p i ,1

i ,1 +ζp i ,1

i ,1 Ξi ,1Θ
p i ,1

i ,1

)
+ħi ,1. (3.30)

Substituting the virtual controllerαi ,1 (3.17) and the adaptation law ˙̂Ξi ,1 (3.22) into (3.30),
and using the fact that

h
j
i ,1υi ,1

∣∣∣spi−pi ,1+1
i ,1 s

pi ,1

i ,2

∣∣∣≤ τi ,1

( 1

p i ,1
ρ

p i ,1

i ,1 spi+1
i ,1 + 1

p
i ,1

%
−p

i ,1

i ,1 spi+1
i ,2

)
< τi ,1

(
ρ

p i ,1

i ,1 spi+1
i ,1 +%

−p
i ,1

i ,1 spi+1
i ,2

)
, (3.31)

we can rewrite (3.30) as

V̇i ,1 ≤− ci ,1spi+1
i ,1 + (

di +µi
)
τi ,1ρ

p i ,1

i ,1 spi+1
i ,1 +ħi ,1

+ (
di +µi

)
τi ,1%

−p
i ,1

i ,1 spi+1
i ,2 + 1

2
σi ,1Ξ̃i ,1Ξ̂i ,1

≤− (
ci ,1 −θi ,1

)
spi+1

i ,1 +ϑi ,1spi+1
i ,2 +ħi ,1

+ 1

2
σi ,1Ξ

2
i ,1 −

1

2
σi ,1Ξ̃

2
i ,1, (3.32)

where τi ,1 = h
j
i ,1υi ,1, θi ,1 = (di +µi )τi ,1ρ

p i ,1

i ,1 and ϑi ,1 = (di +µi )τi ,1%
−p

i ,1

i ,1 with ρi ,1 > 0 and
%i ,1 > 0 being design constants.

Step i ,2 (i = 1, . . . , N ) : Taking the derivative of si ,2 yields

ṡi ,2 =ψ j
i ,2(χi ,2)χ

pi ,2

i ,3 +H j
i ,2, (3.33)

where H j
i ,2 is a function defined as

H j
i ,2 =φ

j
i ,2(χi ,2)− ∂αi ,1

∂χi ,1

(
φ

j
i ,1(χi ,1)+ψ j

i ,1χ
pi ,1

i ,2

)
−∑

l∈Ni
ai l

∂αi ,1

∂χl ,1

(
φ

j
l ,1(χl ,1)+ψ j

l ,1χ
pl ,1

l ,2

)
− ∂αi ,1

∂yr
ẏr −

∂αi ,1

∂Ξ̂i ,1

˙̂Ξi ,1, (3.34)
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Proceeding similarly to Step i ,1, there exist a continuous function Fi ,2(·) and an RBF NN
approximator F̂i ,2(·) such that, for any j ∈Mi ,

s
pi−pi ,2+1
i ,2 H j

i ,2 ≤
∣∣∣spi−pi ,2+1

i ,2

∣∣∣Fi ,2(Zi ,2)+εi ,2

=
∣∣∣spi−pi ,2+1

i ,2

∣∣∣[F̂i ,2
(

Zi ,2
∣∣W ∗

i ,2

)+εi ,2(Zi ,2)
]
+εi ,2

=
∣∣∣spi−pi ,2+1

i ,2

∣∣∣[W ∗
i ,2ϕi ,2(Zi ,2)+εi ,2(Zi ,2)

]
+εi ,2, (3.35)

where Zi ,2 =
[
χi ,2,χl ,2,l∈Ni

,
∂αi ,1
∂χl ,1

,
∂αi ,1
∂χi ,1

,
∂αi ,1
∂yr

,
∂αi ,1

∂Ξ̂i ,1
,Ξ̂i ,1, yr

]T
, Fi ,2 = max

{∣∣H j
i ,2

∣∣, j ∈ Mi

}
,

εi ,2 > 0 is a constant and
∣∣εi ,2(Zi ,2)

∣∣ ≤ εi ,2 with εi ,2 > 0 being a constant. The optimal
weight W ∗

i ,2 and its estimate Ŵ ∗
i ,2 are defined in a similar way as the previous step. Then,

let us define Ξi ,2 =
∥∥W ∗

i ,2

∥∥p i ,2 .
Consider the common Lyapunov function candidate

Vi ,2 =Vi ,1 +
s

pi−pi ,2+2
i ,2

pi −pi ,2 +2
+ 1

2βi ,2
Ξ̃2

i ,2, (3.36)

where Ξ̃i ,2 =Ξi ,2 − Ξ̂i ,2. Along similar lines as (3.25), we obtain the following inequality:∣∣∣spi−pi ,2+1
i ,2

∣∣∣Fi ,2 ≤spi+1
i ,2

(
b

p i ,2

i ,2 +ζp i ,2

i ,2 Ξi ,2Θ
p i ,2

i ,2

)
+κi ,2, (3.37)

where Θi ,2 ≥ ||ϕi ,2|| > 0 is a constant, κi ,2 = ζ
−p

i ,2

i ,2 +b
−p

i ,2

i ,2 ε
p

i ,2

i ,2 with ζi ,2 > 0 and bi ,2 > 0
being design constants. Hence, the derivative of Vi ,2 along (3.36) and (3.37) is

V̇i ,2 ≤− (
ci ,1 −θi ,1

)
spi+1

i ,1 +ψ j
i ,2(χi ,2)s

pi−pi ,2+1
i ,2 χ

pi ,2

i ,3

− 1

βi ,2
Ξ̃i ,2

˙̂Ξi ,2 + spi+1
i ,2

(
b

p i ,2

i ,2 +ζp i ,2

i ,2 Ξi ,2Θ
p i ,2

i ,2

)
+ σi ,1

2

(
Ξ2

i ,1 − Ξ̃2
i ,1

)
+ϑi ,1spi+1

i ,2 +ħi ,1 +ħi ,2,

(3.38)

where ħi ,2 = κi ,2 +εi ,2. Similarly to (3.29), the use of the proposed Lemma 3.1 gives

s
pi−pi ,2+1
i ,2 χ

pi ,2

i ,3 = s
pi−pi ,2+1
i ,2

(
si ,3 +αi ,2

)pi ,2

≤ υ f ,2

∣∣∣spi−pi ,2+1
i ,2 s

pi ,2

i ,3

∣∣∣+ s
pi−pi ,2+1
i ,2 `i ,2α

pi ,2

i ,2 . (3.39)

Remark 3.3 In order to highlight the distinguishing feature of the proposed design, let
us recall the standard designs in [55, 83, 89, 112, 135, 136]. There, instead of (3.39), χ

pi ,2

i ,3

is tackled by subtracting and adding α
pi ,2

i ,2 , namely,

s
pi−pi ,2+1
i ,2 χ

pi ,2

i ,3 = s
pi−pi ,2+1
i ,2

[(
χ

pi ,2

i ,3 −αpi ,2

i ,2

)
+αpi ,2

i ,2

]
.
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Then, the use of Lemmas 2.2 and 2.3 yields

s
pi−pi ,2+1
i ,2

(
χ

pi ,2

i ,3 −αpi ,2

i ,2

)
≤ pi ,2

∣∣∣spi−pi ,2+1
i ,2

∣∣∣∣∣si ,3
∣∣[2pi ,2−2

(
s

pi ,2−1
i ,3 +αpi ,2−1

i ,2

)
+ (

si ,2ςi ,2
)pi ,2−1

]
≤ spi+1

i ,2 +ςi ,2spi+1
i ,3 , (3.40)

where ςi ,2 =
(
2pi ,2−2pi ,2

)p
i ,2+

(
2pi ,2−2pi ,2ς

pi ,2−1
i ,2

)pi+1
. However, for the methods in [55, 83,

89, 112, 135, 136] to work, ςi ,2 is incorporated into the virtual control lawαi ,3 to eliminate

the extra term ςi ,2spi+1
i ,3

(
e.g. [136, eq.(5)], [89, eq.(12)], [135, eq.(4)], [83, the equation

after (3.11)]
)
, [112, eq. (23)]: this inevitably increases the complexity of the controller

structure. It is also worth remarking that the power of the control gain ςi ,k in (3.40) grows
dramatically (exponentially) as the order of the subsystems grows, leading to possibly
high control gains. This is in contrast with the power of the control gain in (3.39) which
is proportional to the power of the subsystems.

Remark 3.4 The benefits brought by the proposed Lemma 3.1 can be summarized as:

(i) in the first line of (3.39), the virtual control αi ,2 can be extracted from
(
si ,3+αi ,2

)pi ,2−1

directly without involving any inequalities scaling as in
(
[136, eq.(17)], [89, eq.(29)], [135,

eq.(20)], [83, eq.(3.8)]
)
, [112, eq. (20)] implying that the term ςi ,2 will not appear; (ii) the

term υi ,2 in (3.39) is eventually upper bounded by a constant υi ,2, which is independent
of si ,3 and αi ,2 and can be easily handled as shown hereafter.

At this point, similarly to (3.31), we can bound one of the terms in (3.39) as

ψ
j
i ,2υi ,2

∣∣∣spi−pi ,2+1
i ,2

∣∣∣∣∣∣spi ,2

i ,3

∣∣∣= τi ,2

∣∣∣spi−pi ,2+1
i ,2

∣∣∣∣∣∣spi ,2

i ,3

∣∣∣
≤ τi ,2

(
ρ

p i ,2

i ,2 spi+1
i ,2 +%

−p
i ,2

i ,2 spi+1
i ,3

)
, (3.41)

where τi ,2 = h
j
i ,2υi ,2, ρi ,2 > 0 and %i ,2 > 0 are design constants.

Substituting the virtual controller αi ,2 in (3.19) and the adaptation law ˙̂Ξi ,2 in (3.22)
into the Lyapunov derivative (3.38) results in

V̇i ,2 ≤− (
ci ,1 −θi ,1

)
spi+1

i ,1 − (
ci ,2 −ϑi ,1 −θi ,2

)
spi+1

i ,2

+ϑi ,2spi+1
i ,3 +∑2

k=1

(σi ,k

2
Ξ2

i ,k −
σi ,k

2
Ξ̃2

i ,k +ħi ,k

)
,

where θi ,2 = τi ,2ρ
p i ,2

i ,2 and ϑi ,2 = τi ,2%
−p

i ,2

i ,2 .

Step i ,k (i = 1, . . . , N , k = 3, . . . ,ni −1) : It follows from (3.1) and (3.15) that the deriva-
tive of si ,k is

ṡi ,k =ψ j
i ,k (χi ,k )χ

pi ,k

i ,k+1 +H j
i ,k , (3.42)
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where H j
i ,k is a function defined as

H j
i ,k =φ j

i ,k (χi ,k )−∑
l∈Ni

∂αi ,k−1

∂χl ,1

(
φ

j
l ,1(χl ,1)+ψ j

l ,1χ
pl ,1

l ,2

)
−∑k−1

q=1

∂αi ,k−1

∂χi ,q

(
φ

j
i ,q (χi ,q )+ψ j

i ,qχ
pi ,q

i ,q+1

)
−∑k−1

q=1

∂αi ,k−1

∂Ξ̂i ,q

˙̂Ξi ,q − ∂αi ,k−1

∂yr
ẏr. (3.43)

Likewise, there exist a continuous function Fi ,k
( · ) and an RBF NN approximator F̂i ,k

( · )
such that, for any j ∈Mi ,

s
pi−pi ,k+1
i ,k H j

i ,k ≤
∣∣∣spi−pi ,k+1

i ,k

∣∣∣Fi ,k (Zi ,k )+εi ,k

=
∣∣∣spi−pi ,k+1

i ,k

∣∣∣[F̂i ,k
(

Zi ,k
∣∣W ∗

i ,k

)+εi ,k (Zi ,k )
]
+εi ,k

=
∣∣∣spi−pi ,k+1

i ,k

∣∣∣[W ∗
i ,kϕi ,k (Zi ,k )+εi ,k (Zi ,k )

]
+εi ,k , (3.44)

where Zi ,k =
[
χi ,k ,χl ,2,l∈Ni

,
∂αi ,k−1
∂χl ,1

,
∂αi ,k−1
∂χi ,1

, . . . ,
∂αi ,k−1
∂χi ,k−1

,
∂αi ,k−1

∂Ξ̂i ,1
, . . . ,

∂αi ,k−1

∂Ξ̂i ,k−1
,Ξ̂i ,1, . . . ,Ξ̂i ,k−1,

∂αi ,k−1
∂yr

, yr

]T
, Fi ,k = max

{ ∣∣H j
i ,k

∣∣, j ∈Mi

}
, εi ,k > 0 is a constant and

∣∣εi ,k (Zi ,k )
∣∣≤ εi ,k with εi ,k > 0

being a constant. The optimal weight W ∗
i ,k and its estimate Ŵ ∗

i ,k are defined in a similar

way as the previous steps. Let us further define Ξi ,k = ∥∥W ∗
i ,k

∥∥p i ,k .
Consider the common Lyapunov function candidate

Vi ,k =Vi ,k−1 +
s

pi−pi ,k+2
i ,k

pi −pi ,k +2
+ 1

2βi ,k
Ξ̃2

i ,k , (3.45)

where Ξ̃i ,k =Ξi ,k − Ξ̂i ,k . Following similar lines as Step i ,1 and Step i ,2, it is possible to
obtain the derivative of Vi ,k as

V̇i ,k ≤−∑k
m=1

(
ci ,m −θi ,m −ϑi ,m−1

)
spi+1

i ,m +ϑi ,k spi+1
i ,k+1

+∑k
m=1

(σi ,m

2
Ξ2

i ,m − σi ,m

2
Ξ̃2

i ,m +ħi ,m

)
, (3.46)

where ϑi ,0 = 0, θi ,1 = (di +µi )τi ,1ρ
p i ,1

i ,1 , ϑi ,1 = (di +µi )τi ,1%
−p

i ,1

i ,1 , θi ,m = τi ,mρ
p i ,m

i ,m and

ϑi ,m = τi ,m%
−p

i ,m

i ,m (m = 2, . . . ,k), τi ,m = h
j
i ,mυi ,m with υi ,m being the upper bound of υi ,m

(si ,m+1,αi ,m), ħi ,m = κi ,m + εi ,m , κi ,m = ζ
−p

i ,m

i ,m +b
−p

i ,m

i ,m ε
p

i ,m

i ,m , ζi ,m > 0, bi ,m > 0, ci ,m > 0,
ρi ,m > 0 and %i ,m > 0 are design parameters.

Step i ,ni (i = 1, . . . , N ) : For the final step, the derivative of si ,ni along (3.1) and (3.16) is

ṡi ,ni =ψ j
i ,ni

(χi ,ni
)u

pi ,ni
i +H j

i ,ni
, (3.47)
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where H j
i ,ni

is a function defined as

H j
i ,ni

=φ j
i ,ni

(χi ,ni
)−∑

l∈N f

∂αi ,ni−1

∂χl ,1

(
φ

j
l ,1(χl ,1)+ψ j

l ,1χ
pl ,1

l ,2

)
−∑ni−1

q=1

∂αi ,ni−1

∂χi ,q

(
φ

j
i ,q (χi ,q )+ψ j

i ,qχ
pi ,q

i ,q+1

)
−∑ni−1

q=1

∂αi ,ni−1

∂Ξ̂i ,q

˙̂Ξi ,q − ∂αi ,ni−1

∂yr
ẏr . (3.48)

Similarly to steps (3.25), (3.35) and (3.44), there exist a continuous function Fi ,ni

( · ) and
an RBF NN approximator F̂i ,ni

( · ) such that, for any j ∈Mi ,

s
pi−pi ,ni

+1

i ,ni
H j

i ,ni
≤

∣∣∣spi−pi ,ni
+1

i ,ni

∣∣∣Fi ,ni (Zi ,ni )+εi ,ni

=
∣∣∣spi−pi ,ni

+1

i ,ni

∣∣∣[F̂i ,ni

(
Zi ,ni

∣∣W ∗
i ,ni

)+εi ,ni (Zi ,ni )
]
+εi ,ni

=
∣∣∣spi−pi ,ni

+1

i ,ni

∣∣∣[W ∗
i ,ni
ϕi ,ni (Zi ,ni )+εi ,ni (Zi ,ni )

]
+εi ,ni , (3.49)

where Zi ,ni =
[
χi ,ni

,χl ,2,l∈Ni
,
∂αi ,ni −1

∂χl ,1
,
∂αi ,ni −1

∂χi ,1
, . . . ,

∂αi ,ni −1

∂χi ,ni −1
,
∂αi ,ni −1

∂Ξ̂i ,1
, . . . ,

∂αi ,ni −1

∂Ξ̂i ,ni −1
,Ξ̂i ,1, . . . , yr ,

Ξ̂i ,ni−1,
∂αi ,ni −1

∂yr

]T
, Fi ,ni = max

{ ∣∣H j
i ,ni

∣∣, j ∈Mi

}
, εi ,ni > 0 is a constant and

∣∣εi ,ni (Zi ,ni )
∣∣≤

εi ,ni with εi ,ni > 0 being a constant. The optimal weight W ∗
i ,ni

and its estimate Ŵ ∗
i ,ni

are

defined in a similar way as the previous steps. Let us further define Ξi ,ni =
∥∥W ∗

i ,ni

∥∥p i ,ni .
Consider the common Lyapunov function candidate

Vi ,ni =Vi ,ni−1 +
s

pi−pi ,ni
+2

i ,ni

pi −pi ,ni +2
+ 1

2βi ,ni

Ξ̃2
i ,ni

, (3.50)

where Ξ̃i ,ni =Ξi ,ni − Ξ̂i ,ni .

Choosing the common actual controller ui , u j
i for the i th follower as (3.21), one

immediately gets from (3.46) that

V̇i ,ni ≤−∑ni
k=1

(
ci ,k −θi ,k −ϑi ,k−1

)
γ

pi ,k−1

pi +1

i s
pi−pi ,k+2
i ,k

+∑ni
k=1

(1

2
σi ,kΞ

2
i ,k −

1

2
σi ,k Ξ̃

2
i ,k +ħi ,k

)
+∑ni

k=1

(
γi

(
ci ,k −θi ,k −ϑi ,k−1

))
, (3.51)

where above inequality holds due to ϑi ,0 = 0, si ,ni+1 = 0 and the fact that

γ
(pi ,ni

−1)/(pi+1)

i s
pi−pi ,ni

+2

i ,ni
≤ γi + spi+1

i ,ni
, (3.52)

with γi > 0 a constant, according to Lemma 2.2.
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3.4. Stability Analysis
To analyze the stability of the entire closed-loop system, consider the combined com-
mon Lyapunov function

V =∑N
i=1 Vi ,ni . (3.53)

The use of the common Lyapunov function (3.50) is possible because in (3.35), (3.44),
and (3.49), the maximum value of the switching weights is estimated by the RBF NN
approximators. A multiple Lyapunov function approach is in principle possible, but in
this case the stability analysis requires to impose conditions on the switching signal [54].
With the common Lyapunov function (3.50), the following stability result holds for arbi-
trary switching σi (·).

Theorem 3.1 Under Assumptions 1.1 and 3.1, consider the closed-loop system com-
posed by the power-chained form switched nonlinear multi-agent system (3.1), the dis-
tributed adaptive consensus controllers (3.17)-(3.21) and the parameter adaptation laws
(3.22). For any $ > 0, and the initial conditions χi ,k (0) and Ξ̂i ,k (0) for (i = 1, . . . , N , k =
1, . . . ,ni ) satisfying V

(
χi ,k (0),Ξ̂i ,k (0)

) < $, there exist positive design parameters ci ,k ,
βi ,k , σi ,k , ζi ,k , bi ,k , γi , ρi ,k , %i ,k , andΘi ,k , i = 1, . . . , N , k = 1, . . . ,ni , such that

• The compact set Ω0 =
{(
χi ,k ,Ξ̂i ,k

)|V (χi ,k ,Ξ̂i ,k ) ≤$, i = 1, . . . , N ,k = 1, . . . ,ni

}
is an

invariant set, namely, V (χi ,k ,Ξ̂i ,k ) ≤$ holds for ∀t ≥ 0, and hence all the closed-
loop signals are bounded all the time;

• The consensus tracking error δ converges to the following compact set:

Ω3 =

 lim
t→+∞‖δ‖2 ≤

√√√√√√∑N
i=1

[
χ

ν
ψi

] 2
ψ

i

σ2
min

(
L +B

) ,Ψ

 , (3.54)

where ψi = max
{

pi −pi ,1 +2, i ∈ Mi
}
, ψ

i
= min

{
pi −pi ,1 +2, i ∈ Mi

}
, ν and χ are given

in the proof.

Proof. It follows from (3.51) that

V̇i ,ni ≤−νi Vi ,ni +Γi ,

where νi = min
{(

pi − pi ,k + 2
)
ζi ,k ,βi ,kσi ,k : 1 ≤ k ≤ ni

}
with ζi ,k = γ

(pi ,k−1)/(pi+1)
i

(
ci ,k −

θi ,k−ϑi ,k−1
)

andΓi =∑ni
k=1

[
1
2σi ,kΞ

2
i ,k+ħi ,k+γi (ci ,k−θi ,k−ϑi ,k−1)

]
. Therefore, the deriva-

tive of V can be obtained as
V̇ ≤−νV +χ, (3.55)

where ν = min1≤i≤N {νi } and χ = ∑N
i=1Γi . It can be concluded from (3.55) that χ

ν
can

be made arbitrarily small by increasing ci ,k , βi ,k , σi ,k , ρi ,k , and %i ,k , and meanwhile
decreasing ζi ,k , bi ,k , and γi for i = 1, . . . , N , k = 1, . . . ,ni . Namely, it is possible to make
χ

ν
≤$ by selecting the design parameters appropriately. Then, in light of (3.55), we have

that V̇ ≤ 0 holds true for V =$: consequently, the compact setΩ0 is an invariant set and
all closed-loop signals stay inside of the compact setΩ0 all the time since V (0) <$.
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A bound on the tracking error can be obtained as follows: integrating V̇ (·) on [0, t ]
gives ∫ τ

0
d
[

exp(ντ)V (τ)
]≤ ∫ τ

0
χexp(ντ) dτ (3.56)

which suggests that

V (t ) ≤
(
V (0)− χ

ν

)
exp(−νt )+ χ

ν
≤V (0)+ χ

ν
. (3.57)

Thus, invoking (3.26) yields that limt→+∞
s

pi −pi ,1+2

i ,1
pi−pi ,1+2 ≤ χ

ν
, which further leads to

limt→+∞‖s1‖ ≤

√√√√∑N
i=1

[(χ
ν
ψi

)2
] 1
ψ

i
. (3.58)

Then, from the inequalities below (3.15), one gets that limt→+∞‖δ‖ ≤ Γ

σmin(L +B)
. This

concludes the proof. ■
In case the knowledge of σmin

(
L +B

)
is not available, it was proposed to replace

this terms in (3.54) with the more conservative bound N
N 2+N−1

with N = ( N−1
N

) N−1
2 [34].

A design procedure for the proposed algorithm can be sketched as follows:

Step 1 : Specify a constant $ > 0 and choose appropriate initial conditions χi ,k (0) and
Ξ̂i ,k (0) ≥ 0 for i = 1, . . . , N , k = 1, . . . ,ni to satisfy V (0) <$;

Step 2 : Choose RBF NN approximators Ŵi ,kϕi ,k (·) by appropriately selecting the num-
ber of network nodes, where i = 1, . . . , N , k = 1, . . . ,ni . Accordingly, calculateΘi ,k .

Step 3 : Assign specific values to the design parameters ci ,k > 0, σi ,k > 0, βi ,k > 0, ζi ,k >
0, γi > 0, bi ,k > 0, ρi ,k > 0, and %i ,k > 0.

Step 4 : Determine the intermediate variables according to the following order: si ,1 →
Ξ̂i ,1 → αi ,1 → si ,2 → Ξ̂i ,2 → αi ,2 → ··· si ,k → Ξ̂i ,k → αi ,k → ··· → si ,ni → Ξ̂i ,ni → ui

for i = 1, . . . , N , k = 3, . . . ,ni −1;

Remark 3.5 In line with [89], [135], and [136], Theorem 3.1 provides a practical consen-
sus tracking result (i.e. convergence to a residual set). This is expected since [83] has
proven that even for a single power-chained form system, asymptotic tracking is in gen-
eral not possible (cf. Examples 2.1 and 2.2 of [83]).

Remark 3.6 The size ofΩ3 can be made small by increasing ci ,k , βi ,k ,σi ,k , ρi ,k , and %i ,k ,
and meanwhile decreasing ζi ,k , bi ,k , and γi for i = 1, . . . , N , k = 1, . . . ,ni . Then, the design
parameters ci ,k , σi ,k , βi ,k , ζi ,k , γi , bi ,k , and Θi ,k can be adjusted so as to satisfy χ

ν
≤ $,

namely, V (t ) ≤$ holds for ∀t ≥ 0 due to the fact that V (0) <$ and V̇ ≤ 0 when V =$.

Remark 3.7 Even though the exact bound of ||δ||2 cannot be obtained due to the un-
known constant Ξi ,k coming from the optimal weight vector of approximator, one can
follow similar ideas as [68, Sect. 2.2] and [73, Sect. IV] and give an estimate for the upper
bound of ||δ||2 by assumingΞi ,k to be bounded by a known constant. A similar approach
is adopted in the simulations of Sect. 3.5.
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Figure 3.2: The communication graph between leader 0 and follower agents 1, 2 and 3. Each agent can switch
among three dynamics, represented as three squares around each agent.

Remark 3.8 Note that the continuous function Fi ,1 in (3.25) also embeds the effect of
graph connectivity, since Fi ,1 depends on the connectivity matrix ai , j . At the same time,
because the RBF NN activation functions depend on the neighboring states, one can rely
on standard results [86] to get that any continuous function can be approximated by an
RBF NN with desired accuracy over a compact set as long as we select enough neural
network nodes. Similar idea is used in [127, eq. (18)], [70, eq. (12)], and [89, eq. (20)] to
approximate unknown system nonlinearities over compact sets.

Remark 3.9 Because the universal approximation ability of RBF NNs is valid only for a
compact set, Theorem 3.1 has used invariant set theory to prove that Ω0 is an invari-
ant set where all closed-loop signals are retained all the time. The effectiveness of the
adopted approximators has also been validated in the simulation (cf. Sect. 3.5).

Remark 3.10 Despite the dimension of input variable Zi ,k in activation function ϕi ,k (·)
inevitably grows as subsystem order k grows, there are two solutions to handle this issue:
one is to use the fact ||ϕi ,k (Zi ,k )|| ≤ ||ϕi ,k (Z̄i ,k )|| to reduce the dimension of Zi ,k during
the control design and stability analysis as done in [70, Lemma 1 and eq. (13)] and [105,
Lemma 4 and eq. (15)], where dim(Z̄i ,k )<dim(Zi ,k ). Another one is to bound ||ϕi ,k (Zi ,k )||
as ||ϕi ,k (Zi ,k )|| ≤ Θi ,k as done in [89, Lemma 3], [135, Lemma 2] and in our paper (cf.
(3.27)), whereΘi ,k > 0 is an appropriately chosen constant.

3.5. Simulation Examples
3.5.1. Numerical Example
To validate the effectiveness of the proposed scheme, one leader (labeled by 0) with three
follower agents are considered with the directed graph in Fig. 3.2. The odd powers are
taken as p1,1 = 3, p1,2 = 5, p2,1 = 3, p2,2 = 7, p3,1 = 5, p3,2 = 9, ni = 2, i = 1,2,3. For each
follower, the switching signal is σi (·): [0,∞) → Mi = {1,2,3}, which is shown in Fig. 3.3.
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Note that each follower has its own switching signal, and thus can switch asynchronously
with respect to the other followers. The unknown switched nonlinearities φσi (t )

i ,k (·) and

ψ
σi (t )
i ,k (·) are taken to be heterogeneous:

For follower agent 1, the three switching dynamics are:

φ1
1,1 = 1.3−cos(χ1,1), ψ1

1,1 = | tanh(χ3
1,1)|+1.6,

φ2
1,1 = 0.6+exp(−χ2

1,1), ψ2
1,1 = cos(χ3

1,1)+2,

φ3
1,1 = 0.8+0.2cos(χ3

1,1), ψ3
1,1 = 2cos(χ2

1,1),

φ1
1,2 =χ1,2χ1,1 +0.75, ψ1

1,2 = 2(|cos(χ2
1,2)|+1.3),

φ2
1,2 = 0.7+0.2χ2

1,2, ψ2
1,2 = 3sin(χ2

1,2)+4,

φ3
1,2 = cos(χ2

1,2)+0.3, ψ3
1,2 = 5|sin(0.1χ1,2)|+1.5.

For follower agent 2, the three switching dynamics are:

φ1
2,1 = 1.1χ2,1 +χ2

2,1, ψ1
2,1 = 3cos(χ2

2,1)+5,

φ2
2,1 =χ2

2,1 +0.5, ψ2
2,1 = sin(χ3

2,1)+3,

φ3
2,1 =χ3

2,1 +1.25, ψ3
2,1 = cos(χ2

2,1 +χ3
2,1)+3,

φ1
2,2 = 0.5χ2

2,2 +0.75, ψ1
2,2 = 3+2cos(χ3

2,1χ2,2),

φ2
2,2 = 1.3χ3

2,1 +0.8χ2,2, ψ2
2,2 = 2cos(χ2

2,1)+4,

φ3
2,2 = cos(χ2,1)χ2,2 +0.25, ψ3

2,2 = 3cos(χ3
2,2)+5.

For follower agent 3, the three switching dynamics are:

φ1
3,1 = 1.5sin(χ3,1)+χ3

3,1, ψ1
3,1 = |sin(χ3,1)|+6,

φ2
3,1 = 0.3χ2

3,1 + sin(χ3,1), ψ2
3,1 = |sin(χ3

3,1)|+3,

φ3
3,1 =χ3,1 +0.2cos(χ3,1), ψ3

3,1 = cos(χ2
3,1 +χ3

3,1)+4.5,

φ1
3,2 = 0.5χ2

3,1 +0.5χ3,2, ψ1
3,2 = cos(χ2

3,2)+2,

φ2
3,2 =χ3,2 +0.8sin(χ3,1), ψ2

3,2 = 4cos(χ3,1)+5.5,

φ3
3,2 = cos(χ2

3,2)+0.7, ψ3
3,2 = cos(χ2

3,2)+3.5.

The leader output is yr (t ) = 2sin(t )+2sin(0.5t ). For comparison purposes, three schemes
are considered, the method proposed here and the two state-of-the-art methods of [89]
and [135]. In our simulation, the centers and widths of RBF NNs are chosen on a regular
lattice in the respective compact sets. In particular, the neural networks used to approx-
imate F1,1(·), F2,1(·), and F3,1(·) respectively contain 27 (Case I) or 3 (Case II) nodes with
centers evenly spaced in the interval [−2.5,2.5]×[−2.5,2.5]×[−2.5,2.5] and widths equal
to two. The neural networks used to approximate F1,2(·), F2,2(·), and F3,2(·) respectively
contain 64 (Case I) or 6 (Case II) nodes with centers evenly spaced in the interval [−4,4]×
[−4,4]×[−4,4]×[−4,4]×[−4,4]×[−4,4]×[−4,4]×[−4,4]×[−4,4] and widths equal to two.
The initial conditions for the follower agents are taken as: χ1,1(0) = 0.5, χ2,1(0) = 0.55,
χ3,1(0) = 0.75, χ1,2(0) = 0.25, χ2,2(0) = 1.5, χ3,2(0) = −0.75, Ξ̂1,1(0) = Ξ̂1,2(0) = 5, Ξ̂2,1(0) =
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Figure 3.3: Switching signals σi (·) for the three followers. Note that the followers can switch asynchronously
with each other.

Ξ̂2,2(0) = 7 and Ξ̂3,1(0) = Ξ̂3,2(0) = 10. The design parameters are chosen to be: c1,1 = 1.5,
c2,1 = 2.5, c3,1 = 3, c1,2 = 1, c2,2 = 2, c3,2 = 1.5, β1,2 = β2,2 = β3,2 = 1, β1,1 = 7.5, β2,1 = 5,
β3,1 = 15, σ1,1 = 0.25, σ2,1 = 0.75, σ3,1 = 0.5, σ1,2 = σ2,2 = σ3,2 = 1, ζ1,1 = ζ2,1 = ζ3,1 =
0.5, ζ1,2 = ζ2,2 = ζ3,2 = 0.75, b1,1 = b2,1 = b3,1 = 0.5, b1,2 = b2,2 = b3,2 = 1, Θ1,1 = Θ2,1 =
Θ3,1 = 5, and Θ1,2 =Θ2,2 =Θ3,2 = 5

p
5. The simulation results in Figs. 3.4-3.5 and in Ta-

bles 3.1 and 3.2 are carried out based on Case I. Tables 3.1 and 3.2 report the integral time

absolute error ITAE=
[∫ T

0 t |si ,1(t )|d t
]

, root mean square error RMSE=
[

1
T

∫ T
0 s2

i ,1(t )d t
] 1

2
,

mean absolute error MAE=
[ 1

T |si ,1(t )|d t
]
, and mean absolute control actions MACA=[

1
T

∫ T
0 |ui |d t

]
for i = 1,2,3, respectively. Fig. 3.3 reveals that the switching signals σi (·),

i = 1,2,3, for three followers are asynchronous. It can be seen from Fig. 3.4 and Table 3.1
that the proposed method achieves smaller tracking errors s1,1, s2,1, and s3,1 than that of
[89] and [135]. From Fig. 3.3 and Table 3.2, one can conclude that the proposed method
exhibits smaller control actions than that of [89] and [135]. Figs. 3.6-3.8 show that the
RBF NN approximators can achieve satisfactory approximation performances as long as
we choose a sufficiently large number of network nodes.

3.5.2. Practical Example

To further validate the developed method, a multi-agent version of the underactuated
weakly coupled mechanical benchmark in [83] is considered, also shown in Fig. 1.3. The
system includes a mass mσi

i ,1 on a horizontal smooth surface and an inverted pendulum

mσi
i ,2 supported by a massless rod. The mass is connected to the wall surface by a linear

spring and to the inverted pendulum by a nonlinear spring with a cubic force deforma-
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Figure 3.4: Tracking errors s1,1, s2,1, and s3,1 under three schemes.

Figure 3.5: Control inputs u1, u2, and u3 under three schemes. The proposed scheme avoids high control
gains, as the result of the reduced-complexity design.
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Figure 3.6: The true (unknown) F1,1 and F1,2 and their NN approximations F̂1,1 and F̂1,2.

Figure 3.7: The true (unknown) F2,1 and F2,2 and their NN approximations F̂2,1 and F̂2,2.

Figure 3.8: The true (unknown) F3,1 and F3,2 and their NN approximations F̂3,1 and F̂3,2.
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Table 3.1: Performance indices for tracking errors s1,1, s2,1, and s3,1 under three schemes.

Tracking Error Index Proposed Method Method of [89] Method of [135]

s1,1

ITAE 3.268 12.693 15.226

RMSE 0.213 0.876 0.926

MAE 0.031 0.127 0.139

s2,1

ITAE 3.747 13.214 14.944

RMSE 0.237 0.914 0.954

MAE 0.024 0.096 0.126

s3,1

ITAE 3.994 13.693 15.696

RMSE 0.264 0.887 0.969

MAE 0.0289 0.133 0.152

Table 3.2: Performance indices for control inputs u1, u2, and u3 under three schemes.

Control Input Index Proposed Method Method of [89] Method of [135]

u1 MACA 2.113 11.021 6.564

u2 MACA 2.457 8.689 8.012

u3 MACA 2.754 7.254 8.367

tion relation. The dynamics of the i th agent can be represented by
θ̈i = g sin(θi )

l
+

kσi (t )
i ,2

mσi (t )
i ,2 l

(
xi − l sin(θi )

)3 cos(θi ),

ẍi =−
kσi (t )

i ,1

mσi (t )
i ,1

xi −
kσi (t )

i ,2

mσi (t )
i ,1

(
xi − l sin(θi )

)3 + ui

mσi (t )
i ,1

,

(3.59)

for i = 1, . . . ,10, and σi (·) : [0,+∞) → Mi= {1,2, . . . ,10}, where θi ∈ (−π
2 , π2 ), χi is the dis-

placement of mσi (t )
i ,1 , ui is the control force acting on mσi (t )

i ,1 . Moreover, kσi (t )
i ,2 and kσi (t )

i ,1

are spring coefficients, and l is the pendulum length. The specific values of mσi (t )
i ,1 ,

mσi (t )
i ,2 , kσi (t )

i ,2 , and kσi (t )
i ,1 , i = 1, . . . ,10, are given in the Table 3.3, and the switching sig-

nal is given in Fig. 3.9. The following change of coordinates:

χi ,1 = θi , χi ,2 = θ̇i , χi ,3 = xi , χi ,4 = ẋi , (3.60)

transforms (3.60) into χ̇i ,1 =χi ,2, χ̇i ,2 =φσi (t )
i ,2 (χ̄i ,2)+ψσi (t )

i ,2 (χ̄i ,2)χ3
i ,3,

χ̇i ,3 =χi ,4, χ̇i ,4 =φσi (t )
i ,4 (χ̄i ,4)+ψσi (t )

i ,4 (χ̄i ,4)ui ,
(3.61)
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where φσi (t )
i ,2 (χ̄i ,2) = g

l sin(χi ,1)+ k
σi (t )
i ,2

m
σi (t )
i ,2 l

cos(χi ,1)
[
3χi ,3l 2×sin2(χi ,1)−3χ2

i ,3l sin(χi ,1)− l 3×

sin3(χi ,1)
]
,φi ,4(χ̄i ,4) =− k

σi (t )
i ,1

m
σi (t )
i ,1

χi ,3−
k
σi (t )
i ,2

m
σi (t )
i ,1

[
χ3

i ,3−l 3 sin3(χi ,1)−3χ2
i ,3l sin(χi ,1)+3χi ,3l 2 sin2(χi ,1)

]
,

ψ
σi (t )
i ,2 (χ̄i ,2) = k

σi (t )
i ,2

m
σi (t )
i ,2 l

cos(χi ,1), and ψσi (t )
i ,4 (χ̄i ,4) = 1

m
σi (t )
i ,1

.

The leader signal is the same as previous numerical example. Due to space limits, we
do not repeat all the state-of-the-art comparisons as in the previous example. The neural
networks used to approximate Fi ,1(·) and Fi ,2(·) for i = 1, . . . ,10 contain 27 nodes with
centers evenly spaced in the interval [−2.5,2.5]×[−2.5,2.5]×[−2.5,2.5] and widths equal
to two. The neural networks used to approximate Fi ,3(·) and Fi ,4(·) for i = 1, . . . ,10 contain
81 nodes with centers evenly spaced in the interval [−4,4]× [−4,4]× [−4,4]× [−4,4]×
[−4,4]× [−4,4]× [−4,4]× [−4,4]× [−4,4]× [−4,4] and widths equal to two. The initial
conditions for the follower agents are taken as: χi ,1(0) = 0 for i = 1, . . . ,7, χi ,1(0) = 0.15
for i = 8,9,10, χi ,2(0) = 0.25 for i = 1, . . . ,5, χi ,2(0) = −0.5 for i = 6, . . . ,10, χi ,3(0) = 0 for
i = 1, . . . ,10, χi ,4(0) =−0.75 for i = 1, . . . ,6, χi ,4(0) = 0.25 for i = 7, . . . ,10, Ξ̂i ,1(0) = Ξ̂i ,2(0) =
5 for i = 1, . . . ,5, and Ξ̂i ,3(0) = Ξ̂i ,4(0) = 7.5 for i = 6, . . . ,10. The design parameters are
chosen to be: ci ,1 = 1.5 for i = 1, . . . ,4, ci ,1 = 2.5 for i = 5, . . . ,10, ci ,2 = ci ,3 = 2 for i =
1, . . . ,10, ci ,4 = 3.5 for i = 1, . . . ,10, βi ,1 = 5.5 for i = 1, . . . ,10, βi ,2 = 7 for i = 1, . . . ,10, βi ,3 =
βi ,4 = 3.5 for i = 1, . . . ,10,σi ,1 =σi ,2 = 0.5 for i = 1, . . . ,10,σi ,3 =σi ,4 = 0.75 for i = 1, . . . ,10,
ζi ,1 = ζi ,3 = 0.25 for i = 1, . . . ,10, ζi ,2 = ζi ,4 = 0.5 for i = 1, . . . ,10, bi ,1 = bi ,2 = bi ,3 = bi ,4 = 1
for i = 1, . . . ,10, Θi ,1 = 5, and Θi ,2 =Θi ,3 =Θi ,4 = 7

p
5 for i = 1, . . . ,10. Fig. 3.10-(a) shows

that the 10 followers track the leader signal with bounded tracking errors. Fig. 3.10-(b)
depicts the evolution of control inputs. Fig. 3.10-(c) draws the curves of ||δ||2 as well as
its theoretical bound which is calculated assuming Ξi ,k to be bounded as Ξi ,k ≤ 7

p
5 for

i = 1, . . . ,10 and k = 1, . . . ,4.

3.6. Conclusions
This Chapter proposed a result about distributed consensus tracking for power-chained
form nonlinear multi-agent systems with switched dynamics. The distinguishing feature
of the proposed design is a new separation-based lemma that can simplify the control
design in a twofold sense: the complexity of the virtual and actual control laws is signif-
icantly reduced; the power of the control gains does not increase exponentially with the
order of the subsystems. An interesting point worth investigating in future research is to
further simplify the design by avoiding the use of any RBF NN approximators.
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Figure 3.9: Asynchronous switching signal σi (·)
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4
CONSENSUS IN MULTI-AGENT

SYSTEMS IN THE POWER-CHAINED

FORM WITH MIXED UNKNOWN

CONTROL DIRECTIONS

This chapter investigates the consensus tracking problem for uncertain multi-agent sys-
tems in the power-chained form systems with partially unknown control directions. The
main challenge of solving such problem lies in the fact that the presence of mixed un-
known control directions (some being known, some being unknown) requires a piece-
wise Nussbaum function that exploits the a priori knowledge of the known control di-
rections. The introduction is given in Section 4.1. The problem formulation and prelim-
inaries are provided in Section 4.2. Sections 4.3 and 4.4 present the proposed distributed
consensus design and stability analysis, respectively. The simulation examples are in
Section 4.5 and Section 4.6 draws the conclusion.

4.1. Introduction
In Chapter 3, we have proposed a reduced-complexity methodology for uncertain multi-
agent systems in the power-chained form. However, the control design in Chapter 3 re-
lies on the availability of control directions. In other words, the control directions are
assumed to be known a priori for the purpose of facilitating control design. In this chap-
ter, power-chained form dynamics is the object of the present work, which we study via
the Nussbaum function method in the presence of multiple unknown control directions.

The Nussbaum function method to handle unknown control directions [14, 22, 23,
37, 75, 106, 122, 125] has not been explored in the distributed adding-one-power-integrator
scenario, i.e. for coordination of multi-agent systems with power-chained form dynam-
ics. The Nussbaum function method is challenging even for multi-agent systems con-
trolled with the distributed adding-one-linear-integrator backstepping procedure [14,

61



4

62
4. CONSENSUS IN MULTI-AGENT SYSTEMS IN THE POWER-CHAINED FORM WITH MIXED

UNKNOWN CONTROL DIRECTIONS

17]: researchers have studied unknown but identical control directions [17], mixed un-
known control directions (some directions being known, some being unknown) via a
piecewise Nussbaum function that exploits the a priori knowledge of the known con-
trol directions [14], or multiple nonidentical unknown control directions with switching
topologies [108, 109] and communication delays [81]. The piecewise Nussbaum func-
tion technique leaves the open problem: can the technique handle more than one con-
trol direction for each agent? In this chapter, we propose a hybrid Nussbaum technique
that can handle uncertain agents with power-chained form dynamics, with non-smooth
behaviors (switching and quantization), and with multiple unknown control directions
for each agent. The main contribution of this chapter is to give positive answer to this
question. In particular:

Ï The Nussbaum function techniques in [14, 22, 23, 75, 106, 122, 125] are designed
to handle one unknown control direction for each agent, whereas the proposed
technique uses hybrid Nussbaum gains that can handle multiple mixed unknown
directions for each agent.

Ï The proposed technique can handle non-smooth behavior, i.e., switching dynam-
ics and input quantization. The relevance of considering input quantization stems
from works such as [47, 139], showing that appropriate designs must be proposed
in the presence of input nonlinearities. Our proposed design relies on a variable-
separable lemma to extract quantized control signal in a linear-like manner.

4.2. Problem Formulation and Preliminaries

Let us consider a multi-agent system composed of N (N ≥ 2) follower agents, under a
directed communication topology described by G = (V ,E ). Let the dynamics of the i -th
follower agent, i = 1, . . . , N , be represented by the power-chained form dynamics


χ̇i ,m =φσi (t )

i ,m (χi ,m)+ψσi (t )
i ,m (χi ,m)χ

pi ,m

i ,m+1,

χ̇i ,ni =φσi (t )
i ,ni

(χi )+ψσi (t )
i ,ni

(χi )(Qi (ui ))pi ,ni ,

yi =χi ,1,

(4.1)

where 1 ≤ m ≤ ni−1,χi ,m = [χi ,1,χi ,2, . . . ,χi ,m]T ∈Rm ,χi = [χi ,1,χi ,2, . . . ,χi ,ni ]T ∈Rni and
yi ∈R are the states and the output of the i -th follower agent, respectively. For i = 1, . . . , N
and m = 1, . . . ,ni ,φσi (t )

i ,m (·) andψσi (t )
i ,m (·) are unknown continuous nonlinearities, and pi ,m

are positive odd integers. In (4.1), σi (·) : [0,+∞) →Mi= {1,2, . . . ,mi } is a switching signal
which selects at each time t the nonlinearities for agent i among mi possibilities. The
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control signal to be designed is ui , with the quantized input Qi (ui ) being defined as

Qi (ui )=



ui ,hsgn(ui ), if

{ ui ,h
1+ħi

<|ui |≤ui ,h , u̇i <0,or,

ui ,h <|ui |≤ ui ,h
1−ħi

, u̇i >0,

ui ,hsgn(ui ), if

{
ui ,h <|ui |≤ ui ,h

1−ħi
, u̇i <0,or,

ui ,h
1−ħi

<|ui |≤ ui ,h (1+ħi )
1−ħi

, u̇i >0,

0, if

0≤|ui |≤ umin
i

1+ħi
, u̇i <0,or,

umin
i

1+ħi
<|ui |≤umin

i , u̇i >0,

Qi (ui (t−)), otherwise

(4.2)

with ui ,h = ui ,h(1+ħi ), ui ,h = ρ1−h
i umin

i (h = 1,2, . . .) and ħi =
[
(1−ρi )

/
(1+ρi )

]
with umin

i
> 0 and 0 < ρi < 1, and umin

i andρi represent the dead-zone range of Qi (ui ) and the mea-
sure of quantization density, respectively. Due to quantization, the continuous signal ui

is mapped into a discrete set Fi =
{
0,±ui ,h ,±ui ,h(1+ħi ),h = 1,2, . . .

}
.

Remark 4.1 The quantizer parameter ρi , f = 1, . . . , N , is a measure of quantization den-
sity. The smaller ρi , the coarser the quantizer, i.e., Qi (ui ) will have less and less quanti-
zation levels [45, 47, 139].

Lemma 4.1 [45] The relation between the continuous input ui and the quantized input
Qi (ui ) can be described by

Qi (ui ) = κi (ui )ui +∆i (ui ), (4.3)

where κi (ui ) and ∆i (ui ) satisfy 1−ħi ≤ κi (ui ) ≤ 1+ħi , and |∆i (ui )| ≤ umin
i .

Assumption 4.1 [135] For each follower agent i , there exist known constants ψ
i ,m

> 0

and ψi ,m > 0,(1 ≤ m ≤ ni ) such that

ψ
i ,m

≤ ∣∣ψi ,m(·)∣∣≤ψi ,m , k ∈Mi .

Furthermore, some control directions of ψi ,m can be unknown.

Remark 4.2 The boundsψ
i ,m

andψi ,m ensure controllability of each agent, but instead

of assuming known sign of ψk
i ,m as in [112, 135, 136], Assumption 4.1 allows some signs

to be unknown.

Problem 4.1 The goal is consensus tracking, i.e. to design ui such that the output of
each agent can track the leader agent’s signal while respecting the communication topol-
ogy defined by the graph G . Practical consensus tracking will be sought, due to the fact
that asymptotic tracking cannot be realized in general for power-chained form systems
[55, 56, 83].

It is worth mentioning that the problem of unknown control directions for the dy-
namics (4.1) is open and requires a new design that is not available in literature.
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4.2.1. Newly Proposed Nussbaum Functions-based Technical Tool
In this section, we give the main result concerning hybrid Nussbaum-based control. To
counteract the lack of a priori knowledge of control directions, we define the Nussbaum
function as [14]:

NR (ν) =
{

N 1
R (ν), if the control direction is unknown,

N 2
R (ν), if the control direction is known,

(4.4)

where N 1
R (ν) =−µexp

(
ν2

2

)(
ν2 +2

)
sin(ν), and N 2

R (ν) = −exp
(
ν2

2

)
ν with ν being a real

variable and µ being a positive constant.

Remark 4.3 To explain the meaning of (4.4), note that in the mixed situation in which
some control directions are known and some are unknown, it is not appropriate to adopt
the standard Nussbaum function for every agent. This is because, differently from the
hybrid Nussbaum function in (4.4), a standard Nussbaum function typically does not
guarantee a boundedness of the summation of multiple Nussbaum integral terms [37,
125].

The following result is proposed to establish boundedness of a Lyapunov function
when a hybrid Nussbaum function as in (4.4) is adopted.

Lemma 4.2 Let Vi (·) be a smooth positive definite function with bounded initial value
Vi (0). Let ξi ,n(t ) for n = 1,2, . . . ,ni , be smooth and increasing functions with their initial
values ξi ,n(0) bounded. Furthermore, let ψi ,n(·) be a time-varying gain, nonzero in the
closed interval

[
ψ

i ,n
,ψi ,n

]
for i = 1,2, . . . , N . If the following inequality holds:

Vi (t ) ≤
∑ni

n=1

∫ t

0
ψi ,n (ν)θi ,nNR

(
ξi ,n (ν)

)
ξ̇i ,n (ν)

+∑ni
n=1

∫ t

0
ιi ξ̇i ,n (ν)dν+$i , (4.5)

where ιi and $i are constants, θi ,n is a positive and bounded function, and NR (·) as in
(4.4), then ξi ,n(·), Vi (·), and

∑ni
n=1

∫ t
0

(
ψi ,n (ν)θi ,nNR

(
ξi ,n (ν)

)+ιi ) ξ̇i ,n (ν)dν are bounded
on the time interval [0, tν) for i = 1,2, . . . , N .

Proof. The main idea is to prove the boundedness of ξn on [0, tν) through seeking a
contradiction.

For simplicity, the index i is removed in the following analysis. Without loss of gen-
erality, let us assume ξ1(·), . . ., ξλ(·) are unbounded and ξλ+1(·), . . ., ξni (·) are bounded for
1 ≤λ≤ ni . We first rewrite (4.5) as

V
(
ξi ,ξ j

)=∑l
n=1

{∫ ξ j

ξi

N 1
R (ξn(ν))θnψn(ν)dξn(ν)

}
+∑ni

n=1

∫ ξ j

ξi

ιndξn(ν)

+∑ni
n=l+1

{∫ ξ j

ξi

θnN 2
R (ξn(ν))ψn(ν)dξn(ν)

}
, (4.6)

where we have used the following notation for compactness: V (ξi ,ξ j ) =V (ξ(ti ),ξ(t j )) =
V (ti , t j ). At this point, two situations should be taken into account: the first one is when
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ξn(·) has no upper bound on [0, tν); the second one is when ξn(·) has no lower bound on
[0, tν).

1) Situation 1: ξn(·) has no upper bound on [0, tν) for 1 ≤ n ≤ λ. Let us first consider
the case ψn(t ) > 0. Following the method in [14], we construct three increasing time
sequences {t%}, {t ′%}, and {t ′′% } defined by t% = min

1≤n≤λ
{t : ξn(t ) = (2%+ 1)π}, t ′% = min

1≤n≤λ
{t :

ξn(t ) = (2%−1)π} and t ′′% = min
1≤n≤λ

{t : ξn(t ) = 2%π}. It follows from above definitions that

there exists a setΩ% = {ω%} ⊂Rω% satisfying ξn(t%) = (2n+1)π for ω% ∈ [1,λ]. To facilitate

later analysis, we define sets Ω′
% ⊂ Rω′

% and Ω′′
% ⊂ Rω%−ω′

% , where ω′
% ∈ [0,ω%]. Further-

more, the bound ξn(t%) ≤ (2%+ 1)π holds if n is not from Ω%. The following steps are
standard in Nussbaum-based control literature [14] and we shall provide only the main
steps for compactness. Using above definitions, (4.6) can be expressed by

V
(
ξn(t%)

)≤∑λ

n=1,n∉Ω%

{∫ ξn (t%)

0
ψn(ν)θnNR (ξn(ν))dξn(ν)

}
+∑λ

n=0 ξn(t%)ιn

+∑ω′
%

k=0,k∈Ω%′

{∫ ξk (t%)

0
ψk (ν)θkN 1

R (ξk (ν))dξk (ν)

}
+Σ

+∑ω′′
%

k=0,k∈Ω′′
%

∫ ξk (t%)

0

{
N 2

R (ξk (ν))ψk (ν)θk dξk (ν)

}
, (4.7)

where Σ = ∑ni
n=λ+1

∫ ξn (t%)
0 ψn(ν)NR (ξn(ν))dξn(ν)+∑ni

n=λ+1(ξn(t%))ιn and ξn(0) = 0. The
function V (ξn(·)) can be further bounded as

V
(
ξn(t%)

)≤∑λ

n=1

{∫ ξn (t ′%)

0
ψn(ν)θnNR (ξn(ν))dξn(ν)

}
+∑λ

n=0 ξn(t%)ιn

+∑λ

n=1,k∉Ω%′′

{∫ 2%π

2%π−π
φ
?|N 1

R (ν)|dν
}
+Σ

+∑ω%
k=1,k∈Ω%

∫ 2%π+π

2%π
φ?NR (ν)dν, (4.8)

where φ
? = ψnθn and φ? = ψ

n
θn with θn > 0 and θn > 0 being the upper and lower

bounds of θn for 1 ≤ n ≤ ni , respectively. Note that the integral value of NR (ν)
(

repre-
sented by NT (ν)

)
on [0, tν) is

NT (ν) =
{

−µ(
1+exp(ν

2

2 )(νsin(ν)−cos(ν))
)
, if the control direction is unknown

1−exp(ν
2

2 ), otherwise.
(4.9)

Substituting (4.9) into (4.8) and after arrangements gives

V
(
ξn(t%)

)=∑λ

n=1

{∫ ξn (t ′%)

0
ψn(ν)θnNR (ξn(ν))dξn(ν)

}
+ (2%+1)πλιmax

×
{
ℑ? exp

( (4%+1)π2

2

)
−ε?φ?µ

}
−exp

(4%2π2

2

)
−exp

( (2%−1)2π2

2

){
ℑ? exp

( (4%−1)π2

2

)
−ε?φ?

}
+Σ, (4.10)
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where ℑ? =ω′
% exp(−t?µ?)µ+(ω%−ω′

%)φ? exp(−t?µ?) with t? = t%− t ′′% , ε? =λ+ω′
%−ω%

and ιmax = max
1≤n≤ni

{ιn}. Apparently, the terms on the right hand of (4.10) (except the first

term) approach to negative infinity as %→ +∞. For the first term in (4.10), we define

three sequences {t 2π
% }, {t 4π

% }, and
{

t (2%−4)π
%

}
defined by t 2π

% = min
1≤n≤λ

{t : ξn(t ) = 2π}, t 4π
% =

min
1≤n≤λ

{t : ξn(t ) = 4π} and t (2%−4)π
% = min

1≤n≤λ
{t : ξn(t ) = (2%−4)π}. Then, it can be deduced

that the value of the first term approaches to zero as % → +∞. To this end, one can
conclude that

V
(
ξn(t%)

)−→−∞ as %−→+∞ (4.11)

which leads to a contradiction with the fact that V (·) is predesigned to be non-negative.
As a result, ξn(t ), 1 ≤ n ≤ ni , are upper bounded.

2) Situation 2: ξn(·) has no lower bound on [0, tν) for 1 ≤ n ≤ λ. The proof is similar
to Situation 1 and thus it is omitted. ■

Remark 4.4 Similarly to the lemmas in [14, 17, 29, 31, 53, 127], the proposed Lemma 4.2
holds over a finite time interval. Extending such lemmas to the whole time domain is not
trivial, as discussed in [37]. Nevertheless, works such as [81] have shown that bounded-
ness on the entire time domain can be obtained during stability analysis, by using con-
tinuation of the maximal solution of the closed-loop system. In this work we will adopt
a similar argument to obtain stability (cf. proof of Theorem 4.1).

4.3. Proposed Distributed Consensus Design
To start the design, let us define pi = max

1≤m≤ni

{
pi ,m

}
and let us define the following changes

of coordinates {
si ,1 =

∑
l∈N̄i

ai l (yi − yl )+µi (yi − yr ),

si ,m =χi ,m −αi ,m , m = 2,3, . . . ,ni ,
(4.12)

where αi ,m represents the virtual control law which will be specified later. After defin-

ing s1 = [
s1,1, s2,1, . . . , sN ,1

]T ∈ RN , one has s1 = (L +B)δ where δ = y − y r with y =[
y1, y2, . . . , yN

]T and y r = [
yr , yr , . . . , yr

]T . Due to the nonsingularity of L +B, it holds

that ‖δ‖ ≤ ‖s1‖
σmin(L+B)

, where σmin(L +B) is the minimum singular value of L +B.

The design proceeds iteratively along the following steps.
Step 1 for the i -th agent (i ∈ {1, . . . , N }): Using (4.1) and (4.12), we obtain the time

derivative of si ,1 as

ṡi ,1 =
(
di +µi

)
ψk

i ,1(χi ,1)χ
pi ,1

i ,2 +F k
i ,1(Zi ,1), k ∈Mi , (4.13)

where Zi ,1 = [χi ,1,χl ,1,χl ,2]T (l ∈ N̄i ) and

F k
i ,1(Zi ,1) =−∑

l∈N̄i
ai l (ψk

l ,1(χl ,1)χ
pl ,1

l ,2 +φk
l ,1(χl ,1))

+ (di +µi )φk
i ,1(χl ,1)−µi ẏr .

(4.14)
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From Lemma 2.2.1, it follows that the unknown continuous function F k
i ,1(·) can be

approximated by an RBF NN as

F k
i ,1(Zi ,1)=W k∗T

i ,1 ϕk
i ,1(Zi ,1)+εk

i ,1(Zi ,1),

where
∣∣εk

i ,1(Zi ,1)
∣∣≤εk

i ,1 includes both the bounded approximation error and the bounded
ẏr .

According to Lemma 2.2, it holds that

s
pi−pi ,1+3
i ,1 F k

i ,1 ≤
pi−pi ,1+3

pi+3
ν

pi+3
pi−pi ,1+3

i ,1 spi+3
i ,1

∥∥∥W k∗
i ,1

∥∥∥ pi+3
pi−pi ,1+3

∥∥∥ϕk
i ,1

∥∥∥ pi+3
pi−pi ,1+3

(4.15)

+ pi ,1

pi +3
ς
− pi +3

pi ,1

i ,1 ε
k

pi +3
pi ,1

i ,1 + pi ,1

pi +3
`
− pi +3

pi ,1

i ,1 + pi −pi ,1 +3

pi +3
ς

pi +3
pi −pi ,1+3

i ,1 spi+3
i ,1

≤spi+3
i ,1

(̀ pi+3
pi−pi ,1+3

i ,1 βi ,1
∥∥ϕi ,1

∥∥ pi+3
pi−pi ,1+3 +ς

pi+3
pi−pi ,1+3

i ,1

)
+λi ,1,

whereβi ,1 = max
{
βk

i ,1,k ∈Mi
}
,ϕi ,1 = max

{
ϕk

i ,1,k ∈Mi
}
,βk

i ,1=
∥∥W k∗

i ,1

∥∥ pi +3
pi −pi ,1+3 , εi ,1 = max{

εk
i ,1,k ∈Mi

}
and λi ,1 = `

− pi +3
pi ,1

i ,1 +ς
− pi +3

pi ,1

i ,1 ε

pi +3
pi ,1

i ,1 .
Let us start constructing the Lyapunov function as

Vi ,1 =
s

pi−pi ,1+4
i ,1

pi −pi ,1 +4
+ 1

2ϑi ,1
β̃2

i ,1, (4.16)

where β̃i ,1 =βi ,1 − β̂i ,1 and ϑi ,1 > 0 is a design parameter.
It follows from (4.13), (4.15) and (4.16) that the time derivative of Vi ,1 is

V̇i ,1≤s
pi−pi ,1+3
i ,1

(
di +µi

)(
ψk

i ,1(χi ,1)α
pi ,1

i ,2 +s
pi ,1

i ,1 τi ,1

)
−spi+3

i ,1

(
di +µi

)
τi ,1

− β̃i ,1
˙̂βi ,1

ϑi ,1
+spi+3

i ,1 `

pi +1
pi −pi ,1+3

i ,1 βi ,1
∥∥ϕi ,1

∥∥ pi +3
pi −pi ,1+3 +spi+3

i ,1 ς

pi +3
pi −pi ,1+3

i ,1 +λi ,1

+s
pi−pi ,1+3
i ,1

(
di +µi

)
ψk

i ,1(χi ,1)
(
χ

pi ,1

i ,2 −αpi ,1

i ,2

)
.

(4.17)

Design the virtual controllers αi ,2 and adaptive laws β̂i ,1 as

αi ,2 =N

1
pi ,1

R (ξi ,1)τ
1

pi ,1

i ,1 si ,1, (4.18)

τi ,1=
(
di +µi

)−1
(
`

pi+3
pi−pi ,1+3

i ,1 β̂i ,1
∥∥ϕi ,1

∥∥ pi+3
pi−pi ,1+3 +ci ,1 +ς

pi +3
pi −pi ,1+3

i ,1

)
, (4.19)

ξ̇i ,1 = spi+3
i ,1

(
di +µi

)
τi ,1, (4.20)

˙̂βi ,1=ϑi ,1`

pi+3
pi−pi ,1+3

i ,1 spi+3
i ,1

∥∥ϕi ,1
∥∥ pi+3

pi−pi ,1+3 −γi ,1β̂i ,1, (4.21)
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where `i ,1, ci ,1, γi ,1, and ςi ,1 are positive design parameters.
Substituting(4.18), (4.19), (4.20), and (4.21) into (4.17) yields

V̇i ,1 ≤s
pi−pi ,1+3
i ,1

(
di +µi

)
ψi ,1(χi ,1)

(
χ

pi ,1

i ,2 −αpi ,1

i ,2

)
+ 1

ϑi ,1
γi ,1β̃i ,1β̂i ,1

+ ξ̇i ,1
(
ψi ,1(χi ,1)NR (ξi ,1)+1

)+λi ,1 − ci ,1spi+3
i ,1 .

(4.22)

By using Lemmas (2.3) and (2.2), we have that

∣∣∣spi−pi ,1+3
i ,1 ψi ,1(χi ,1)

(
χ

pi ,1

i ,2 −αpi ,1

i ,2

)∣∣∣≤η−pi
i ,1 spi+3

i ,2

pi +3

(
pi ,1φi ,1N

1
pi ,1

R (ξi ,1)τ

pi ,1−1
pi ,1

i ,1

)pi+3

+
pi ,1spi+3

i ,2

pi +3
η
− pi −pi ,1+3

pi ,1

i ,1

(
2pi ,1−2pi ,1φi ,1

) pi +3
pi ,1

+
η
−pi
i ,1 spi+3

i ,2

pi +3

(
2pi ,1−2pi ,1φi ,1τ

pi ,1−1
i ,1

)pi+3

+ pi −pi ,1 +7

pi +3
ηi ,1spi+1

i ,1 +
2piηi ,1spi+1

i ,1

pi +3

≤ spi+3
i ,1 + (

di +µi
)−1spi+3

i ,2 Θi ,1

(4.23)

with ηi ,1 = pi+3
3pi−pi ,1+7 andΘi ,1 a function given by

Θi ,1 = (di +µi )
[ pi ,1

pi +3
η
− pi−pi ,1+3

pi ,1

i ,1

(
2pi ,1−2pi ,1φi ,1

) pi+3
pi ,1

+ 1

pi +3
η
−pi
i ,1

(
pi ,1φi ,1N

1
pi ,1

R (ξi ,1)τ

pi ,1−1
pi ,1

i ,1

)pi+3

+ 1

pi +3
η
−pi
i ,1

(
2pi ,1−2pi ,1φi ,1τ

pi ,1−1
i ,1

)pi+3]
.

From (4.23), the time derivative of Vi ,1 can be rewritten as

V̇i ,1 ≤
γi ,1

ϑi ,1
β̃i ,1β̂i ,1 −

(
ci ,1 − (di +µi )

)
spi+3

i ,1 + spi+3
i ,2 Θi ,1

+ ξ̇i ,1
(
ψi ,1(χi ,1)NR (ξi ,1)+1

)+λi ,1.
(4.24)

Defining ψi ,1 = max
{
ψk

i ,1,k ∈Mi
}

and using Young’s inequality

β̃i ,1β̂i ,1 =
(
β̃i ,1βi ,1 − β̃2

i ,1

)
≤ 1

2

(
β2

i ,1 − β̃2
i ,1

)
(4.25)

it can be obtained that V̇i ,1 satisfies

V̇i ,1 ≤ ξ̇i ,1
(
ψi ,1(χi ,1)NR (ξi ,1)+1

)+ spi+3
i ,2 Θi ,1 +

γi ,1

2ϑi ,1

(
β2

i ,1 − β̃2
i ,1

)
− (

ci ,1 − (di +µi )
)

spi+3
i ,1 +λi ,1.

(4.26)
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Step m for the i -th agent
(
i ∈ {1, . . . , N }, m ∈ {2, . . . ,ni −1}

)
: From (4.1) and (4.12), the

time derivative of si ,m is given by

ṡi ,m =ψk
i ,m(χi ,m)χ

pi ,m

i ,m+1 +F k
i ,m(Zi ,m), k ∈Mi , (4.27)

where Zi ,m = [χT
i ,m ,χT

l ,m , β̂i ,m−1,ξi ,m−1, yr ]T
(
l ∈ N̄i

)
, β̂i ,m−1 = [β̂i ,1, β̂i ,2, . . . , β̂i ,m−1], ξi ,m−1 =

[ξi ,1,ξi ,2, . . . ,ξi ,m−1] and

F k
i ,m(Zi ,m)=−∑m−1

n=1

∑
l∈N̄i

∂αi ,m

∂χl ,n

(
ψk

l ,n(χl ,n)χ
pl ,n

l ,n+1+φk
l ,n(χl ,n)

)
−∑m−1

n=1

∂αi ,m

∂χi ,n

(
ψk

i ,n(χi ,n)χ
pi ,n

i ,n+1+φk
i ,n(χi ,n)

)
− ∂αi ,m

∂yr
ẏr −

∑m−1
n=1

∂αi ,m

∂β̂i ,n

˙̂βi ,n

−∑m−1
n=1

∂αi ,m

∂ξi ,n
ξ̇i ,n+φk

i ,m(χi ,m)

(4.28)

Along similar lines as Step 1, the following inequality holds:

s
pi−pi ,m+3
i ,m F k

i ,m(Zi ,m) ≤ spi+3
i ,m ς

pi +3
pi −pi ,m+3

i ,m +λi ,m

+spi+3
i ,m `

pi +3
pi −pi ,m+3

i ,m βi ,m
∥∥ϕi ,m

∥∥ pi+3
pi−pi ,m+3 ,

(4.29)

whereβk
i ,m=∥∥W k∗

i ,m

∥∥ pi +3
pi −pi ,m+3 ,βi ,m = max

{
βk

i ,m ,k ∈Mi
}
,ϕi ,m = max

{
ϕk

i ,m ,k ∈Mi
}
, εi ,m =

max
{
εk

i ,m ,k∈Mi
}
, and λi ,m = `

− (pi +3)
pi ,m

i ,m +ς
− (pi +3)

pi ,m

i ,m ε

(pi +3)
pi ,m

i ,m .
Starting from (4.16), the Lyapunov function is constructed iteratively as

Vi ,m =Vi ,m−1 +
s

pi−pi ,m+4
i ,m

pi −pi ,m +4
+ 1

2ϑi ,m
β̃2

i ,m , (4.30)

where β̃i ,m =βi ,m − β̂i ,m and ϑi ,m > 0 is a design constant.
Combining (4.26), (4.27), (4.29) with (4.30), the time derivative of Vi ,m is written as

V̇i ,m ≤spi+3
i ,m Θi ,m−1 − s

pi−pi ,m+3
i ,m ψk

i ,m(χi ,m)α
pi ,m

i ,m+1 +
∑m−1

n=1

( γi ,n

2ϑi ,n
(β2

i ,n − β̃2
i ,n)

)
+ s

pi−pi ,m+3
i ,m ψi ,m(χi ,m)

(
χ

pi ,m

i ,m+1−α
pi ,m

i ,m+1

)
− β̃i ,m

˙̂βi ,m

ϑi ,m
+ spi+3

i ,m ς

pi +3
pi −pi ,m+3

i ,m

+ spi+3
i ,m `

pi +3
pi −pi ,m+3

i ,m βi ,m
∥∥ϕi ,m

∥∥ pi+3
pi−pi ,m+3 +∑m−1

n=1 ξ̇i ,n
(
ψi ,n(χi ,n)NR (ξi ,n)+1

)
+∑m

n=1λi ,n − (ci ,1 − (di +µi ))spi+3
i ,1 −∑m−1

n=2 (ci ,n −1)spi+3
i ,n .

(4.31)

Design the virtual controllers αi ,m+1 and adaptive laws β̂i ,m as

αi ,m+1 =N

1
pi ,m

R (ξi ,m)si ,mτ

1
pi ,m

i ,m , (4.32)
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τi ,m = ci ,m +`
pi +3

pi −pi ,m+3

i ,m β̂i ,m
∥∥ϕi ,m

∥∥ pi+3
pi−pi ,m+3 +Θi ,m−1 +ς

pi +3
pi −pi ,m+3

i ,m ,

ξ̇i ,m = spi+3
i ,m τi ,m , (4.33)

˙̂βi ,m =ϑi ,m`

pi +3
pi −pi ,m+3

i ,m spi+3
i ,m

∥∥ϕi ,m
∥∥ pi+3

pi−pi ,m+3 −γi ,mβ̂i ,m , (4.34)

where `i ,m , ci ,m , γi ,m , and ςi ,m are positive design parameters.
Substituting (4.32), (4.33), and (4.34) into (4.31) and along similar lines as (4.23)-

(4.25), we can obtain the time derivative of Vi ,m as

V̇i ,m ≤ spi+3
i ,m+1Θi ,m − (

ci ,1 − (di +µi )
)
spi+3

i ,1 +∑m
n=1

(
γi ,n

2ϑi ,n

(
β2

i ,n − β̃2
i ,n

))
+∑m

n=1λi ,n−
∑m

n=2 (ci ,n −1)spi+3
i ,n +∑m

n=1 ξ̇i ,n
(
ψi ,n(χi ,n)NR (ξi ,n)+1

)
.

(4.35)

where ψi ,m = max
{
ψk

i ,m ,k ∈Mi

}
.

Step ni for the i -th agent (i ∈ {1, . . . , N }): In view of Lemma 3.1 and using (4.1), (4.3),
and (4.12), the time derivative of si ,ni can be written as

ṡi ,ni ≤ψk
i ,ni

(χi )ζ1, f κ
pi ,ni
i ui

pi ,ni +F k
i ,ni

(Zi ,ni ), k∈Mi , (4.36)

where Zi ,ni =
[
χT

i ,χT
l , β̂i ,ni−1,ξi ,ni−1, yr

]T (
l ∈ N̄i

)
, β̂i ,ni−1 =

[
β̂i ,1, β̂i ,2, . . . , β̂i ,ni−1

]
, ξi ,ni−1 =[

ξi ,1, ξi ,2, . . . ,ξi ,ni−1
]

and

F k
i ,ni

(Zi ,ni )=−∑ni−1
n=1

∑
l∈N̄i

∂αi ,ni

∂χl ,n

(
ψk

l ,n(χl ,n)χ
pl ,n

l ,n+1+φk
l ,n(χl )

)
−∑ni−1

n=1

∂αi ,ni

∂χi ,n

(
ψk

i ,n(χi ,n)χ
pi ,n

i ,n+1+φk
i ,n(χi )

)
−∑ni−1

n=1

∂αi ,ni

∂β̂i ,n

˙̂βi ,n − ∂αi ,m

∂yr
ẏr +φk

i ,ni
(χi )

−∑ni−1
n=1

∂αi ,ni

∂ξi ,n
ξ̇i ,n +ψk

i ,ni
(χi )ζ2, f ∆i (t )pi ,ni .

(4.37)

Similar to Step f ,m, it can be obtained that

s
pi−pi ,ni

+3

i ,ni
F k

i ,ni
(Zi ,ni )

≤ spi+3
i ,ni

ς

pi +3
pi −pi ,ni

+3

i ,ni
+λi ,ni +spi+3

i ,ni
`

pi +3
pi −pi ,ni

+3

i ,ni
βi ,ni

∥∥ϕi ,ni

∥∥ pi+3
pi−pi ,ni

+3 ,

(4.38)

whereβk
i ,ni

=∥∥W k∗
i ,ni

∥∥ pi +3
pi −pi ,ni

+3 ,βi ,ni = max
{
βk

i ,ni
, k ∈Mi

}
,ϕi ,ni = max

{
ϕk

i ,ni
,k ∈Mi

}
, εi ,ni =

max
{
εk

i ,ni
,k ∈Mi

}
and λi ,ni = `

− pi +3
pi ,ni

i ,ni
+ς

− pi +3
pi ,ni

i ,ni
ε

pi +3
pi ,ni
i ,ni

.
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The last step in the construction of the Lyapunov function for agent i is

Vi ,ni =Vi ,ni−1 +
s

pi−pi ,ni
+4

i ,ni

pi −pi ,ni +4
+ 1

2ϑi ,ni

β̃2
i ,ni

, (4.39)

where β̃i ,ni =βi ,ni − β̂i ,ni and ϑi ,ni > 0 is a design parameter.
The derivative of Vi ,ni along (4.35)-(4.39) is given by

V̇i ,ni ≤
∑ni

n=1λi ,n+
∑ni−1

n=1 ξ̇i ,n
(
ψi ,n(χi ,n)NR (ξi ,n)+1

)+spi+3
i ,ni

ς

pi +3
pi −pi ,ni

+3

i ,ni

−∑ni−1
n=2 (ci ,n−1)spi+3

i ,n −(
ci ,1−(di +µi )

)
spi+3

i ,1 +Θi ,ni−1spi+3
i ,ni

+∑ni−1
n=1

(
γi ,n

2ϑi ,n

(
β2

i ,n − β̃2
i ,n

))
−
β̃i ,ni

˙̂βi ,ni

ϑi ,ni

+spi+3
i ,ni

`

pi +3
pi −pi ,ni

+3

i ,ni
βi ,ni

∥∥ϕi ,ni

∥∥ pi+3
pi−pi ,ni

+3

+s
pi−pi ,ni

+3

i ,ni
ψk

i ,ni
(χi )ζ1, f κ

pi ,ni
i ui

pi ,ni .

(4.40)

Let us design the actual controller ui and parameters adaption laws β̂i ,ni as follows:

ui =N

1
pi ,ni

R (ξi ,ni )τ
1

pi ,ni
i ,ni

si ,ni , (4.41)

τi ,ni = ci ,ni +`
pi +3

pi −pi ,ni
+3

i ,ni
β̂i ,ni

∥∥ϕi ,ni

∥∥ pi+3
pi−pi ,ni

+3 +Θi ,ni−1 +ς
pi +3

pi −pi ,ni
+3

i ,ni
, (4.42)

ξ̇i ,ni = spi+3
i ,ni

τi ,ni , (4.43)

˙̂βi ,ni
=ϑi ,ni `

pi +3
pi −pi ,ni

+3

i ,ni
spi+3

i ,ni

∥∥ϕi ,ni

∥∥ pi+3
pi−pi ,ni

+3 −γi ,ni β̂i ,ni , (4.44)

where `i ,ni , ci ,ni , λi ,ni and ςi ,ni are positive design parameters.
Substituting (4.41)-(4.44) into (4.40) results in

V̇i ,ni ≤
∑ni

n=1λi ,n+
∑ni

n=1

γi ,n

2ϑi ,n
β2

i ,n−
∑ni

n=2 (ci ,n −1)spi+3
i ,n

−∑ni
n=1

γi ,n

2ϑi ,n
β̃2

i ,n−
(
ci ,1 − (di +µi )

)
spi+3

i ,1

+∑ni
n=1 ξ̇i ,n

(
ψi ,n(χi ,n)θi ,nNR (ξi ,n)+1

)
,

(4.45)

where ψi ,ni = max
{
ψk

i ,ni
,k ∈Mi

}
, and when 1 ≤ n ≤ ni −1, let θi ,n = 1, when n = ni , let

θi ,n = ζ1, f κ
pi ,ni
i .
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4.4. Stability Analysis
We are now at the position to present the main results of the proposed method in the
following theorem.

Theorem 4.1 Under Assumption 4.1, consider the closed-loop multi-agent system com-
posed by the switched power-chained form dynamics (4.1), the virtual control laws (4.18)
and (4.32), the actual control law (4.41) and the parameter adaptation laws (4.21), (4.34),
and (4.44). Then, it holds that: i) all signals of the closed-loop multi-agent system remain
bounded; ii) the tracking error δ converges to the compact setΩe defined by

Ωe =

‖δ‖ ≤

√√√√ N N−1
(
N 2 +N −1

)2 ∑N
i=1Υ

2
i

(N −1)N−1

 ,

where Υi =
(
(Πi +Pi )

(
pi −pi ,1 +4

)) 1
pi −pi ,1+4 . The constants Πi and Pi are not given here

for compactness, but they are derived during the proof.

Proof. Consider the total Lyapunov function

V =∑N
i=1 Vi ,ni =

∑N
i=1

∑ni
m=1

 s
pi−pi ,m+4
i ,m

pi −pi ,m +4
+ 1

2ϑi ,m
β̃2

i ,m

. (4.46)

Applying Lemma 2.3 to the term ×
pi ,n−1

pi +3

i s
pi−pi ,n+4
i ,n with ×i > 0 being a constant, the

following inequality holds:

×
pi ,n−1

pi +3

i s
pi−pi ,n+4
i ,n ≤×i + spi+3

i ,n , (n = 1,2, . . . ,ni ) . (4.47)

Substituting (4.47) into (4.46) and synthesising previous analysis, it is possible to ob-
tain

V̇ni ≤
∑ni

n=1

γi ,n

2ϑi ,n
β2

i ,n −∑ni
n=1

(
ci ,n − λ̄i ,n

)× pi ,n−1
pi +3

i s
pi−pi ,n+4
i ,n

+∑ni
n=1λi ,n +

ni∑
n=1

(
ci ,n − λ̄i ,n

)×i −
∑ni

n=1

γi ,n

2ϑi ,n
β̃2

i ,n

+∑ni
n=1 ξ̇i ,n

(
ψi ,n(χi ,n)θi ,nNR (ξi ,n)+1

)
, (4.48)

where λ̄i ,1 =
(
di +µi

)
and λ̄i ,n = 1(n = 2, . . . ,ni ).

Then, (4.48) can be further written as

V̇i ≤
∑ni

n=1 ξ̇i ,n
(
ψi ,n(χi ,n)θi ,nNR (ξi ,n)+1

)−µi Vi ,ni +%i , (4.49)

whereµi = min
1≤n≤ni

{(
pi −pi ,n+4

)(
ci ,n−λ̄i ,n

)× pi ,n−1
pi+3

i ,γi ,n

}
and%i =

ni∑
n=1

(×i
(
ci ,n − λ̄i ,n

)+λi ,n
)+∑ni

n=1
γi ,n

2ϑi ,n
β2

i ,n .
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Multiplying both sides of (4.49) by exp(µi t ), integrating it over [0, t ] and multiplying
both sides by exp(−µi t ) yields

Vi ,ni (t )≤
∑ni

n=1

∫ t

0
ψi ,n(χi ,n)θi ,nNR

(
ξi ,n

)
ξ̇i ,ndν

+∑ni
n=1

∫ t

0
ξ̇i ,ndν+Πi , (4.50)

whereΠi =Vi ,ni (0)+∑ni
n=1

(×i
(
ci ,n − λ̄i ,n

)+λi ,n
) +∑ni

n=1
γi ,n

2ϑi ,n
β2

i ,n is a positive constant.

At this point, we aim to extend the boundedness of Lemma 4.2 from a finite interval
to the entire time domain. Along similar lines as [81], for the i -th agent, we consider
an augmented state vector xag , [χi ,1, . . . ,χi ,ni ,ξi ,1, . . . ,ξi ,ni , β̂i ,1, . . . , β̂i ,ni ,αi ,1, . . . ,ui ]T so
that they can describe the closed-loop dynamic system as ẋag(t ) =zag(t , xag(t )) for t ∈
[0, ti ). We start from t = 0; since zag(·) : R+×R4×ni → R is a locally Lipschitz map with
respect to xag(t ), a solution exists on the time interval [0, tν) with tν ≤ ti (where the strict
inequality holds if there is finite-time escape phenomenon [33]). It follows from (4.50)

and Lemma 4.2 that ξi ,n(·), Vi (·), and
ni∑

n=1

∫ t
0

(
ψi ,n (ν)θi ,nNR

(
ξi ,n (ν)

)+ιi ) ξ̇i ,n (ν)dν are

bounded on the time interval [0, tν) for n = 1, . . . ,ni , which implies χi ,1, . . . ,χi ,ni , β̂i ,1, . . . ,
β̂i ,ni , andαi ,1, . . . ,ui remain bounded on [0, tν). Hence, the whole solution xag is bounded
on [0, tν). In accordance with [33, Chap. 8, Sect. 5], the solution of the closed-loop sys-
tem ẋag(t ) = zag(t , xag(t )) can be extended to ti . Repeating the above analysis on the
continuation of the solution of the closed-loop system and invoking [33, pp. 476, Theo-
rem 54] we conclude that there is no finite-time escape phenomenon that will occur and
the solution of the closed-loop system exists on the entire time domain [0,∞) and that
ξi ,n(·), β̂i ,n(·), αi ,n(·), Vi (·), χi ,n for n = 1, . . . ,ni are bounded on the entire time domain.

Let Pi be the upper bound of the integral term
∑ni

n=1

∫ t
0 ψi ,n(χi ,n)θi ,nNR

(
ξi ,n

)
ξ̇i ,ndν+∑ni

n=1

∫ t
0 ξ̇i ,ndν.

Considering (4.16) and (4.50), the following inequality holds:

s
pi−pi ,1+4
i ,1

pi −pi ,1 +4
≤Πi +Pi . (4.51)

Noting (4.51), we know that Vi (t ) ≤Πi +Pi , and the following inequality holds:∣∣si ,1
∣∣≤Υi , (4.52)

whereΥi =
(
(Πi +Pi )

(
pi −pi ,1 +4

)) 1
pi −pi ,1+4 .

From (4.52), we can obtain

‖s1‖ ≤
√∑N

i=1

∣∣si ,1
∣∣2 ≤

√∑N
i=1Υ

2
i . (4.53)

Consequently, we can obtain that ‖δ‖ ≤
√∑N

i=1Υ
2
i

σmin

(
L+B

) . It is known that σmin

(
L +B

)
can be replaced by a more conservative bound N̄

N 2+N−1
with N̄ = ( N−1

N

) N−1
2 [34] that does

not involve global information σ
min

(
L+B

). This completes the proof. ■
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Remark 4.5 Consensus tracking is solved in Theorem 4.1 via a common Lyapunov func-
tion, by estimating the maximum value of the switching weights in the linear-in-the-
parameter approximator. A multiple Lyapunov function approach is in principle pos-
sible by estimating different switching weights for different subsystems. However, in
this case the stability analysis becomes more challenging because it requires to impose
conditions at switching instants, whereas a common Lyapunov function can guarantee
stability under arbitrary switching.

Remark 4.6 Some guidelines for selecting appropriate design parameters are: (i) Choos-
ing small positive constants γi ,m and increasing ϑi ,m results in a faster convergence rate
of adaptation parameters β̂i ,m ; (ii) Decreasing ci ,m , λi ,m , γi ,m , while increasing ϑi ,m

helps to reduce %i , and thus to reduce the size of Ωe ; (iii) Enhancing the connectivity
of the communication link L +B also contributes to reducing the size ofΩe .

Remark 4.7 To clarify the importance of Lemma 4.2 and Theorem 4.1, consider that [37]
has shown that the summation of conditional inequality may be bounded even when
each term approaches infinity individually, but with opposite signs. To avoid this prob-
lem, [37] proposed new Nussbaum functions having the same signs on some periods of
time. The results in [14] proposed conditional inequalities where no sign assumption is
necessary: however, these results are applied to systems with one single control direc-
tion. Lemma 4.2 and Theorem 4.1 solved the open problem of handling multiple mixed
unknown control directions with multiple hybrid Nussbaum functions.

4.5. Simulation Examples
In this section, we provide one numerical and one practical examples to validate the
effectiveness of the proposed scheme.

4.5.1. Numerical Example
One leader (labeled by 0) with three (switched) follower agents are considered by the
directed graph as in Fig. 3.2. From Fig. 3.2, it can be seen that the signal of leader is ac-
cessible to follower 1 only. The leader output is yr(t ) = 5sin(t )+10sin(0.5t ). The follower
agents are described by the following dynamics:

χ̇1,1 =φσi (t )
1,1 (χ1,1)+ψσi (t )

1,1 (χ1,1)χ3
1,2,

χ̇1,2 =φσi (t )
1,2 (χ1)+ψσi (t )

1,2 (χ1)(Q1(u1))3,

χ̇2,1 =φσi (t )
2,1 (χ2,1)+ψσi (t )

2,1 (χ2,1)χ3
2,2,

χ̇2,2 =φσi (t )
2,2 (χ2)+ψσi (t )

2,2 (χ2)(Q2(u2))5,

χ̇3,1 =φσi (t )
3,1 (χ3,1)+ψσi (t )

3,1 (χ3,1)χ5
3,2,

χ̇3,2 =φσi (t )
3,2 (χ3)+ψσi (t )

3,2 (χ3)(Q3(u3))5,

yi =χi ,1, f = 1,2,3,

(4.54)

whereσi (·) : [0,+∞) →Mi= {1,2,3}: note that each follower has its own switching signal,
and thus can switch asynchronously with respect to the other followers (cf. Fig. 4.1).
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Figure 4.1: Asynchronous switching signals σi (·).

For follower agent 1, the three switching dynamics are:

φ1
1,1 = 1.3−cos(χ1,1), ψ1

1,1 = | tanh(χ3
1,2)|+1.6,

φ2
1,1 = 0.6+exp(−χ2

1,2), ψ2
1,1 = cos(χ3

1,1)+2,

φ3
1,1 = 0.8+0.2cos(χ1,1), ψ3

1,1 = 2cos(χ1,2)2,

φ1
1,2 =χ1,2χ1,1 +0.8, ψ1

1,2 = 2(|cos(χ2
1,1)|+1.3),

φ2
1,2 = 0.7+0.2χ2

1,2, ψ2
1,2 = 3sin(χ1,2)2 +4,

φ3
1,2 = cos(χ2

1,2)+0.3, ψ3
1,2 = 5|sin(0.1χ1,1)|+1.5.

For follower agent 2, the three switching dynamics are:

φ1
2,1 = 1.1χ2,1 +χ2,2, ψ1

2,1 = 1.5sin(χ2
2,1 +χ2

2,2),

φ2
2,1 =χ2

2,1χ2,2, ψ2
2,1 = sin(χ2,2χ

2
2,1)+2.5,

φ3
2,1 =χ2,1χ

2
2,2 +1.2, ψ3

2,1 = cos(χ2
2,2χ

3
2,1)+3,

φ1
2,2 =χ2,1χ

2
2,2 +0.5, ψ1

2,2 = 3+2cos(χ3
2,1χ2,2),

φ2
2,2 = 1.3χ3

2,2 +0.8χ2,1, ψ2
2,2 = 2cos(χ2

2,1)+4,

φ3
2,2 = cos(χ2,1)χ2,2, ψ3

2,2 = 5+3sin(χ2,2χ
2
2,1).
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Figure 4.2: Evolutions of yr , y1, y2, and y3.
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Figure 4.3: Evolutions of β̂1,1, β̂2,1, and β̂3,1.
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Figure 4.4: Evolutions of β̂1,2, β̂2,2, and β̂3,2.
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Figure 4.5: Trajectories of u1 and Q1(u1).
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Figure 4.6: Trajectories of u2 and Q2(u2).
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Figure 4.7: Trajectories of u3 and Q3(u3).
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Figure 4.8: Trajectories of ξ1,1 and ξ1,2.
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Figure 4.9: Trajectories of ξ2,1 and ξ2,2.
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Figure 4.10: Trajectories of ξ3,1 and ξ3,2.
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Figure 4.11: Evolutions of yr , y1, y2, and y3 under four cases: (a) ρ = 0.02; (b) ρ = 0.03; (c) ρ = 0.05; (d) ρ = 0.08.

For follower agent 3, the three switching dynamics are:

φ1
3,1 = 1.5sin(χ3,2)+χ3,1, ψ1

3,1 = |sin(χ3,1)|+6,

φ2
3,1 = 0.3χ2

3,1 + sin(χ3,2), ψ2
3,1 = |sin(χ3

3,2)|+3,

φ3
3,1 =χ3,1 +0.2χ3,2, ψ3

3,1 = cos(χ2
3,2χ

3
3,1)+4.5,

φ1
3,2 = 0.5χ2

3,1 +χ3,2, ψ1
3,2 = cos(χ2

3,2)+2,

φ2
3,2 =χ3,2 +0.8sin(χ3,1), ψ2

3,2 = 4cos(χ3,1)+5.5,

φ3
3,2 = cos(χ3,2)2 +0.7, ψ3

3,2 = cos(χ3,2)3 +3.5.

While conducting the simulation, the control directions ofψσi
i ,1, σi = 1,2,3, f = 1,2,3, are

assumed known and the control directions of ψσi
i ,2, σi = 1,2,3, f = 1,2,3, are assumed

unknown. The initial conditions are: χ1(0) = [0.1,−0.1]T , χ2(0) = [0.3,−0.3]T , χ3(0) =
[0.5,−0.5]T , β̂1,1 (0) = 3, β̂1,2 (0) = 1, β̂2,1 (0) = 7, β̂2,2 (0) = 5, β̂3,1 (0) = 12, β̂3,2 (0) = 9,
ξ1,1(0) = ξ1,2(0) = ξ2,1(0) = ξ2,2(0) = ξ3,1(0) = ξ3,2(0) = 0. The design parameters are cho-
sen to be: c1,1 = c2,1 = c3,1 = 10, c1,2 = c2,2 = c3,2 = 15, ς1,1 = ς2,1 = ς3,1 = 0.8, ς1,2 = ς2,2 =
ς3,2 = 1, `1,1 = `2,1 = `3,1 = 0.5, `1,2 = `2,2 = `3,2 = 0.75, ϑ1,1 = ϑ2,1 = ϑ3,1 = 1, ϑ1,2 = ϑ2,2 =
ϑ3,2 = 2, γ1,1 = γ2,1 = γ3,1 = 1.4, γ1,2 = γ2,2 = γ3,2 = 2, umin

1 = umin
2 = umin

3 = 0.05, ρ1 = 0.02,
ρ2 = 0.025 and ρ3 = 0.015. The simulation results are shown in Figs. 4.2-4.10. Fig. 4.2
shows that the three followers track the leader output signal with bounded consensus
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Table 4.1: Performance indices for four different sets of quantizer parameters ρ.

Indices ρ = 0.02 ρ = 0.03 ρ = 0.05 ρ = 0.08

ITAE 1.7281 1.5982 1.4443 1.2796

RMSE 0.2163 0.1857 0.1448 0.0958

MACA 8.6374 9.0853 10.7742 11.6563

tracking errors. Figs. 4.3-4.4 depict the boundedness of β̂1,1, β̂2,1, and β̂3,1, and of β̂1,2,
β̂2,2, and β̂3,2, respectively. Figs. 4.5-4.7 reveal the trajectories of the actual control sig-
nals ui and quantized control Qi (ui ), i = 1,2,3. Figs. 4.8-4.10 provide the evolutions of
the adaptation parameters ξ1,1, ξ1,2, ξ2,1, ξ2,2, ξ3,1, and ξ3,2.

4.5.2. Practical Example
To further validate the developed control method, a multi-agent version of the underac-
tuated weakly coupled mechanical benchmark in [83] is considered, also shown in Fig.
1.3. The dynamics of the i th agent remain the same as (3.59). The system parameters of
the three follower agents are the exactly ones of the first three follower agents of Table 3.3.
While carrying out the simulation, the control directions ofψσi (t )

i ,2 , f = 1,2,3, are assumed
unknown and the other control directions are assumed known. The switching signal is
as in Fig. 4.1. Let the initial conditions be χ1,1(0) = 5.5, χ1,2(0) = 0.25, χ1,3(0) = 0.75,
χ1,4(0) = −0.5, χ2,1(0) = 3.7, χ2,2(0) = 0.2, χ2,3(0) = 0.35, χ2,4(0) = 0.25, χ3,1(0) = 1.5,
χ3,2(0) =−0.75, χ3,3(0) = 0.5, χ3,4(0) =−0.75, β̂1,1 (0) = 3, β̂1,3 (0) = 1, β̂1,4 (0) = 5, β̂2,1 (0) =
7, β̂2,2 (0) = 5, β̂2,3 (0) = 3.5, β̂2,4 (0) = 2.5, β̂3,1 (0) = 12, β̂3,2 (0) = 9, β̂3,1 (0) = β̂3,2 (0) = 9,
β̂3,3 (0) = β̂3,4 (0) = 5.5, ξ1,1(0) = ξ1,2(0) = ξ1,3(0) = ξ1,4(0) = ξ2,1(0) = ξ2,2(0) = ξ2,3(0) =
ξ2,4(0) = ξ3,1(0) = ξ3,2(0) = ξ3,3(0) = ξ3,4(0) = 0. The design parameters are chosen to be:
c1,1 = c2,1 = c3,1 = 7.5, c1,2 = c2,2 = c3,2 = 10, c1,3 = c2,3 = c3,3 = 5, c1,4 = c2,4 = c3,4 = 5,
ς1,1 = ς2,1 = ς3,1 = 0.8, ς1,2 = ς2,2 = ς3,2 = 1, ς1,3 = ς2,3 = ς3,3 = 0.25, ς1,4 = ς2,4 = ς3,4 = 1.5,
`1,1 = `2,1 = `3,1 = 0.5, `1,2 = `2,2 = `3,2 = 0.75, `1,3 = `2,3 = `3,3 = 0.35, `1,4 = `2,4 =
`3,4 = 0.5, ϑ1,1 = ϑ2,1 = ϑ3,1 = 1, ϑ1,2 = ϑ2,2 = ϑ3,2 = 2, ϑ1,3 = ϑ2,3 = ϑ3,3 = 2.75, ϑ1,4 =
ϑ2,4 = ϑ3,4 = 1.5, γ1,1 = γ2,1 = γ3,1 = 1.4, γ1,2 = γ2,2 = γ3,2 = 2, γ1,3 = γ2,3 = γ3,3 = 2.5,
γ1,4 = γ2,4 = γ3,4 = 3.5, umin

1 = umin
2 = umin

3 = 0.05. Let ρ = ρ1 = ρ2 = ρ3. To investigate
the effects of quantizer parameter ρi , f = 1,2,3, on system performances, several per-

formance indices are used: integral time absolute error (ITAE)
[

1
3

∫ T
0 t |∑3

i=1 si ,1(t )|d t
]

,

root mean square error (RMSE)
[

1
3T

∫ T
0 |∑3

i=1 s2
i ,1(t )|d t

] 1
2

, mean absolute control action

(MACA)
[

1
3T

∫ T
0 |∑3

i=1 ui |d t
]

. The simulation results are given in Fig. 4.11 and the calcu-

lation results are summarized in Table 4.1. It can be seen from Table 4.1 that the tracking
accuracy improves as ρi increases, while larger control effort is required: that is, a finer
quantizer leads to improved precision, which might require larger controls.

4.6. Conclusions
This chapter investigated a Nussbaum function approach in the distributed adding-one-
power-integrator scenario. The distributed control challenges lie in the power-chained
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form nonlinear dynamics, in the switching behavior, in the input quantization and, most
importantly, in the partially unknown control directions. A new lemma involving mul-
tiple Nussbaum functions and quantization decomposition parameter was constructed
to handle these challenges.





5
LOGIC-BASED DISTRIBUTED

SWITCHING CONTROL FOR AGENTS

IN THE POWER-CHAINED FORM

WITH UNKNOWN CONTROL

DIRECTIONS

This chapter studies logic-based distributed switching control for nonlinear agents in
power-chained form systems, where logic-based (switching) control arises from the on-
line estimation of the control directions assumed to be unknown for all agents. The in-
troduction is given in Section 5.1. The problem formulation and preliminaries are pro-
vided in Section 5.2. Sections 5.3 and 5.4 present the proposed distributed consensus
design and stability analysis, respectively. The simulation examples are in Section 5.5
and Section 5.6 draws the conclusion.

5.1. Introduction
In Chapter 4, we have proposed a hybrid Nussbaum function-based methodology to
consensus tracking of power-chained form systems subject to multiple unknown con-
trol directions. At the same time, because it is well-recognized that Nussbaum-based
methods require additional complexity in the control design and continuous parameter
adaptation may lead to large learning transients, several researchers have been engaged
in the problem of overcoming continuous parameter adaptation by means of logic-based
control [32, 54]. Notable settings where logic-based control was employed include over-
coming conventional continuous tuning of control parameters [2, 27, 123, 124] and over-
coming the conventional Nussbaum approach for strict-feedback dynamics [36, 115].

It is important to notice that the state-of-the-art logic-based mechanisms in [36,

83
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115] for strict-feedback systems rely on monitor functions that monitor whether asymp-
totic tracking can be achieved (resulting in bounded energy of the tracking error) [36] or
whether finite-time stabilization (i.e. the tracking error converges to zero in finite time)
can be achieved [115]. Unfortunately, the same mechanism and monitor functions can-
not be adopted for agents in power-chained form systems due to the aforementioned
structural difficulty in achieving asymptotic tracking, see also [83, Examples 2.1 and 2.2].
Therefore, a different logic-based mechanism must be sought for distributed control of
power chained dynamics. This motivates the research question in this chapter: is it pos-
sible to design a new logic-based mechanism for multi-agent systems in power-chained
form systems with multiple unknown control directions even when asymptotic tracking
cannot be structurally obtained?

This chapter provides a positive answer to this question with the following contribu-
tions:

Ï To overcome the difficulty that no asymptotic tracking can be achieved for the
power-chained form systems, we propose a new dynamic boundary function, which
is decreasing in-between switching instants and possibly increasing at the switch-
ing instants of logic-based control (cf. Fig. 5.1);

Ï We formally exclude any chattering phenomenon by proposing a new dynamic
threshold condition at the switching instants of logic-based control. It is worth
noticing that state-of-the-art switching mechanisms cannot formally exclude chat-
tering (cf. the discussion in our Remark 5.1);

Ï To overcome the challenge that the exact value of the Lyapunov function is un-
available for logic-based control, we propose a new Lyapunov-like function (cf.
the discussion in our Remark 5.2).

5.2. Problem Formulation and Preliminaries
Consider a multi-agent system whose agents have the following nonlinear dynamics:

χ̇i ,m =φi ,m(χi ,m)+ψi ,m(χi ,m)χ
pi ,m

i ,m+1,

χ̇i ,ni =φi ,ni (χi ,ni
)+ψi ,ni (χi ,ni

)u
pi ,ni
i ,

yi =χi ,1,

(5.1)

for i = 1, . . . , N , m = 1, . . . ,ni−1, where ni is the dimension of system stateχi ,ni
= [χi ,1, . . . ,

χi ,ni ]T ∈Rni and χi ,m = [χi ,1, . . . ,χi ,m]T ∈Rm . In (5.1), pi ,m ∈Nodd are positive odd pow-
ers, and ui ∈R is the agent control input to be designed. The functionsφi ,m(·) andψi ,m(·)
are unknown locally Lipschitz continuous nonlinearities. The following assumptions are
considered.

Assumption 5.1 [135] For each follower i , the signs of ψi ,m(·), called the control direc-
tions, are unknown and there exist known positive constants ψi ,m and ψ

i ,m
such that

ψ
i ,m

≤ |ψi ,m(·)| ≤ψi ,m (5.2)

for i = 1, . . . , N , m = 1, . . . ,ni .
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Define the consensus tracking error for the i -th follower as

ξi ,1 =
∑

j∈Ni

ai j (yi − y j )+bi (yi − yr), (5.3)

for i = 1, . . . , N . After collecting ξ1 = [ξ1,1, . . . ,ξN ,1]T ∈ RN , one has ξ1 = (L +B)δ, where

δ= y−y r with y = [y1, . . . , yN ]T and y r = [yr, . . . , yr]T . Due to the nonsingularity of L +B,

it holds that ‖δ‖ ≤ ‖ξ1‖
σmin(L +B)

, where σmin(L +B) is the minimum singular value of

L +B. We impose a prescribed performance [6] on the consensus tracking error ξi ,1

as ξ
i ,1

(t ) ≤ ξi ,1(t ) ≤ ξi ,1(t ) for t ≥ 0, where ξi ,1(t ) = (ρi ,1 −ρi ,∞)exp(−l i ,1t )+ρi ,∞ and

ξ
i ,1

(t ) = (ρ
i ,1

+ρi ,∞)exp(−l i ,1t )−ρi ,∞ are the so-called performance functions [6], where

l i ,1 > 0 and l i ,1 > 0 denote the minimum admissible convergence rates, ρi ,∞ > 0 is the
maximum allowable tracking error at steady state, ρi ,1 > ρi ,∞ > 0 and ρ

i ,1
< −ρi ,∞ < 0

respectively represent the maximum and minimum bounds for ξi ,1(0). The following
transformed consensus tracking error is then used for feedback:

si ,1(t ) = ln

(
ξi ,1(t )−ξ

i ,1
(t )

ξi ,1(t )−ξi ,1(t )

)
. (5.4)

Note that si ,1 is monotonically increasing w.r.t. ξi ,1 and that (5.4) implies that the
consensus tracking error ξi ,1 is within its imposed bounds provided si ,1 is bounded [6].

Problem 5.1 The goal is consensus tracking, i.e. to design ui such that the output of
each agent can track the leader agent’s signal yr in spite of completely multiple unknown
control directions, while guaranteeing the boundedness of closed-loop signals.

Practical tracking [83, eq. (2.10)] (i.e. the tracking error converges to a residual set)
will be sought, due to the fact that asymptotic tracking cannot be realized in general for
dynamics (5.1) [83].

5.3. Proposed Distributed Consensus Design
5.3.1. Adaptive Switching Consensus Protocol
The control design solving the consensus tracking problem comprises a continuous in-
put (i.e. acting in-between two consecutive switching instants) and a switching mecha-
nism (acting at the switching instants) to tune online some parameters of the continuous
input. In this section, we focus on the continuous input, the design of which is well-
established in literature under the assumption that the control directions are known
[89, 135]. Therefore, this section is kept short so as to give more space to the novel switch-
ing mechanism in Sect. 5.3.2.

After defining si ,1 as in (5.4), and state errors

si ,m =χi ,m −αi ,m−1, m = 2, . . . ,ni , (5.5)
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the continuous control input comprises the so-called virtual laws αi ,m and the actual
control ui , designed as

αi ,1 =−hi ,1R
1

pi ,1

i ,1

(
ki ,1 +εp i ,1

i ,1 Θ̂i ,1Γ
p i ,1

i ,1 +%p i ,1

i ,1

) 1
pi ,1 , (5.6)

Ri ,1 = s
pi ,1

i ,1

[
`i ,1ψi ,1

(di +bi )(1−πi ,1)
]−1,

αi ,m =−hi ,mR
1

pi ,m

i ,m

(
ki ,m +εp i ,m

i ,m Θ̂i ,mΓ
p i ,m

i ,m +%p i ,m

i ,m

) 1
pi ,m , (5.7)

Ri ,m = s
pi ,m

i ,m

[
ψ

i ,m
(1−πi ,m)

]−1, (m = 1, . . . ,ni )

ui =αi ,ni , πi ,ni = 0, (5.8)

˙̂Θi ,m = γi ,m

[
ε

p i ,m

i ,m spi+3
i ,m Γ

p i ,m

i ,m −βi ,mΘ̂i ,m

]
, (5.9)

with p i ,m = pi+3
pi−pi ,m+3 , p

i ,m
= pi+3

pi ,m
, pi = max

m=1,...,ni
{pi ,m}, and where 0 < πi ,m < 1, %i ,m > 0,

εi ,m > 0, γi ,m > 0 and βi ,m > 0,(m = 1, . . . ,ni ) are design parameters. In (5.9), Θ̂i ,m is
the estimate of Θi ,m = ‖W ∗

i ,m‖p i ,m and Γi ,m = ‖ϕi ,m‖, which comes from appropriately
designed function approximators (as detailed later on). Notice that the control design
(5.6)-(5.9) is not complete, since the terms ki ,m and hi ,m are to be designed: these terms
are necessary to tackle the multiple unknown control directions, and their design will be
addressed in Sect. 5.3.2 via a switching mechanism. The rationale for the design (5.6)-
(5.9) is given in the following steps.

Step i ,1 (i = 1, . . . , N ): The time derivative of si ,1 along (5.1), (5.3), and (5.4) is

ϑ̇i ,1 = li ,1ξ̇i ,1 +Hi ,1 = li ,1(di +µi )ψi ,1χ
pi ,1

i ,2 +Ei ,1, (5.10)

where li ,1 = ∂si ,1/∂ξi ,1 > 0, Hi ,1 = (
∂si ,1/∂ξi ,1

)
ξ̇i ,1 +

(
∂si ,1/∂ξ

i ,1

)
ξ̇

i ,1
, and Ei ,1 = li ,1(di +

µi )φi ,1 − li ,1
∑

j∈Ni
ai j (φi ,1 +ψi ,1χ

pi ,1

i ,2 )−µi ẏr +Hi ,1. Along the same veins as [126], there
exist some optimal weights W ∗

i ,1, and a linear-in-the-parameter approximator W ∗
i ,1ϕi ,1(Zi ,1)

for |Ei ,1| such that

s
pi−pi ,1+3
i ,1 Ei ,1 ≤

∣∣∣spi−pi ,1+3
i ,1

∣∣∣[W ∗
i ,1ϕi ,1(Zi ,1)+εi ,1(Zi ,1)

]
≤ spi+3

i ,1

(
%

p i ,1

i ,1 +εp i ,1

i ,1 Θi ,1Γ
p i ,1

i ,1

)
+ħi ,1,

where the last inequality uses Lemma 3.1. Furthermore, ħi ,1 = ε
−p

i ,1

i ,1 +%
−p

i ,1

i ,1 ε
p

i ,1

i ,1 with
εi ,1 > 0 and%i ,1 > 0 being design constants, εi ,1(Zi ,1) is the approximation error satisfying∣∣εi ,1(Zi ,1)

∣∣≤ εi ,1 on a compact setΩi ,1, Zi ,1 =
[
χi ,1,χ j ,1, j∈Ni

,χ j ,2, j∈Ni
,bi yr,bi ẏr

]T ∈Ωi ,1,
and εi ,1 > 0 a constant.

Consider the Lyapunov function candidate

Vi ,1 =
s

pi−pi ,1+4
i ,1

pi −pi ,1 +4
+ 1

2γi ,1
Θ̃2

i ,1 (5.11)
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where Θ̃i ,1 =Θi ,1 − Θ̂i ,1. According to Lemma 3.1, it holds that

s
pi−pi ,1+3
i ,1 χ

pi ,1

i ,2 = `i ,1s
pi−pi ,1+3
i ,1 s

pi ,1

i ,2 +υi ,1s
pi−pi ,1+3
i ,1 α

pi ,1

i ,1

< |`i ,1|
(
spi+3

i ,1 + spi+3
i ,2

)+υi ,1s
pi−pi ,1+3
i ,1 α

pi ,1

i ,1 . (5.12)

Then, it follows from (5.10)-(5.12) that the derivative of Vi ,1 with respect to time satisfies

V̇i ,1 <li ,1(di +bi )s
pi−pi ,1+3
i ,1 α

pi ,1

i ,1 hi ,1υi ,1|ψi ,1|−
Θ̃i ,1

˙̂Θi ,1

γi ,1

+ spi+3
i ,1

(
%

p i ,1

i ,1 +εp i ,1

i ,1 Θi ,1Γ
p i ,1

i ,1

)
+Πi ,1 +ħi ,1

+$i ,1
(
spi+3

i ,1 + spi+3
i ,2

)
, (5.13)

whereΠi ,1 = li ,1(di+bi )υi ,1s
pi−pi ,1+3
i ,1 α

pi ,1

i ,1 (sign(ψi ,1)−hi ,1)|ψi ,1|,$i ,1 = (di+bi )li ,1ψi ,1`i ,1,
and we used the fact thatψi ,1 = sign(ψi ,1)|ψi ,1|. Substituting the virtual controlαi ,1 (5.6)
into (5.13) gives

V̇i ,1 <− (ki ,1 −$i ,1)spi+3
i ,1 + spi+3

i ,1 ε
p i ,1

i ,1 Θ̃i ,1Γ
p i ,1

i ,1

− Θ̃i ,1
˙̂Θi ,1

γi ,1
+$i ,1spi+3

i ,2 +Πi ,1 +ħi ,1. (5.14)

Substituting the adaptive law ˙̂Θi ,1 (5.9) into (5.14) yields

V̇i ,1 <−ci ,1spi+3
i ,1 +$i ,1spi+3

i ,2 +βi ,1Θ̃i ,1Θ̂i ,1 +Πi ,1 +ħi ,1,

where ci ,1 = ki ,1 −$i ,1.
Step i ,m (i = 1, . . . , N , m = 2, . . . ,ni −1) : It follows from (5.1), (5.5), and (5.7) that the

derivative of si ,m is
ṡi ,m =ψi ,mχ

pi ,m

i ,m+1 +Ei ,m , (5.15)

where Ei ,m =φi ,m−∑m−1
q=1

∂αi ,m−1
∂χi ,q

(
φi ,q +ψi ,qχ

pi ,q

i ,q+1

)− ∂αi ,m−1
∂yr

ẏr−∑m−1
q=1

∂αi ,m−1

∂Θ̂i ,q

˙̂Θi ,q −∑
j∈Ni

ai j
∂αi ,m−1
∂χ j ,1

(
φ j ,1 +ψ j ,2χ

p j ,1

j ,2

)
. Referring to Step i ,1, there exist some optimal weights W ∗

i ,m ,

and a linear-in-the-parameter approximator W ∗
i ,mϕi ,m(Zi ,m) for |Ei ,m | such that

s
pi−pi ,m+3
i ,m Ei ,m ≤

∣∣∣spi−pi ,m+3
i ,m

∣∣∣[W ∗
i ,mϕi ,m(Zi ,m)+εi ,m(Zi ,m)

]
≤spi+3

i ,m

(
%

p i ,m

i ,m +εp i ,m

i ,m Θi ,mΓ
p i ,m

i ,m

)
+ħi ,m ,

where ħi ,m = ε
−p

i ,m

i ,m +%
−p

i ,m

i ,m ε
p

i ,m

i ,m with εi ,m > 0 and %i ,m > 0 design constants, εi ,m(Zi ,m) is

the approximation error satisfying
∣∣εi ,m(Zi ,m)

∣∣≤ εi ,m on a compact setΩi ,m , with Zi ,m =[
χi ,m ,χ j ,m,,

∂αi ,m−1
∂χ j ,1

,
∂αi ,m−1
∂χi ,1

, . . . ,
∂αi ,m−1
∂χi ,m−1

,
∂αi ,m−1

∂Θ̂i ,1
, . . . ,

∂αi ,m−1

∂Θ̂i ,m−1
,Θ̂i ,1, . . . ,Θ̂i ,m−1,

∂αi ,m−1
∂yr

,bi yr
]T

j∈Ni

∈Ωi ,m and εi ,m > 0 a constant. Consider the Lyapunov function candidate

Vi ,m =Vi ,m−1 +
s

pi−pi ,m+4
i ,m

pi −pi ,m +4
+ 1

2γi ,m
Θ̃2

i ,m , (5.16)
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where Θ̃i ,m =Θi ,m − Θ̂i ,m . Following similar derivations as in Step i ,1, the derivative of
Vi ,m with respect to time is

V̇i ,m <−∑m
q=1 ci ,q spi+3

i ,q +$i ,m spi+3
i ,m+1 +

∑m
q=1Πi ,q

+∑m
q=1

(βi ,q

2

(
Θ2

i ,q − Θ̃2
i ,q

)+hi ,q

)
, (5.17)

where ci ,m = ki ,m−$i ,m−$i ,m−1,$i ,m =ψi ,m`i ,m , andΠi ,m = s
pi−pi ,m+3
i ,m α

pi ,m

i ,m (sign(ψi ,m)−
hi ,m)υi ,m |ψi ,m |, (m = 2, . . . ,ni −1).

Step i ,ni (i = 1, . . . , N ) : For the last step, consider the Lyapunov function candidate

Vi ,ni =Vi ,ni−1 +
s

pi−pi ,ni
+4

i ,ni

pi −pi ,ni +4
+ 1

2γi ,ni

Θ̃2
i ,ni

, (5.18)

where Θ̃i ,ni = Θi ,ni − Θ̂i ,ni . Along similar lines as the previous steps, it is possible to
conclude that

V̇i ,ni <−∑ni
q=1 ci ,q spi+3

i ,q +∑ni
q=1

(
βi ,q

2

(
Θ2

i ,q − Θ̃2
i ,q

))
+∑ni

q=1 hi ,q +∑ni
q=1Πi ,q , (5.19)

with ci ,ni = ki ,ni −$i ,ni−1 and Πi ,ni = s
pi−pi ,ni

+3

i ,ni
u

pi ,ni
i (sign(ψi ,ni )−hi ,ni )|ψi ,ni |. For any

constant ηi > 0, in light of Lemma 2.2, we have ηi + spi+3
i ,q ≥ η

pi ,q−1

pi +3

i s
pi−pi ,q+4
i ,q . Thus, (5.19)

can be upper bounded as

V̇i ,ni <−ςi Vi ,ni +Ξi +
∑ni

q=1Πi ,q , (5.20)

where ςi = min
{
γi ,qβi ,q , (pi−pi ,q+4)ci ,qη

pi ,q−1

pi +3

i , i = 1, . . . , N , q = 1, . . . ,ni
}
,Ξi =∑ni

q=1(ci ,q

ηi +µi ,q )+∑ni
q=1

1
2βi ,qΘ

2
i ,q .

The remaining problem is now the one of handling the term
∑ni

q=1Πi ,q in (5.20) con-
taining the signs of the control directions, which are unknown in view of Assumption 5.1.
To tackle this term, a logic-based switching mechanism is proposed in the next section
to adapt online the estimates hi ,m of the multiple control directions.

5.3.2. Proposed Logic-based Design
Logic-based control has been proposed in the literature for different classes of systems
[36, 77, 115]. Because logic-based loops are switched systems [9, 54, 134], the concept
of solution is intended in the sense of Carathéodory [54, Sect. 1.2.1]. Also, the subse-
quent switching mechanism is designed in such a way that chattering is avoided and
the switching stops in finite time. Therefore, phenomena such as sliding mode or Zeno
behavior, which are often a concern in switched systems, are avoided.

We adopt a similar notation to [36], where the vectors di ,σ ∈Rni , whose elements are
either 1 or −1, are used to represent all possible combinations of ni control directions for
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Figure 5.1: The sketch of the proposed switching mechanism.

each agent i . Accordingly, the switching sequence σ(·), taking values in 0,1, . . . ,2ni −1,
is a piecewise right-continuous function [54, Chap.1], and goes through all such possi-
ble combinations. For example, if ni = 2, we have four possible combinations: di ,0 =
[−1,−1]T , di ,1 = [−1,1]T , di ,2 = [1,1]T , di ,3 = [1,−1]T . The order according to which the
combinations are listed can be arbitrary, provided that all combinations are listed with-
out repetitions. The reader can refer to [36] for more details on di ,σ. Please notice that
each agent i can exhibit its own switching sequence σi (·): however, in the following we
will simply use σ(·) to avoid complicating the notation. Define hi (t ) = [hi ,1, . . . ,hi ,ni ]T

with hi ,m ∈ {−1,1}, m = 1, . . . ,ni . Let us now define

V i (t ) = max
{
`i (tσ, t ), V̂i ,ni (t )

}
, (5.21)

Li (tσ, t ) = `i (tσ, t )−V i (t ), (5.22)

with

V̂i ,ni =
∑ni

m=1

 s
pi−pi ,m+4
i ,m

pi −pi ,m +4
+ 1

2γi ,m
Θ̂2

i ,m

 (5.23)

and `i (·, ·) a dynamic boundary function designed as

`i (tσ, t ) = (
V i (tσ)−`i ,∞(tσ)

)
exp

(−θi (t − tσ)
)+`i ,∞(tσ),

where θi > 0 is a design parameter. Let

Mi (tσ, t ) =Li (tσ, t )+κi (5.24)

where κi > 0 is a preselected constant.
We are now at the position to present the logic-based mechanism for updating hi (t ),

σ(t ), ki ,m(t ), m = 1, · · · ,ni , and `i ,∞(t ). After an initialization phase, the mechanism
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comprises a hold phase (i.e. σ is kept constant) and an update phase (i.e. σ is switched
to a new value).

Initialization: t0 ← 0,σ← 0, hi (t0) ← di ,0, V i (t0) ≥ `i ,∞(t0) > 0 and V i (t0) ≥ V̂i ,ni (t0).
Hold phase: Phase in-between consecutive switching instants:

while Mi (tσ, t ) ≥ 0, (5.25)

do hi (t ) ← di ,σ; (5.26)

`i ,∞(t ) ← `i ,∞(tσ); (5.27)

ki ,m(t ) ← ki ,m(tσ); (5.28)

end while

Update phase: Phase at the switching instant:

if Mi (tσ, t ) < 0, (5.29)

then σ←σ+1; (5.30)

if σ is equal to 2ni ,

then σ← 0; (5.31)

end if

tσ← t ; (5.32)

V i (tσ) ← max
{

V̂i ,ni (t−σ ),V̂i ,ni (tσ)
}

; (5.33)

hi (t ) ← di ,σ; (5.34)

`i ,∞(tσ) ← `i ,∞(tσ−1)+ζ`i ,∞ ; (5.35)

`i ,∞(t ) ← `i ,∞(tσ); (5.36)

ki ,m(tσ) ← ki ,m(tσ−1)+ζki ,m ; (5.37)

ki ,m(t ) ← ki ,m(tσ); (5.38)

end if

with ζ`i ,∞ > 0 and ζki ,m > 0 design constants, m = 1, . . . ,ni , σ = 1,2, . . ., and where t−σ
denotes the value of tσ when (5.29) is satisfied but hi (tσ), `i ,∞(tσ), and ki ,m(tσ) have
not been updated yet, and tσ represents the time instant when (5.29) holds, and in the
meantime, hi (tσ), `i ,∞(tσ), and ki ,m(tσ) also have been updated according to (5.34)-
(5.38).

The rationale for the proposed mechanism is as follows: the switching instants tσ,
σ = 0,1, ..., occur whenever condition (5.29) is satisfied. The reset condition in (5.31)
is necessary when all combinations in di ,σ have been visited and thus it is necessary
to start from the first one. The logic condition (5.33) circumvents the chattering phe-
nomenon at the switching instants tσ, as elaborated in Remark 5.3.

Remark 5.1 Inequality (5.29) guarantees that a new switching instant cannot occur im-
mediately after the previous one, i.e., there always exists a positive dwell time between
two consecutive switchings. This is due to the fact that Mi (tσ, tσ) is strictly positive in
view of Mi (tσ, tσ) = κi > 0 since `i (tσ, tσ) =V i (tσ). This eventually implies tσ 6= tσ+1.
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Algorithm 1 Logic-Based Distributed Switching Control Mechanism for the i th Follower
Agent

1: Initialize: Set t0 ← 0, σ← 0, hi (t0) ← di ,0, V i (t0) ≥ `i ,∞(t0) > 0 and

2: V i (t0) ≥ V̂i ,ni (t0). Select positive design parameters ζ`i ,∞

3: and ζki ,m , i = 1, . . . , N , m = 1, . . . ,ni .

4: For every time t , for every agent i , calculate V̂i ,ni (t ), `i (tσ, t ), V i (t ),

5: Li (tσ, t ), and Mi (tσ, t ).

6: while
(
Mi (tσ, t ) ≥ 0

)
, do

7: Implement virtual control law (5.7), actual control

8: law (5.8), and parameter adaptation law (5.9).

9: hi (t ) ← di ,σ;

10: `i ,∞(t ) ← `i ,∞(tσ);

11: ki ,m(t ) ← ki ,m(tσ);

12: else
13: σ←σ+1;

14: if σ is equal to 2ni ;

15: then σ← 0;

16: end if
17: tσ← t ;

18: V i (tσ) ← max
{

V̂i ,ni (t−σ ), V̂i ,ni (tσ)
}

;

19: hi (t ) ← di ,σ;

20: `i ,∞(tσ) ← `i ,∞(tσ−1)+ζ`i ,∞ ;

21: `i ,∞(t ) ← `i ,∞(tσ);

22: ki ,m(tσ) ← ki ,m(tσ−1)+ζki ,m ;

23: ki ,m(t ) ← ki ,m(tσ).

24: end while
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The unique challenges of using logic-based mechanisms to handle multiple unknown
control directions for power-chained form systems are elaborated in the following re-
marks:

Remark 5.2 A crucial challenge of the proposed logic-based switching is that the exact
value of the Lyapunov function Vi ,m (5.16) is unavailable (as it contains the unknown
constants Θi ,m in Θ̃i ,m = Θi ,m − Θ̂i ,m). Therefore, the unavailable Lyapunov function
must be replaced by some estimate.

Remark 5.3 State-of-the-art logic-based mechanisms [36, 115] cannot formally exclude
any chattering phenomenon. This is because these mechanisms adopt`i (tσ, tσ) = V̂i ,ni (tσ)
= V̂i ,ni (t−σ ). In view of the discussions in [124, Remark 2 and the analysis after eq. (35)],
it is theoretically possible for such mechanisms to yield an increase V̂i ,ni (tσ) = V i (tσ) >
V̂i ,ni (t−σ )+κi = `i (tσ, tσ)+κi , which indicates that Mi (tσ, t ) < 0, leading to a new switch-
ing instant immediately after the previous one. This is because updating hi (t ) and ki ,m

may result in instantaneous changes in the tracking errors si ,m , according to (5.5)-(5.8),
which may lead to an increase of Lyapunov functions (5.11), (5.16) and (5.18). This would
make the inequality (5.29) hold once more immediately after the previous time instant.

Remark 5.4 State-of-the-art logic-based designs for strict-feedback systems [36, 115]
rely on the fact that asymptotic tracking can be obtained for this class of systems: there
exists at least one di ,σ, σ ∈ {0,1, . . . ,2ni −1}, that leads to a vanishing tracking error. Un-
fortunately, it is well known in the literature that asymptotic tracking is impossible in
general for the class of nonlinear systems (5.1) [83]. Therefore, the switching logic can-
not rely on vanishing tracking errors.

5.4. Stability Analysis
To analyze the stability of the closed-loop system, we consider the global Lyapunov func-
tion

V =∑N
i=1 Vi ,ni . (5.39)

Theorem 5.1 Under Assumption 5.1 and given bounded initial conditions Θ̂i ,m(0) ≥ 0,
i = 1, . . . , N , m = 1, . . . ,ni , consider the closed-loop system consisting of the nonlinear
multi-agent dynamics (5.1) in power-chained form systems and the logic-based switch-
ing control mechanism in Algorithm 1. Then, it holds that:

• All closed-loop signals are semi-globally ultimately uniformly bounded, while the
prescribed performances of ξi ,1(t )

(
i .e. ξ

i ,1
(t ) ≤ ξi ,1(t ) ≤ ξi ,1(t )

)
, i = 1, . . . , N , are

ensured.

• Switching stops in finite time and δ(t ) converges to the compact set

Ω? =

δ(t )

∣∣∣∣‖δ(t )‖t→+∞ ≤

√√√√√ (N 2 +N −1)2 ∑N
i=1

ρ2
i ,∞[(exp(si ,1)−1)]2

[1+exp(si ,1)]2

N 1−N (N −1)N−1


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where si ,1 =
[(

pi −pi ,1 +4)(`i ,∞(tσs )+κi
)] 1

pi −pi ,1+4 with σs a sufficiently large integer.
Proof. We provide the proof through two stages. At stage 1, we show that the control
goals of Theorem 5.1 are guaranteed on the interval [0,+∞) provided that the switching
stops in finite time. At stage 2, we show by contradiction that indeed the switching stops
in finite time.

Stage 1: Let [0, ts ) be the maximum interval of the existence of the closed-loop so-
lution, σs be the final switching index, and tσs < ts be the time instant when the final
switching occurs. Combining (5.21), (5.24), (5.25) and the fact that there is only a finite
number of switchings, one can conclude that after the final switching (i.e. for t > tσs ), it
holds that Li (tσs , t )+κi ≥ 0, t ∈ [tσs , ts ), which indicates that

V̂i ,ni (t ) ≤ `i (tσs , t )+κi , t ∈ [tσs , ts ). (5.40)

Thus, V̂i ,ni (t ), si ,m and Θ̂i ,m(t ), i = 1, . . . , N , m = 1, . . . ,ni , are bounded due to the bound-
edness of `i (·) and κi on the interval [tσs , ts ). Furthermore, the virtual control laws αi ,m ,
m = 1, . . . ,ni − 1, i = 1, . . . , N and the actual control law ui , i = 1, . . . , N are bounded on
[tσs , ts ) according to (5.6)-(5.8). Thus, χi ,m , Θ̃i ,m , m = 1, . . . ,ni , i = 1, . . . , N , are bounded
on [tσs , ts ) arising from the fact that yr(·), Θi ,m and Θ̂i ,m(·) are bounded on [tσs , ts ). Ac-
cording to [91, Theorem 54, page. 476], no finite-time escape phenomenon occurs, and
thus ts =+∞. As a result, one concludes that all closed-loop signals are bounded on the
interval [0,+∞). Then, invoking (5.23) yields

lim
t→+∞ |si ,1| ≤

[(
pi −pi ,1 +4)(`i ,∞(tσs )+κi

)] 1
pi −pi ,1+4

, si ,1

which, in combination with the definition of si ,1, gives

lim
t→+∞ξi ,1(t ) ≤ ρi ,∞ exp(si ,1)−ρi ,∞

1+exp(si ,1)

After using a lower bound N̄
N 2+N−1

[34] with N̄ = ( N−1
N

) N−1
2 for σmin

(
L +B

)
, it follows

that

lim
t→+∞‖δ(t )‖ ≤

√√√√√ (N 2 +N −1)2
N∑

i=1

ρ2
i ,∞[(exp(si ,1)−1)]2

[1+exp(si ,1)]2

N 1−N (N −1)N−1
.

We are now in a position to discuss the existence of a compact set that makes the
universal approximation ability valid, provided that the switching stops in finite time.

Consider the initial conditions χi ,m(0) and Θ̂i ,m(0) ≥ 0, for i = 1, . . . , N , m = 1, . . . ,ni ,

satisfying V̂
(
χi ,m(0),Θ̂i ,m(0)

) < Υ0 with Υ0 = ∑N
i=1ħi with ħi , maxσ∈{0,1,...,σs }`i (tσ, tσ)

and consider the compact set

Ω0 =
{(
χi ,m(t ),Θ̂i ,m(t )

)∣∣∣V̂ (
χi ,m ,Θ̂i ,m

)≤Υ, t ≥ 0
}

(5.41)

where Υ=Υ0 +∑N
i=1κi . According to Algorithm 1, (5.39), and (5.40), ħi is bounded pro-

vided that the switching stops in finite time, and that the inequality

V̂
(
χi ,m(t ),Θ̂i ,m(t )

)<Υ, (5.42)
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holds true for all t ≥ 0 provided that V̂
(
χi ,m(0),Θ̂i ,m(0)

) <Υ0 holds true. Therefore, the
existence of the compact setΩ0 makes the universal approximation ability of the linear-
in-the-parameter approximation valid since all state variables involved are retained in
Ω0 all the time.

Stage 2: At this stage, by seeking a contradiction, we prove that there indeed exist
a finite number of switchings. Let us first suppose that there exist an infinite number
of switchings. Therefore, there surely exists a sufficiently large tσs such that γi ,qβi ,q ≤

(pi −pi ,q +4)ci ,qη

pi ,q−1

pi +3

i , i = 1, . . . , N , q = 1, . . . ,ni , and such that

hi (t ) = di ,σs = [sign(ψi ,1), . . . , sign(ψi ,ni )]T (5.43)

on [tσs , tσs+1). Thus, ςi = γi ,qβi ,q , q = 1, . . . ,ni , i = 1, . . . , N . It follows from (5.40) that
(5.43) becomes

V̇i ,ni <−ςi Vi ,ni +Ξi as
∑ni

q=1Πi ,q = 0, (5.44)

which, combined with (20) and the Gronwall inequality [83], implies that

∣∣Θ̂i ,m
∣∣<√

2γi ,m
(
Vi ,ni (0)+Ξi /ςi

)+Θi ,m , Λ̄i ,m

spi+3
i ,m <

[
(pi −pi ,m +4)

(
Vi ,ni (0)+Ξi /ςi

)] pi +3
pi −pi ,m+4

,Ψi ,m (5.45)

holds on [tσs , tσs+1) for i = 1, . . . , N , m = 1, . . . ,ni . Thus, it follows from (5.9) that

∣∣ ˙̂Θi ,m
∣∣< γi ,mε

p i ,m

i ,m Ψi ,mΓi ,m +γi ,mβi ,mΛ̄i ,m ,Υi ,m (5.46)

holds on [tσs , tσs+1), where Γi ,m is the upper bound of Γ
p i ,m

i ,m according to [135, Lemma
2], for i = 1, . . . , N , m = 1, . . . ,ni .

Recalling (5.18), (5.23), (5.44)-(5.46), we can obtain that

˙̂Vi ,ni (t ) <−ςi Vi ,ni +Ξi +
∑ni

m=1

Θi ,m
˙̂Θi ,m

γi ,m

<−ςi V̂i ,ni +Ξi +
∑ni

m=1

Θi ,m
˙̂Θi ,m

γi ,m
−∑ni

m=1

ςiΘ
2
i ,m

2γi ,m

+∑ni
m=1

ςiΘi ,mΘ̂i ,m

γi ,m
<−ςi V̂i ,ni + Ξ̂i , (5.47)

where Ξ̂i =Ξi +∑ni
m=1

Θi ,mΥi ,m
γi ,m

+∑ni
m=1

ςiΘi ,m Λ̄i ,m
γi ,m

is an unknown positive constant. Hence,

we have V̂i ,ni (t ) ≤ Ξ̂i
ςi

, on [t∗, tσs+1), where t∗ is the first time instant satisfying V̂i ,ni (t∗) =
Ξ̂i
ςi

. Then, one has that ˙̂Vi ,ni < 0 holds when V̂i ,ni ≥ Ξ̂i
ςi

. The fact that V̂i ,ni (·) strictly
decreases on the time interval [tσs , t∗) implies that no new switching occurs on [tσs , t∗)
and that t∗ < tσs+1.
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When t ∈ [tσs , t∗
)
, we can guarantee 0 < θi ≤ ςi by choosing proper γi ,q , and βi ,q , q =

1, . . . ,ni , according to ςi = γi ,qβi ,q , q = 1, . . . ,ni , i = 1, . . . , N , which implies that V̂i ,ni (t ) ≤
`i (t ), on [tσs , t∗

)
. When t ∈ [

t∗, tσs+1), the condition `i ,∞(t ) ≥ Ξ̂i
ςi

can be satisfied via a

sufficiently large σs in view of (5.27) and (5.28). Hence, it holds that V̂i ,ni (t ) ≤ `i (tσs , t ),
∀t ∈ [

t∗, tσs+1
)
.

To summarize, we have that V̂i ,ni (t ) < `i (tσs , t ) < `i (tσs , t )+κi , on [tσs , tσs+1), which
means that switching condition (5.29) can never be satisfied on the time interval [tσs , tσs+1).
This contradicts the assumption made in the beginning of stage 2. Thus, the proof is
completed. ■

5.5. Simulation Example

0 1 2 3

(a)

1 2 3

0

(b)

Figure 5.2: Two different communication topologies

To validate the effectiveness of the proposed control method, two sorts of commu-
nication topologies including one leader (labeled by 0) with three follower agents are
considered as represented by the directed graph of Fig. 5.2. From Fig. 5.2-(a) and 5.2-
(b), it can be seen that the signal of the leader is only accessible to follower 1 and follower
2, respectively. The following parameter settings are kept the same for both topologies.
The leader output is yr = 6sin(0.5t )+6sin(t ) and the three follower agents are described
by the following dynamics:

Agent 1

{
χ̇1,1 = 1.5cos(χ1,1)χ1,1 +0.8χ3

1,2,

χ̇1,2 =χ1,1 sin(χ1,2)+ (
tanh(χ1,1)+1.2

)
u5

1.

Agent 2

{
χ̇2,1 = 1.25χ2,1 +0.5χ3

2,1 +1.5χ3
2,2,

χ̇2,2 = 0.75χ2,2χ
2
2,1 +

(
sin(χ2,1)2 +0.75

)
u5

2.

Agent 3

{
χ̇3,1 = 0.5

(
cos(χ3,1)+χ2

3,1

)+1.2χ3
3,2,

χ̇3,2 =χ3,1 sin(χ3,2)+ (|cos(χ3,1)|+0.2
)
u5

3.

In our simulation, RBF neural networks (NNs) are used as linear-in-the-parameter
approximators to approximate |Ei , j (Zi , j )|, i = 1,2,3, j = 1,2, employing 64 nodes with
centers evenly spaced in the interval [−1.5,1.5] × [−1.5,1.5] × [−1.5,1.5] × [−1.5,1.5] ×
[−1.5,1.5]× [−1.5,1.5]× [−1.5,1.5]× [−1.5,1.5]× [−1.5,1.5] and widths equal to two. The
initial conditions are selected as: χ1,1(0) = 0.75, χ1,2(0) = −1.75, χ2,1(0) = 1.5, χ2,2(0) =
−1.5, χ3,1(0) = 1.75, χ3,2(0) = −1.2, Θ̂1,1(0) = 6.5, Θ̂1,2(0) = 7.5, Θ̂2,1(0) = 4, Θ̂2,2(0) = 3,
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Θ̂3,1(0) = 6.5, Θ̂3,2(0) = 4.75, `1,∞(0) = `2,∞(0) = `3,∞(0) = 0.5, k1,1(0) = k2,1(0) = k3,1(0) =
6, k1,2(0) = k2,2(0) = k3,2(0) = 8. The design parameters are chosen as: ζk1,1 = ζk1,2 = 1,
ζk2,1 = ζk2,2 = ζk3,1 = ζk3,2 = 1.5, ε1,1 = ε1,2 = ε2,1 = ε2,2 = ε3,1 = ε3,2 = 1, %1,1 = %1,2 = %2,1 =
%2,2 = %3,1 = %3,2 = 1, γ1,1 = γ2,1 = γ3,1 = 1, γ1,2 = γ2,2 = γ3,2 = 0.4, β1,1 = β2,1 = β3,1 = 0.8,
β1,2 = β2,2 = β3,2 = 6.25, π1,1 = π2,1 = π3,1 = 0.25, κ1 = κ2 = κ3 = 0.3, θ1 = 1.8, θ2 = 1.25,
θ3 = 0.75, ζ`1,∞ = ζ`2,∞ = ζ`3,∞ = 0.5, ρ

1,1
= ρ

2,1
= ρ

3,1
= −6, ρ1,1 = ρ2,1 = ρ3,1 = 8, l 1,1 =

l 2,1 = l 3,1 = 3, l 1,1 = l 2,1 = l 3,1 = 4, and ρ1,∞ = ρ2,∞ = ρ3,∞ = 0.95.
The simulation results are shown in Figs. 5.3-5.18. Fig. 5.3 and Fig. 5.4 reveal that

the tracking errors ξi ,1, i = 1,2,3, under two topologies evolve within their respective
bounds. Figs. 5.5-5.7 and Figs. 5.8-5.10 show that the functions V̂i ,ni , i = 1,2,3, under
both topologies are upper bounded by `i , i = 1,2,3, respectively. It can be seen from
Figs. 5.11-5.13 and 5.14-5.16 that switching for both topologies stops in finite time and
that the parameters ki , j , i = 1,2,3, j = 1,2, are updated synchronously with the control
directions hi , j , i = 1,2,3, j = 1,2. Figs. 5.17-5.18 show that the NN approximators can
achieve satisfactory approximation.

0 5 10 15
-10

0

10

0 5 10 15
-10

0

10

0 5 10 15
-10

0

10

Figure 5.3: Trajectories of the consensus tracking errors ξ1,1, ξ2,1, and ξ3,1.

5.6. Conclusions
This chapter has proposed a logic-based switching mechanism for distributed switching
tracking control for nonlinear multi-agent systems in power-chained form systems and
with multiple unknown control directions. A novel dynamic boundary function that is
decreasing in-between switching instants and possibly increasing at the switching in-
stants has been devised to tackle the issue that asymptotic tracking cannot be achieved
for such challenging nonlinear systems. An interesting problem to be investigated in
the future is to combine logic-based updates of the control directions with logic-based
updates of the parameters.
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Figure 5.4: Topology in Fig. 2-(b): trajectories of the consensus tracking errors ξ1,1, ξ2,1, and ξ3,1.
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Figure 5.5: Topology in Fig. 2-(a): trajectories of V̂1,2 and `1 .

0 5 10 15

0

5

10

15

20

25

8 8.02 8.04 8.06

1

2

3

4

5

6

7

8

9

0.105 0.11 0.115

8

10

12

14

16

18

20

22

0.105 0.11 0.115

7.4

7.6

7.8

8

8.2

8.4

8.6

Figure 5.6: Topology in Fig. 2-(a): trajectories of V̂2,2 and `2.
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Figure 5.10: Topology in Fig. 2-(b): trajectories of V̂3,2 and `3.
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Figure 5.11: Topology in Fig. 2-(a): evolution of h1,1, h1,2, k1,1, and k1,2.
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Figure 5.13: Topology in Fig. 2-(a): evolution of h3,1, h3,2, k3,1, and k3,2.
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Figure 5.15: Topology in Fig. 2-(b): evolution of h2,1, h2,2, k2,1, and k2,2.
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Figure 5.16: Topology in Fig. 2-(b): evolution of h3,1, h3,2, k3,1, and k3,2.
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Figure 5.17: Topology in Fig. 2-(a): evolution of |E1,1|, |E1,2|, |E2,1|, |E2,2|, |E3,1|, |E3,2|, and their NN approxi-
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Figure 5.18: Topology in Fig. 2-(b): evolution of |E1,1|, |E1,2|, |E2,1|, |E2,2|, |E3,1|, |E3,2|, and their NN approxi-
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6
APPROXIMATION-FREE

PRESCRIBED-PERFORMANCE

TRACKING FOR POWER-CHAINED

FORM SYSTEMS WITH

TIME-VARYING UNKNOWN

CONTROL COEFFICIENTS

Approximation-free prescribed-performance control (PPC) for power-chained form sys-
tems with time-varying unknown control coefficients requires to address two open prob-
lems: a) given a Nussbaum function, which properties hold for the power of the Nuss-
baum function? b) to avoid high gains, how to design a switching gain that increases
only when the tracking error is close to violating the performance bounds? To address
the first problem, we show with a counterexample and a positive example that only some
Nussbaum functions are suited to handle time-varying unknown control coefficients for
power-chained form systems. To address the second problem, we propose a new switch-
ing conditional inequality. The introduction is given in Section 6.1. The problem formu-
lation and preliminaries are provided in Section 6.2. Sections 6.3 and 6.4 present the
proposed distributed consensus design and stability analysis, respectively. The simula-
tion examples are in Section 6.5 and Section 6.6 draws the conclusion.

6.1. Introduction
In Chapters 4-5, the adding-one-power-integrator technique has been successfully com-
bined with Nussbaum functions and logic-based adaptation method to tackle multiple
unknown control directions, respectively. However, it should be noted that a universal
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approximator (i.e. RBF NN) has been involved in the design therein to approximate un-
known system nonlinearities. Such a fact unavoidably increases the complexity of the
control schemes since additional adaptation parameters are required to be updated on-
line (i.e. additional nonlinear differential equations must be solved numerically) and ad-
ditional calculations must be performed to generate control signal [12]. Approximation-
free PPC is a control methodology whose strongest feature is its structural simplicity:
uncertainty can be handled without unknown parameter estimators nor approximation
structures (neural networks, fuzzy logic, etc.) being involved in the control design, while
at the same time guaranteeing some prescribed specifications (e.g. maximum overshoot,
minimum convergence rate, and maximum steady-state error).

With respect to handling unknown signs of control coefficients, the Nussbaum func-
tion invented in [75] has been extensively used for tackling such issue. A fundamen-
tal tool to prove closed-loop stability is the so-called conditional inequality, which con-
sists in guaranteeing the boundedness of a Lyapunov-like function when its derivative
along the system trajectories is upper bounded by an appropriate expression depend-
ing on the Nussbaum function. As the control coefficients can be constants or time-
varying functions, three representative conditional inequalities have been proposed so
far [18, 29, 125] to handle these cases. The first conditional inequality was formulated
in [125] to handle unknown signs of constant control coefficients. The second condi-
tional inequality in [29] (see also discussions in [81]) is given in integral form to han-
dle unknown signs of time-varying control coefficients. Recently, [18] categorized the
Nussbaum functions according to some special properties. This categorization led to
type A and type B Nussbaum functions where the former can handle constant control
coefficients, but only the latter can handle time-varying control coefficients. Unfortu-
nately, the capability to handle time-varying control coefficients was shown in [18] only
for strict-feedback and pure-feedback systems, and handling power-chained form non-
linear systems is an open question due to the presence of positive odd-integer-power in
their dynamics.

The main challenge of incorporating Nussbaum functions into approximation-free
PPC is to avoid high-gain issues, since the current results are based on a continuous
and monotonic increase of the gain of the Nussbaum function [133]. With these prob-
lems in mind, realizing Nussbaum adaptive PPC for power-chained form nonlinear dy-
namics with time-varying control coefficients of unknown signs requires to answer two
open questions: (i) whether a positive odd-integer power of a type B Nussbaum function
is still a type B Nussbaum function and why? (ii) is it possible to design a switching condi-
tional inequality (replacing standard non-switching conditional inequalities) that avoids
monotonically increasing high-gain issues?

This chapter gives positive answers to above-mentioned questions and its main con-
tributions are listed below:

Ï A counterexample and a positive example are given to show two crucial points: a
positive odd-integer power of a type B Nussbaum function might not be a type B
Nussbaum function; only some particular type B Nussbaum functions keep their
property even when elevated to a positive odd-integer power. These latter func-
tions can be used for handling time-varying unknown control coefficients.
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Ï A new switching conditional inequality is proposed. This inequality encompasses
existing ones as special cases: instead of always increasing the Nussbaum gain, its
design is based on increasing the Nussbaum gain only when the tracking error is
close to violating the performance bounds.

6.2. Problem Formulation and Preliminaries
This chapter considers the power-chained form nonlinear systems [55, 56, 83]:

χ̇i =φi (χi )+ψi (χi )χpi
i+1, i = 1, . . . ,n −1,

χ̇n =φn(χn)+ψn(χn)upn ,

y =χ1,

(6.1)

where χi = [χ1, . . . ,χi ]T ∈ Ri , pi , i = 1, . . . ,n, are positive odd integers, and u ∈ R is the
control input to be designed. The unknown continuous nonlinear functions φi (·) :Ri →
R (referred to as drift coefficients) and ψi (·) : Ri → R, i = 1, . . . ,n, (referred to as control
coefficients) satisfy the following standard assumption.

Assumption 6.1 [133] There exist unknown, continuous, and positive functions φi (·) :
Ri →R+, ψ

i
(·), and ψi (·) :Ri →R+, i = 1, . . . ,n, such that

|φi (χi )| ≤φi (χi ), and ψ
i
(χi ) ≤ |ψi (χi )| ≤ψi (χi ). (6.2)

Note that Assumption 6.1 does not require the knowledge of the signs of the control
coefficients. Nussbaum functions [75] are standard tools to address unknown signs of
the control coefficients.

Definition 6.1 [18, Definition 3.1], [75] A continuous function N (·) : [0,+∞) → (−∞,+∞)
is called a type A Nussbaum function if it satisfies

lim
y→+∞sup

∫ y
0 N (s)d s

y
=+∞, lim

y→+∞ inf

∫ y
0 N (s)d s

y
=−∞.

Definition 6.2 [18, Definition 4.3] A continuous function N (·) : [0,+∞) → (−∞,+∞) is
called a type B Nussbaum function if it satisfies

lim
y→+∞

∫ y
0 N+(s)d s

y
=+∞, lim

y→+∞sup

∫ y
0 N−(s)d s∫ y
0 N+(s)d s

=+∞,

lim
y→+∞

∫ y
0 N−(s)d s

y
=+∞, lim

y→+∞sup

∫ y
0 N+(s)d s∫ y
0 N−(s)d s

=+∞,

where N+(s) = max
{
0,N (s)

}
and N−(s) = max

{
0,−N (s)

}
are the positive and negative

truncated functions of N (s).

Remark 6.1 Note that type B Nussbaum functions are a special class of type A Nuss-
baum functions [18]. It was shown in [18] that type A Nussbaum functions can handle
unknown signs of constant control coefficients, but may fail to handle unknown signs
of time-varying control coefficients. Accordingly, type B Nussbaum functions were pro-
posed to tackle the time-varying scenarios.



6

108
6. APPROXIMATION-FREE PRESCRIBED-PERFORMANCE TRACKING FOR POWER-CHAINED

FORM SYSTEMS WITH TIME-VARYING UNKNOWN CONTROL COEFFICIENTS

The main problem studied in this chapter is stated below.
Prescribed-performance control (PPC) problem: Consider a bounded reference sig-

nal yr (t ) with bounded derivative and a performance function ρ1(t ) = (ρ1,0 − ρ1,∞)×
exp(−κ1t )
+ρ1,∞ for positive constants ρ1,0 > ρ1,∞ and κ1. The PPC problem aims to design a con-
troller for the system (6.1) such that the closed-loop system satisfies the following two
properties:

(P1) The output tracking error e1(t ) = y(t ) − yr (t ) evolves in the prescribed set Ω ={
e1(t ) ∈R | |e1(t )| < ρ1(t )

}
for t ≥ 0; and

(P2) The closed-loop signals are bounded on the entire time domain [0,+∞).

The PPC problem has been well formulated in literature. However, this problem re-
mains unsolved for the class of dynamics (6.1) and even the stability analysis recently
proposed in [18] does not apply. Solving this problem requires to address two open is-
sues: given a Nussbaum function, which properties hold for the power of the Nussbaum
function? To avoid high gains, how to design a switching gain that increases only when
the tracking error is close to violating the performance bounds? These two problems are
addressed by the technical results in the next section.

To handle the power-chained form systems nonlinearities in (6.1) with unknown
control coefficients, it is required that the positive odd-integer power of a Nussbaum
function, denoted by N p (·), is still a Nussbaum function. However, we show that the
positive odd-integer-power of a type B Nussbaum function may not always result in a
type B Nussbaum function. A counterexample and a positive example are given in the
following two propositions, respectively, with the proofs given in Appendix.

Proposition 6.1 (Counterexample) Consider the function defined by

N (s) =∑
λ∈N+ Nλ(s +2−2λ), (6.3)

whereN+ is the set of positive integers and

Nλ(s) =


2

(
λ3+ 1

3

)
λ sin

(
sπ

)
, if s ∈ [

0,1
)

−2λ
4

sin

(
s −1

2λ−1
π

)
, if s ∈ [

1,2λ
)

0, otherwise

. (6.4)

Then, N (·) is a type B Nussbaum function, but N p (·) with p ≥ 3 a positive odd integer
is not a type B Nussbaum function.

Proof. We first define some quantities as follows:

ςλ,p =
∫ 1

0

[
2

(
λ3+ 1

3

)
λ sin

(
sπ

)]p
d s

= 2p
(
λ3+ 1

3

)
λ
∫ 1

0
sinp (

sπ
)
d s = 2p

(
λ4+ 1

3λ
)
αp
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and

qλ,p =
2λ∫

1

[
2λ

4
sin

(
s −1

2λ−1
π

)]p

d s = 2pλ4
2λ∫

1

sinp
(

s −1

2λ−1
π

)
d s

= 2pλ4
(2λ−1)

∫ 1

0
sinp (sπ)d s = 2pλ4

(2λ−1)αp

forαp = ∫ 1
0 sinp

(
sπ

)
d s. In accordance with Definition 6.2, the proof is divided into three

parts.

(i) For any y ≥ 0, there exists λ ∈N+ such that y ∈ [2λ−2,2λ+1−2). As a result, it holds
that

1

y

∫ y

0
N−(s)d s ≥ 1

2λ+1 −2

∫ 2λ−1

0
N−(s)d s

=

λ−1∑
k=1

qk,1

2λ+1 −2
=

λ−1∑
k=1

2k4
(2k −1)αp

2λ+1 −2
≥ 2λαp

for λ≥ 3. The fact that λ→+∞ as y →+∞ implies limy→+∞ 1
y

∫ y
0 N−(s)d s =+∞.

(ii) Note the following calculation, with y = 2λ−1:

∫ y
0 N+(s)d s∫ y
0 N−(s)d s

=
∑λ

k=1ςk,1∑λ−1
k=1 qk,1

=
∑λ

k=1 2k4+ 1
3 k∑λ−1

k=1 2k4(2k −1
) . (6.5)

It follows from the Stolz-Cesaro Theorem [72, Sect. 3.17, pp. 85, Theorem 1.22] that

lim
λ→+∞

∑λ
k=1 2k4+ 1

3 k∑λ−1
k=1 2k4(2k −1

) = lim
λ→+∞

2λ
4+ 1

3λ

2(λ−1)4+λ−1
=+∞

which, together with (6.5), implies lim
y→+∞sup

∫ y
0 N+(s)d s∫ y
0 N−(s)d s

=+∞.

The results lim
y→+∞

1
y

∫ y
0 N+(s)d s = +∞ and lim

y→+∞sup
∫ y

0 N−(s)d s∫ y
0 N+(s)d s

= +∞ can be proved

in a similar way and are omitted. According to Definition 6.2, N (·) is a type B Nussbaum
function.

(iii) For any y ≥ 0, there exists λ ∈N+ such that y ∈ [2λ−2,2λ+1 −2). According to the
definition of N p , we have

∫ y
0 N p− (s)d s∫ y
0 N

p
+ (s)d s

≤
∫ 2λ−2

0 N p− (s)d s∫ 2λ−2
0 N

p
+ (s)d s

or

∫ 2λ+1−2
0 N p− (s)d s∫ 2λ+1−2
0 N

p
+ (s)d s

.
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The following calculation:

lim
y→+∞sup

∫ y
0 N p− (s)d s∫ y
0 N

p
+ (s)d s

≤ lim
λ→+∞

∫ 2λ+1−2
0 N p− (s)d s∫ 2λ+1−2
0 N

p
+ (s)d s

=

≤ lim
λ→+∞

∑λ
k=1 qk,p∑λ−1
k=1 ςk,p

= lim
λ→+∞

∑λ
k=1 2pk4(

2k −1
)

∑λ
k=1 2p

(
k4+ 1

3 k
)

= lim
λ→+∞

(
2λ−

pλ
3 −2−

pλ
3

)
=


+∞, p = 1;

1, p = 3;

0, p > 3.

shows the violation of Definition 6.2. Thus, one can conclude that N p (·) is not a type B
Nussbaum function. This completes the proof. ■

Proposition 6.2 (Positive example) Consider the function

N (s) = exp(µs2)cos
(πs

2

)
, µ> 0. (6.6)

Then, N p (·) is a type B Nussbaum function for any positive odd integer p ≥ 1.

Proof. According to [18], N p (·) is a type B Nussbaum function for p = 1. So the remain-
ing task is to show that statement still holds for p ≥ 3. By the Darboux-Stieltjes integral
property [72, Sect. 6.12, pp. 257, Theorem 1.7, (h)], for any a ≥ 0, it holds that

exp
(
pµa2)αp ≤

∫ a+1

a
exp

(
pµs2)∣∣∣cosp

(πs

2

)∣∣∣d s

= exp
(
pµs̄2)∫ a+1

a

∣∣∣cosp
(πs

2

)∣∣∣d s ≤ exp
(
pµ(a +1)2)ᾱp (6.7)

for some s̄ ∈ (a, a + 1) and ᾱp = ∫ 1
0 cosp

(
πs
2

)
d s, which is used in the remainder of the

proof. In accordance with Definition 6.2, the proof is divided into two parts.
(i) For any y ≥ 0, there exists λ ∈N such that y ∈ [4λ−3,4λ+1), where N is the set of

integers. As a result, one has

1

y

∫ y

0
N

p
+ (s)d s > 1

4λ+1

∫ 4λ−1

0
N

p
+ (s)d s

> 1

4λ+1

λ−1∑
k=1

∫ 4k+1

4k−1
exp

(
pµs2)cosp

(πs

2

)
d s.

By (6.7), we can arrive at∫ 4k+1

4k−1
exp

(
pµs2)cosp

(πs

2

)
d s ≥ 2ᾱp exp

(
pµ(4k −1)2)



6.2. PROBLEM FORMULATION AND PRELIMINARIES

6

111

and hence

lim
y→+∞

1

y

y∫
0

N
p

+ (s)d s ≥ lim
λ→+∞

2ᾱp

λ−1∑
k=1

exp
(
pµ(4k −1)2

)
4λ+1

=+∞.

(ii) Note the following calculation, with y = 4λ+3:∫ y
0 N p− (s)d s∫ y
0 N

p
+ (s)d s

=
∫ 4λ+3

0 N p− (s)d s∫ 4λ+3
0 N

p
+ (s)d s

>
∑λ

k=0

∫ 4k+3
4k+1 exp

(
pµs2

)∣∣∣cosp
(
πs
2

)∣∣∣d s∑λ
k=0

∫ 4k+1
4k−1 exp

(
pµs2

)
cosp

(
πs
2

)
d s

≥
∑λ

k=0

[
exp

(
pµ(4k +1)2

)+exp
(
pµ(4k +2)2

)]
ᾱp∑λ

k=0

[
exp

(
pµ(4k)2

)+exp
(
pµ(4k +1)2

)]
ᾱp

.

It follows from Stolz-Cesaro Theorem [72] that

lim
λ→+∞

∫ 4λ+3
0 N p− (s)d s∫ 4λ+3
0 N

p
+ (s)d s

≥ lim
λ→+∞

exp
(
pµ(4λ+2)2

)
exp

(
pµ(4λ+1)2

) =+∞,

which implies lim
y→+∞sup

∫ y
0 N p− (s)d s∫ y
0 N p

+ (s)d s
=+∞.

The results lim
y→+∞

1
y

∫ y
0 N p− (s)d s =+∞ and lim

y→+∞sup
∫ y

0 N p
+ (s)d s∫ y

0 N p− (s)d s
=+∞ can be proved

similarly. According to Definition 6.2, N p (·) is a type B Nussbaum function. ■
The following lemma is instrumental to constructing a Nussbaum gain that increases

only when the tracking error is close to violate the performance bounds.

Lemma 6.1 (Switching conditional inequality) Let N (·) be a type B Nussbaum func-
tion. Consider two continuous and piecewise differentiable functions V (·) and s(·) such
that

V̇ (t ) ≤ [
ψ(t )N (s(t ))+β]

ṡ(t ), (6.8)

ṡ(t )

{ ≥ 0, if V (t ) ≥φ,
= 0, if V (t ) <φ,

(6.9)

where φ and β are positive constants, V (0) < φ, s(0) = 0, and ψ(·) is a time-varying un-
known function satisfyingψ(t ) ∈ [

l1, l2
]
, ∀t ≥ 0 with either 0 > l2 > l1 or l2 > l1 > 0. Then,

V (·) and s(·) are bounded on the entire time domain [0,+∞).

Remark 6.2 For better comprehension, a sketch of the idea behind (6.8) is shown in
Fig. 6.1. In the figure and in the following proof, let 0 = t0 < t1 ≤ t2 ≤ t3 ≤ . . . be the time
sequence satisfying V (t j ) =φ, V (t ) <φ, ∀t ∈ (t2 j−2, t2 j−1), and V (t ) ≥φ, ∀t ∈ [t2 j−1, t2 j ],
for j = 1,2, . . .
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Figure 6.1: Illustration of evolution of V (·).

Proof. According to the time sequence in Remark 6.2, we consider the case of t ∈ [t2m−1, t2m]
for m ∈ N+. Integrating V̇ (·) over the time intervals [t0, t1), [t1, t2), ...., [t2m−2, t2m−1),
[t2m−1, t ] results in

V (t ) ≤
m−1∑
j=1

∫ t2 j

t2 j−1

[
ψ(t )N (s(t ))+β

]
ṡ(t )d t +

m∑
i=1

∫ t2 j−1

t2 j−2

V̇ (t )d t

+φ+
∫ t

t2m−1

[
ψ(t )N (s(t ))+β

]
ṡ(t )d t

≤φ+
m−1∑
j=1

∫ t2 j

t2 j−1

[
ψ(t )N (s(t ))+β

]
ṡ(t )d t

+
∫ t

t2m−1

[
ψ(t )N (s(t ))+β

]
ṡ(t )d t ,

where the integral over t ∈ [t2 j−2, t2 j−1) has been removed by observing that V (t2 j−1) =
V (t2 j−2) =φ. Then, it follows that

V (t ) ≤φ+
m−1∑
j=1

∫ t2 j

t2 j−1

[
ψ(t )N (s(t ))+β

]
ṡ(t )d t

+
m−1∑
j=1

∫ t2 j−1

t2 j−2

[
ψ(t )N (s(t ))+β

]
ṡ(t )d t︸ ︷︷ ︸

Θ(s(t ))

+
∫ t

t2m−1

[
ψ(t )N (s(t ))+β

]
ṡ(t )d t

≤φ+
∫ t

0

[
ψ(t )N (s(t ))+β

]
ṡ(t )d t

≤φ+βs(t )+ l2

∫ s(t )

0
N+(τ)dτ− l1

∫ s(t )

0
N−(τ)dτ︸ ︷︷ ︸

Ξ(s(t ))

, (6.10)

by noting the facts that Θ(s(t )) ≡ 0 due to ṡ(t ) = 0 for t ∈ [t2 j−2, t2 j−1], s(0) = 0, and
N (s) = N+(s) −N−(s). When s(t ) = 0, ∀t , the boundedness of s(t ) and V (t ) can be
trivially obtained according to (6.10).
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When s(t ) 6= 0, it is obtained from (6.10) that

0 ≤ V (t )

s(t )
≤

∆(s(t ))︷ ︸︸ ︷[Ξ(
s(t )

)
s(t )

]
+ φ

s(t )
+β︸ ︷︷ ︸

Υ(s(t ))

. (6.11)

In the following, we aim to prove boundedness of s(·) on [0,+∞) by contradiction. If s(·)
is unbounded, one can calculate the limit behavior of∆(s) in (6.11) as s →+∞, using the
Definition 6.2. In particular, for the case of 0 > l2 > l1,

lim
s→+∞ inf ∆(s)

= lim
s→+∞

→+∞︷ ︸︸ ︷
1

s

∫ s

0
N−(τ)dτ

→−∞︷ ︸︸ ︷[
− l1 + l2 sup

∫ s
0 N+(τ)dτ∫ s
0 N−(τ)dτ︸ ︷︷ ︸
→−∞

]

=−∞, (6.12)

and similarly, for the case of l2 > l1 > 0,

lim
s→+∞ inf ∆(s)

= lim
s→+∞

→+∞︷ ︸︸ ︷
1

s

∫ s

0
N+(τ)dτ

→−∞︷ ︸︸ ︷[
l2−l1 sup

∫ s
0 N−(τ)dτ∫ s
0 N+(τ)dτ︸ ︷︷ ︸

→−∞

]

=−∞. (6.13)

Note that ‘inf’ in (6.12) and (6.13) becomes ‘sup’ due to l2 < 0 and l1 > 0, respectively.
The relations above indicate that an unbounded s leads to a negative unbounded ∆(s).
Independently of whether the unboundedness of ∆(s) occurs in finite time or at infinity
(this depends on the behavior of s(·)), the consequence would be that there exists a time
t̄ > 0 such that

Υ
(
s(t̄ )

)≤−ε
for some positive ε, which contradicts (6.11). It concludes that s(·) is bounded over the
entire time domain [0,+∞), so are Ξ(s(·)) and hence V (·) from (6.10).

Finally, let us now consider the case of t ∈ (t2m , t2m+1). The boundedness of s(·) and
V (·) is guaranteed by the above argument for t = t2m and the facts that V (t ) < φ and
ṡ(t ) = 0 for t ∈ (t2m , t2m+1). ■
Remark 6.3 Lemma 6.1 encompasses [18, Lemma 4.3] as special case when ṡ(t ) = 0 in
(6.9) is never active (e.g. when φ is sufficiently small). Also, while existing conditional
inequalities [29, Lemma 2], [60, Lemma 1], [46, Lemma 1], and [31, Lemma 2] guarantee
boundedness on a finite time interval [0, tδ) with tδ < +∞ (cf. discussion in [81, Re-
mark 1]), the proposed Lemma 6.1 can ensure boundedness on the entire time domain
[0,+∞). This is essentially due to the properties of type B Nussbaum functions used in
the proof by contradiction (cf. (6.12)-(6.13)).
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6.3. Nussbaum Gain Adaptive Prescribed Performance Control Design
The development of this section starts with performance functions ρi (t ) = (ρi ,0 −ρi ,∞)
exp(−κi t )+ρi ,∞ for positive constants ρi ,0 > ρi ,∞ and κi , i = 1, . . . ,n. Let α1(t ) = yr (t ),
αi+1(t ), i = 1, . . . ,n, be the virtual control laws to be designed, and the real control law
u(t ) =αn+1(t ).

Next, we introduce the virtual tracking error ei (t ) = χi (t )−αi (t ) and the error trans-
formation

Ti (t ) =
tan

(
π
2

ei (t )
ρi (t )

)
cos2

(
π
2

ei (t )
ρi (t )

) , i = 1, . . . ,n. (6.14)

As a result, the virtual control functions are devised as follows,

αi+1(t ) = %i N
(
si (t )

)
Ti (t ), i = 1, . . . ,n, (6.15)

where %i > 0 is a design parameter and N p (·) is a type B Nussbaum function for any
positive odd integer p ≥ 1. An adaptation law for si (t ) is constructed as

ṡi (t ) =
{

T
pi+1

i (t ), if |ei (t )| ≥ δiρi (t )
0, if |ei (t )| < δiρi (t )

(6.16)

for a constant δi ∈ (0,1). Similarly to [133, eq. (8)], equation (6.16) is devised to avoid
high-gain because it increases only when tracking error is close to violating the perfor-
mance bound: however, the stability analysis in [133] is for strict-feedback dynamics and
cannot be used to prove stability here. The way to prove the stability of this mechanism
relies on the proposed Lemma 6.1. Before moving on, we first give a technical lemma
that is similar to [133, Lemma 3] and the proof is thus omitted. Then, the main result is
stated in the following theorem below.

Lemma 6.2 If χi (·), α̇i (·), si (·), Ti (·), and ei+1(·) are bounded on a time interval [0, tδ),
then α̇i+1(·) is bounded on [0, tδ) for i = 1, . . . ,n.

6.4. Stability Analysis
Theorem 6.1 Under Assumption 6.1, consider the closed-loop system composed of (6.1),
the control laws (6.14) and (6.15), and the adaptation law (6.16). In particular, N p (·) is a
type B Nussbaum function for any positive odd integer p ≥ 1. For any initial conditions
|ei (0)| < ρi (0), i = 1, . . . ,n, the PPC problem is solved in the sense of P1 and P2.

Proof. (Time dependence of the functions ei ,αi , α̇i , and N (·) will be omitted whenever
unambiguous). Taking the time derivative of ei along (6.1), (6.14) and (6.15) yields

ėi (t ) = χ̇i − α̇i =φi (χi )+ψi (χi )(ei+1 +αi+1)pi − α̇i

=φi (χi )+ψi (χi )ϑi (ei+1,αi+1)epi
i+1 − α̇i

+ψi (χi )γi (ei+1,αi+1)αpi
i+1

= Fi (t )+γi (ei+1,αi+1)ψi (χi )%pi
i N pi (si )T pi

i (t ),

ėn(t ) = Fn(t )+ψn(χn)%pn
n N pn (sn)T pn

n (t ), (6.17)
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where the second equality used the separation lemma 2 of [62], |ϑi (ei+1,αi+1)| ≤ ϑ̄i with
ϑ̄i a positive constant, γi (ei+1,αi+1) ∈ [1− ε̄i ,1+ ε̄i ] with an arbitrary constant ε̄i ∈ (0,1),
Fi (t ) =φi (χi )+ψi (χi )ϑi (ei+1,αi+1)epi

i+1 − α̇i , i = 1, . . . ,n −1, and Fn(t ) =φn(χn)− α̇n .
In what follows, we will prove that |ei (t )| < ρi (t ), i = 1, . . . ,n, holds for t ≥ 0 using a

contradiction. Suppose there exists an error em such that

|em(tm)| ≥ ρm(tm), ∀m ∈ {1, . . . ,n}. (6.18)

Let tδ = min{tm} be the time instant when (6.18) is violated for the first time. Then,
due to the continuity of ei and the fact that |ei (0)| < ρi (0), i = 1, . . . ,n, it follows that

|ei (t )| < ρi (t ), ∀t ∈ [0, tδ), (6.19)

and that there exists an error eδ satisfying

limt→t−
δ
|eδ(t )| = limt→t−

δ
|ρδ(t )|, δ ∈ {1, . . . ,n}, (6.20)

where t−
δ

denotes the left limit of tδ.
To seek a contradiction, the analysis given below is conducted on a finite time inter-

val [0, tδ).
Step 1: Consider the Lyapunov function candidate

V1(t ) = 1

2
tan2

(
π

2

e1(t )

ρ1(t )

)
, ∀t ∈ [0, tδ). (6.21)

When |e1(t )| < δ1ρ1(t ), it immediately follows that

V1(t ) < 1

2
tan2

(
πδ1

2

)
,ω1. (6.22)

From (6.16), we further have

ṡ1(t ) = 0, when V1(t ) <ω1. (6.23)

When |e1(t )| ≥ δ1ρ1(t ), V1(t ) ≥ ω1 holds. Taking the time derivative of V1(t ) along
(6.17) yields

V̇1(t ) = π

2

T1(t )

ρ2
1(t )

[
ė1(t )ρ1(t )−e1(t )ρ̇1(t )

]
=T1(t )F1 f (t )+ g1 f (t )N p1 (s1)T p1+1

1 (t ), (6.24)

where

F1 f (t ) = π

2

(
F1(t )

ρ1(t )
− e1(t )ρ̇1(t )

ρ2
1(t )

)
,

g1 f (t ) = π

2

1

ρ1(t )
γ1(e2,α2)ψ1(t ,χ1)%p1

1 .
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According to the boundedness of yr and its derivative, α1 and α̇1 are bounded on
[0, tδ), which, together with (6.19), yields the boundedness of χ1 on [0, tδ). By Assump-
tion 6.1, the boundedness of χ1 and α̇1 results in that of F1(t ) and hence F1 f (t ) on [0, tδ).
Invoking the boundedness of γ1(e2,α2), ρ1(t ), and ψ1(t ,χ1) leads to that of g1 f (t ) on
[0, tδ). Then, it follows from the Extreme Value Theorem that there exist positive con-
stants F̄1 f , g

1 f
, and ḡ1 f such that

|F1 f (t )| ≤ F̄1 f , g1 f (t ) ∈ [g
1 f

, ḡ1 f ], 0 ∉ [g
1 f

, ḡ1 f ]. (6.25)

Substituting |e1(t )| ≥ δ1ρ1(t ) into (6.14) gives

∣∣T p1
1 (t )

∣∣≥ tanp1
(
π
2δ1

)
cos2r1

(
π
2δ1

) ≥ tanp1
(π

2
δ1

)
. (6.26)

Synthesizing (6.24)-(6.26) results in

V̇1(t ) ≤ |F1 f (t )|
|T p1

1 (t )|T
p1+1

1 (t )+ g1 f (t )N p1 (s1)T p1+1
1 (t )

≤
[

F̄1 f

tanp1
(
π
2δ1

) + g1 f (t )N p1 (s1)

]
ṡ1(t ). (6.27)

It is noted from Proposition 6.2 that N p1 (·) is a type B Nussbaum function. So, we
can apply Lemma 6.1 to prove that V1(·) and s1(·) are bounded on [0, tδ). In view of (6.21),
we can claim that there exists a constant σ̄1 > 0 such that |e1(t )| ≤ ρ1(t )− σ̄1 < ρ1(t ) on
[0, tδ) (equivalently to the boundedness of T1(t ) on [0, tδ)). This, together with (6.14)
and the boundedness of N (s1), gives the boundedness of α2 and χ2 on [0, tδ) due to
χi = ei +αi , i = 1,2. By Lemma 6.2, α̇2 is bounded on [0, tδ).

Step i (i = 2, . . . ,n): Boundedness of χi and α̇i on [0, tδ) was obtained from step i −1.
Consider the Lyapunov function candidate

Vi (t ) = 1

2
tan2

(
π

2

ei (t )

ρi (t )

)
, ∀t ∈ [0, tδ). (6.28)

When |ei (t )| < δiρi (t ), it follows that

Vi (t ) < 1

2
tan2

(
πδi

2

)
,ωi . (6.29)

From (6.16) one has
ṡi (t ) = 0, when Vi (t ) <ωi . (6.30)

When |ei (t )| ≥ δiρi (t ), it holds that Vi (t ) ≥ ωi . Taking the time derivative of Vi (t )
along (6.16) gives

V̇i (t ) = π

2

Ti (t )

ρ2
i (t )

[
ėi (t )ρi (t )−ei (t )ρ̇i (t )

]
=Ti (t )Fi f (t )+ gi f (t )N pi (si )T pi+1

i (t ), (6.31)
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where

Fi f (t ) = π

2

(
Fi (t )

ρi (t )
− ei (t )ρ̇i (t )

ρ2
i (t )

)
,

gi f (t ) = π

2

1

ρi (t )
γi (ei+1,αi+1)ψi (χi )%pi

i .

In light of Assumption 6.1 and the boundedness of χi , α̇i and ei+1 on [0, tδ), Fi (t ) is
bounded on [0, tδ), which further ensures the boundedness of Fi f (t ) on [0, tδ). Recalling
Assumption 6.1 and the boundedness of γi (ei+1,αi+1) leads to that of gi f (t ) on [0, tδ).
Similar to Step 1, one can conclude there exist positive constants F̄i f , g

i f
, and ḡi f such

that
|Fi f (t )| ≤ F̄i f , gi f (t ) ∈ [g

i f
, ḡi f ], 0 ∉ [g

i f
, ḡi f ]. (6.32)

Substituting |ei (t )| ≥ δiρi (t ) into (6.14) results in

∣∣T pi
i (t )

∣∣≥ tanpi
(
π
2δi

)
cos2pi

(
π
2δi

) ≥ tanpi
(π

2
δi

)
. (6.33)

Summarizing (6.31)-(6.33) leads to

V̇i (t ) ≤ |Fi f (t )|
|T pi

i (t )|T
pi+1

i (t )+ gi f (t )N pi (si )T pi+1
i (t )

≤
[

F̄i f

tanpi
(
π
2δi

) + gi f (t )N pi (si )

]
ṡi (t ). (6.34)

Likewise, N pi (·) is a type B Nussbaum function, so we apply Lemma 6.1 to prove
that Vi (·) and si (·) are bounded on [0, tδ). According to (6.28), there exists a constant
σ̄i > 0 such that |ei (t )| ≤ ρi (t )− σ̄i < ρi (t ) on [0, tδ), which, combined with (6.15) and
the boundedness of N (si ), yields the boundedness of αi+1 and χi+1 on [0, tδ) owing to
χi+1 = ei+1 +αi+1. Therefore, α̇i+1 is bounded on [0, tδ) according to Lemma 6.2.

In summary, we have proved that |ei (t )| ≤ ρi (t )− σ̄i < ρi (t ), i = 1, . . . ,n, for t ∈ [0, tδ).
However, this contradicts the assumption made in (6.20) and implies that tδ should be
extended to +∞. As a result, |ei (t )| < ρi (t ), i = 1, . . . ,n, holds for t ∈ [0,+∞). Given that
Lemma 6.1 holds true on [0,+∞), the boundedness of closed-loop signals is guaranteed
on [0,+∞). This completes the proof. ■

6.5. Simulation Example
To validate the proposed method, a two-degree-of-freedom wing section with leading-
edge (LE) and trailing-edge (TE) control surfaces as shown in Fig. 6.2 is considered. The
dynamic of this aeroelastic system can be described by [28, 43]:[

Iα mw xαb
mw xαb mt

][
α̈

ḧ

]
+

[
ch 0
0 cα(α̇)

][
α̇

ḣ

]
+

[
kα(α) 0

0 kh(h)

][
α

h

]
=

[
M
−L

] (6.35)
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Figure 6.2: Wing section with leading-edge (LE) and trailing-edge (TE) control surfaces.

where α and h denote the pitch angle and the plunge displacement, respectively; Iα
is the moment of inertia; mw = mt +ml is the sum of wing section mass mt and load
section mass ml ; xα is the distance between the center of mass and the elastic axis; b
is the semi-chord of the wing; ch is the plunge damping coefficient. The pitch damping
cα(α̇), the pitch stiffness kα(α), and the plunge stiffness kh(h) are expressed as cα(α̇) =∑2

j=0 cα j α̇
j , kα(α) = ∑2

j=0 kα jα
j , and kh(h) = ∑2

j=0 kh j h j , where cα j , kα j , and kh j are
unknown non-zero constants and cannot be used in control design. In (6.35), M and L
represent the aerodynamic moment and lift expressed by

M =ρU 2b2sp

{
c̄lα

(
α+ ḣ

U
+(0.5−a)b

α̇

U

)
+c̄lββ+c̄lγγ

}
L= ρU 2bsp

{
clα

(
α+ ḣ

U
+(0.5−a)b

α̇

U

)
+clββ+clγγ

} (6.36)

where c̄lα = ( 1
2 +a

)
clα + 2cmα , c̄lβ = ( 1

2 +a
)

clβ + 2cmβ
, c̄lγ = ( 1

2 +a
)

clγ + 2cmγ , and ρ is
the air density; U denotes the freestream velocity; clα , clβ and clγ are the lift derivatives;
cmα , cmβ

and cmγ are the moment derivatives; sp is the span; a is the nondimensional
distance from midchord to the elastic axis; β and γ are the TE and LE control surface
deflections, respectively. With the change of coordinates χ1 = α, χ2 = α̇, χ3 = h, χ4 = ḣ,
and u =β+γ, we can rewrite (6.35) as

χ̇1 =χ2, χ̇2 =φ2
(
χ̄2

)+`2
(
χ̄2

)
χ3

3, χ̇3 =χ4, χ̇4 =φ4
(
χ̄4

)+u, (6.37)

whereφ2
(
χ
)=cᾱ1χ1+cα11χ

3
1+cα̇1χ2+cα̇11χ

3
2+cḣ1

χ2+cβ1β+cγ1γ,φ4
(
χ
)= cα2χ1+cα21χ

3
1+

cα̇2χ2+cα̇21χ
3
2+ch21χ

3
3+cḣ2

χ4, and `2
(
χ̄2

)= mw xαbkh2 with cᾱ1=c2mt cmα+c1mt xαbclα,

cα11 =−mt kα2 , cα̇1 =c2mt cmα(0.5−a) b
U −cα0mt +c1mt xαbclα (0.5−a) b

U , cα̇11 =−mt cα2,

cḣ1
=c2mt cmα

1
U +c1mt xαbclα

1
U −chmt xαb, cβ1 = c2mt cmβ+c1mt xαbclβ, cγ1 = c1mt xαbclγ+

c2mt cmγ, cα2=−c2mt xαbcmα−c1Iαclα, cα21=mt xαbkα2 , cα̇2 =−c2mt xαbcmα (0.5−a) b
U −

c1Iαclα (0.5−a) b
U + cα0mt xαb, cα̇21 = mt xαbcα2, ch21 = −kh2Iα, cḣ2

= −c2mt xαcmα
b
U −
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Figure 6.3: (a): Evolution of y and yr ; (b): Evolution of the tracking error e1; (c): Evolution of the control input
signal u; (d): Evolution of the state variables χ2, χ3, and χ4.

ch Iα−c1Iαclα
1
U , cβ2 =−c2mt xαbcmβ−c1Iαclβ, cγ2 =−c2mt xαbcmγ−c1Iαclγ, c1 = ρU 2bsp ,

and c2 = ρU 2b2sp .

Since the sign of kh2 is unknown, the sign of control coefficient `2(·) is unknown and
cannot be used in the control design. Taking the same structural parameters as [43] gives
the values of model parameters used for simulation in Table I. Let the reference signal be
yr (t ) = sin(0.5t )+ sin(t ). The initial state values are chosen as χ1(0) = 3.5, χ2(0) = −1.5,
χ3(0) = −2.5 and χ4(0) = −1.5. The design parameters are chosen to be: %1 = 1.25, %2 =
1.75, %3 = %4 = 5, δ1 = 0.5, δ2 = 0.75, δ3 = 0.35, δ4 = 0.9, ρ1,0 = ρ2,0 = ρ3,0 = ρ4,0 = 5,
ρ1,∞ = 0.1, ρ2,∞ = 0.85, ρ3,∞ = 0.5, ρ4,∞ = 0.75, κ1 = 1.25, κ2 = 0.75, κ3 = κ4 = 0.5. The
parameters and initial conditions of Nussbaum functions are µ= 0.25 and s1(0) = s2(0) =
s3(0) = s4(0) = 0, respectively. The simulation results are shown in Figs. 6.3 and 6.4. In

Table 6.1: The values of model parameters

Coefficient Value Coefficient Value Coefficient Value

cᾱ1 0.7835 cα11 −1.5616 kα1 -0.9475

cα̇11 −7.6423 cḣ1
2.6583 kα2 4.7562

cγ1 0.7256 cα2 −5.8731 kh2
3.6937

cα̇2 −3.2567 cα̇21 1.2548 kα0 −2.0593

cḣ2
−8.2431 cα1 0.5717 kh0

2.3985

cα̇1 4.9527 cβ1
0.5394 kh1

−4.7592
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6. APPROXIMATION-FREE PRESCRIBED-PERFORMANCE TRACKING FOR POWER-CHAINED

FORM SYSTEMS WITH TIME-VARYING UNKNOWN CONTROL COEFFICIENTS

particular, Fig. 6.3 (a) and (b) show that system output y tracks the reference signal yr

with bounded tracking error and that the output tracking error e1 evolves within the
prescribed bounds (−ρ1,ρ1) in spite of unknown control coefficient `2(·). Fig. 6.3 (c) and
(d) indicate the boundedness of control signal u and state variables χ2, χ3, and χ4. Fig.
6.4 (a) and (b) show the boundedness of s1, s2, s3, s4,N (s1), N (s2), N (s3),and N (s4).

To investigate the influence of parameter δi , i = 1, . . . ,4, on the closed-loop response,
we carry out the simulation based on three different sets of δi : Case 1: δ1 = 0.15, δ2 = 0.2,
δ3 = 0.25, δ4 = 0.3; Case 2: δ1 = 0.25, δ2 = 0.3, δ3 = 0.35, δ4 = 0.4; Case 3: δ1 = 0.35,
δ2 = 0.45, δ3 = 0.55, δ4 = 0.6. The trajectories of adaptation parameters si are depicted
in Fig. 6.5, which validate the boundedness of si for different δi , i = 1, . . . ,4.
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Figure 6.4: (a): Evolution of s1, s2, s3, and s4; (b): Evolution of N (s1), N (s2), N (s3), and N (s4).
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Figure 6.5: Evolution of s1, s2, s3, and s4 under three cases.
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6.6. Conclusions
In the context of prescribed performance control for power-chained form systems with
time-varying unknown control coefficients, this chapter has studied the properties as-
sociated to the power of Nussbaum functions, and the design of a novel switching Nuss-
baum conditional inequality. An interesting open problem deserving future investiga-
tion is PPC with time-varying unknown control coefficients and positive-odd rational
powers, which contains positive-odd integer powers as a special case.





7
CONCLUSIONS AND

RECOMMENDATIONS

In this thesis, we have investigated the consensus tracking problem for power-chained
form systems in several scenarios, such as having (partially) completely unknown con-
trol directions, guaranteed transient and steady-state performance, and switching dy-
namics. In this final chapter, the main results of this thesis and some recommendations
for future research are presented.

7.1. Conclusions
The main results of this thesis are summarized below.

Ï Separation-based adaptive consensus tracking control of multi-agent nonlinear
systems in power-chained form systems

We have proposed a new separation-based lemma for the purpose of handling
high-power terms during the control design and stability analysis. With this new
tool, we were capable of extracting virtual control variables in a “linear-like” fash-
ion. Thus, the complexity was reduced by avoiding incorporating the control gain
of each virtual control in the next virtual control law, and by allowing the power of
the virtual and actual control laws to increase proportionally with the order of the
systems.

Ï Consensus tracking of power-chained form systems with mixed unknown con-
trol directions via hybrid Nussbaum-based control

A novel conditional inequality including a hybrid Nussbaum function was pro-
posed to deal with mixed unknown control directions (some being known and
some being unknown) for power-chained form systems subject to switching dy-
namics and input quantization. The distinguishing feature of the newly proposed
conditional inequality consists in ensuring the boundedness of multiple Nuss-
baum integral terms.

123



7

124 7. CONCLUSIONS AND RECOMMENDATIONS

Ï Logic-based switching control of power-chained form systems with multiple un-
known control directions

A novel logic-based switching mechanism was designed to online estimate mul-
tiple control directions assumed to be unknown a priori. Specifically, a new dy-
namic boundary function that is decreasing in-between switching instants and
monotonically increasing at the switching instants is proposed to address the chal-
lenge that asymptotic tracking was impossible in general for power-chained form
systems. Apart from this, a dynamic threshold was delicately devised in such a way
that chattering is fully excluded by choosing the maximum values of an appropri-
ately designed Lyapunov like function before and after switching.

Ï Prescribed performance tracking control of power-chained form systems with
time-varying unknown control coefficients

We have shown with a counterexample and a positive example that only partial
type B Nussbaum functions whose positive odd-integer powers are still type B
Nussbaum functions can be incorporated into a Nussbaum function-based ap-
proach to tackle time-varying unknown control coefficients. To avoid high-gain
issues, a new switching conditional inequality was designed based on increasing
the Nussbaum gain only when the tracking error is close to violating the perfor-
mance bounds instead of always increasing the Nussbaum gain.

7.2. Impact of this Research on Society
Despite the theoretical nature of this work, the control methodologies proposed in this
thesis fit the recent progress in autonomous and unmanned systems, a crucial research
field in a modern technological society. In particular

Ï Unmanned and/or autonomous vehicles have been recently studied by several
researchers, such as hypersonic flight vehicles [10, 11, 118], tailless flight vehicles
[137], ship maneuvering systems [127, 138], and so on. With respect to these re-
searches, the method proposed in Chapters 5 and 6 fit the need of tackling the
inevitable uncertainty that these systems exhibit during their operation. In fact,
our methodologies need neither some accurate modelling information (e.g. a pri-
ori knowledge of the control directions), nor universal approximators (e.g. neu-
ral networks and fuzzy logic systems) to handle the completely known model dy-
namics. Besides, the fact that prescribed specifications (e.g. maximum overshoot,
minimum convergence rate, and maximum steady-state error) can be guaranteed,
means that prescribed performance over the operating region can be guaranteed
despite the presence of uncertainty.

Ï Smart grids and smart energy systems are other fields where the proposed meth-
ods can have an important impact. Currently, power-chained form dynamics sim-
ilar to the ones in this thesis have been adopted for the boiler-turbine units [15]
and hydraulic dynamics [66], which are fundamental parts of many power plants.
The method proposed in Chapters 3 and 4 provides a more practical way to con-
trol these systems: first, we solve the high-gain issues of the methods of [15, 66],
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which implies that less energy can be required to operate such power plants; sec-
ond, we provide a better tracking performance, which implies that the power grids
potentially connected to such power plants can be operated in a more accurate
way.

7.3. Recommendations for Future Research
In this section, some potential topics based on the research of this thesis are introduced.

Ï Adaptive output-feedback control of power-chained form systems

The developed adaptive controllers in Chapters 3-6 rely on the availability of sys-
tem states. Such prerequisite in many cases cannot be satisfied arising from the
fact that the measurements of system states are uneconomical or even technically
impossible. In this sense, designing adaptive controllers on the basis of output
measurements is relevant and deserves further investigations. It seems feasible
that the output-feedback designs developed in [48, 49] can be extended to control
power-chained form systems.

Ï Adaptive tracking control of power-chained form systems with finite-time (fixed-
time) convergence guarantee

The adaptive controllers proposed in Chapters 3-6 can only obtain bounded sta-
bility (i.e. the tracking error converges to a residual set around zero). In some prac-
tical engineering scenarios, finite-time (fixed-time) stability might be required,
and currently this is not guaranteed by the proposed designs. The finite-time
(fixed-time) stability results proposed in [8, 142] may provide a possible solution
to this issue.

Ï Event-triggered adaptive tracking control of power-chained form systems

If the proposed methods had to be implemented in a digital controller, one could
select a fixed sample time with equal time intervals between any two consecutive
time steps. However, in event-triggered control approaches the time instants of
updating control signals are not fixed a priori, but can change to reduce the sig-
nal transmission burden, and to save on system resources. It is an open problem
to implement the proposed control design in such an event-triggered framework.
Following similar event-triggered designs as in [116, 117] probably can solve this
problem.

Ï Adaptive consensus tracking control for multi-agent in power-chained form sys-
tems with undesired communication conditions

In this thesis, we have assumed that there exist ideal communication channels
among different agents in the sense that there is not any time delay and packet
loss in the communication process. However, further research in the presence of
undesired communication conditions can be worth of consideration. The meth-
ods of [38, 102] dealing with similar challenges might be helpful for resolving this
issue.
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Ï Adaptive constrained tracking control of power-chained from systems with state
constraints

In practical engineering systems, the states variables can be required to satisfy var-
ious constraints and the violation of these constraints may deteriorate system per-
formance. It is worth investigating whether Barrier Lyapunov functions proposed
in [51, 58, 59, 99, 100, 129] can be embedded into the proposed methodologies to
ensure state constraint satisfaction.
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